STM690A, STM692A, STM703 STM704, STM802, STM805, STM817/8/9 # 5V Supervisor with Battery Switchover ## **FEATURES SUMMARY** - 5V OPERATING VOLTAGE - NVRAM SUPERVISOR FOR EXTERNAL LPSRAM - CHIP-ENABLE GATING (STM818 only) FOR EXTERNAL LPSRAM (7ns max PROP DELAY) - RST AND RST OUTPUTS - 200ms (TYP) t_{rec} - WATCHDOG TIMER 1.6sec (TYP) - AUTOMATIC BATTERY SWITCHOVER - LOW BATTERY SUPPLY CURRENT 0.4µA (TYP) - POWER-FAIL COMPARATOR (PFI/PFO) - LOW SUPPLY CURRENT 40µA (TYP) - GUARANTEED \overline{RST} (RST) ASSERTION DOWN TO $V_{CC} = 1.0V$ - OPERATING TEMPERATURE: -40°C to 85°C (Industrial Grade) Figure 1. Packages **Table 1. Device Options** | | Watchdog
Input | Active-
Low
RST ⁽¹⁾ | Active-
High
RST ⁽¹⁾ | Manual
Reset
Input | Battery
Switch-
over | Power-fail
Comparator | Chip-
Enable
Gating | Battery
Freshness
Seal | |-----------|-------------------|--------------------------------------|---------------------------------------|--------------------------|----------------------------|--------------------------|---------------------------|------------------------------| | STM690A | ~ | V | | | ~ | ' | | | | STM692A | ~ | ~ | | | ~ | ' | | | | STM703 | | V | | ~ | ~ | ' | | | | STM704 | | V | | ~ | ~ | ' | | | | STM802L/M | ~ | ~ | | | ~ | ' | | | | STM805L | ~ | | ~ | | ~ | ~ | | | | STM817L/M | ~ | V | | | ~ | ~ | | ~ | | STM818L/M | ~ | V | | | ~ | | V | ~ | | STM819L/M | | V | | ~ | ~ | ' | | ~ | Note: 1. All RST and RST outputs are push-pull. September 2004 1/33 ^{*} Contact local ST sales office for availability. # **TABLE OF CONTENTS** | FEATURES SUMMARY | 1 | |---|----| | Figure 1. Packages | 1 | | Table 1. Device Options | 1 | | SUMMARY DESCRIPTION | 4 | | | | | Figure 2. Logic Diagram (STM690A/692A/802/805/817) | | | Figure 3. Logic Diagram (STM703/704/819) | | | Figure 4. Logic Diagram (STM818) | | | Table 2. Signal Names | | | Figure 5. STM690A/692A/802/805/817 Connections | | | Figure 6. STM703/704/819 Connections | | | Figure 7. STM818 Connections | | | Pin Descriptions | | | Table 3. Pin Description | | | Figure 8. Block Diagram (STM690A/692A/802/805/817) | | | Figure 9. Block Diagram (STM703/704/819) | | | Figure 10.Block Diagram (STM818) | | | Figure 11.Hardware Hookup | 8 | | OPERATION | 0 | | | | | Reset Output | | | Push-button Reset Input (STM703/704/819) | | | Watchdog Input (NOT available on STM703/704/819) | | | Back-up Battery Switchover | | | Table 4. I/O Status in Battery Back-up | | | Chip-Enable Gating (STM818 only) | | | Chip Enable Input (STM818 only) | | | Chip Enable Output (STM818 only) | | | Figure 12.Chip-Enable Gating | | | Figure 13.Chip Enable Waveform | | | Power-fail Input/Output (NOT available on STM818) | | | Figure 14.Power-fail Comparator Waveform (STM817/818/819) | | | Figure 15.Power-fail Comparator Waveform (STM690A/692A/703/704/802/805) | | | Using a SuperCap™ as a Backup Power Source | | | Negative-Going V _{CC} Transients | | | Battery Freshness Seal (STM817/818/819) | | | Figure 16.Using a SuperCap™ | | | Figure 17.Freshness Seal Enable Waveform | | | i iguic 17.1 lestilless ceal Etiable Wavelotti | 14 | | TYPICAL OPERATING CHARACTERISTICS | 15 | | Figure 18.V _{BAT} -to-V _{OUT} On-Resistance vs. Temperature | 15 | | Figure 19.Supply Current vs. Temperature (no load) | | ## STM690A/692A/703/704/802/805/817/818/819 | | Figure 20.V _{PFI} Threshold vs. Temperature | |--------------|--| | | Figure 21.Reset Comparator Propagation Delay vs. Temperature | | | Figure 22.Power-up t _{rec} vs. Temperature | | | Figure 23.Normalized Reset Threshold vs. Temperature | | | Figure 24.Watchdog Time-out Period vs. Temperature | | | Figure 25. E to E _{CON} On-Resistance vs. Temperature | | | Figure 26.PFI to Propagation Delay vs. Temperature18 | | | Figure 27. RST Output Voltage vs. Supply Voltage | | | Figure 28.RST Output Voltage vs. Supply Voltage | | | Figure 29. RST Response Time (Assertion)19 | | | Figure 30.RST Response Time (Assertion) | | | Figure 31.Power-fail Comparator Response Time (Assertion) | | | Figure 32.Power-fail Comparator Response Time (De-Assertion) | | | Figure 33.V _{CC} to Reset Propagation Delay vs. Temperature | | | Figure 34.Maximum Transient Duration vs. Reset Threshold Overdrive | | | Figure 35. E to ECON Propagation Delay vs. Temperature | | | VIMUM DATING | | IVI <i>F</i> | XIMUM RATING23 | | | Table 5. Absolute Maximum Ratings23 | | D.C | and AC PARAMETERS | | טכ | | | | Table 6. Operating and AC Measurement Conditions23 | | | Figure 36.Ē to ĒCON Propagation Delay Test Circuit | | | Figure 37.AC Testing Input/Output Waveforms | | | Figure 38.MR Timing Waveform | | | Figure 39.Watchdog Timing | | | Table 7. DC and AC Characteristics | | ΡΔ | CKAGE MECHANICAL | | • • • | | | | Figure 40.SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mech. Drawing 28 | | | Table 8. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data 28 | | | Figure 41.TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Outline | | | Table 9. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Mechanical Data 29 | | PA | RT NUMBERING30 | | | Table 10. Ordering Information Scheme | | | Table 11. Marking Description | | | Table 11. Marking Decemption | | RE | VISION HISTORY32 | | | Table 40 Day on 4 Day 12 and 12 and | | | Table 12. Document Revision History | ## SUMMARY DESCRIPTION The STM690A/692A/703/704/802/805/817/818/819 Supervisors are self-contained devices which provide microprocessor supervisory functions with the ability to non-volatize and write-protect external LPSRAM. A precision voltage reference and comparator monitors the V_{CC} input for an out-of-tolerance condition. When an invalid V_{CC} condition occurs, the reset output (RST) is forced low (or high in the case of RST). These devices also offer a watchdog timer (except for STM703/704/819) as well as a power-fail comparator (except for STM818) to provide the system with an early warning of impending power failure. These devices are available in a standard 8-pin SOIC package or a space-saving 8-pin TSSOP package. Figure 2. Logic Diagram (STM690A/692A/802/805/817) Note: 1. For STM805, reset output is active-high. Figure 3. Logic Diagram (STM703/704/819) Figure 4. Logic Diagram (STM818) **Table 2. Signal Names** | MR | Push-button Reset Input | |---------------------------------|--------------------------------| | WDI | Watchdog Input | | RST | Active-Low Reset Output | | RST | Active-High Reset Output | | Ē ⁽¹⁾ | Chip Enable Input | | E _{CON} ⁽¹⁾ | Conditioned Chip Enable Output | | Vout | Supply Voltage Output | | V _{CC} | Supply Voltage | | V _{BAT} | Back-up Supply Voltage | | PFI | Power-fail Input | | PFO | Power-fail Output | | V _{SS} | Ground | | | | Note: 1. STM818 Figure 5. STM690A/692A/802/805/817 Connections Note: 1. For STM805, reset output is active-high. Figure 6. STM703/704/819 Connections Figure 7. STM818 Connections #### **Pin Descriptions** MR. A logic low on /MR asserts the reset output. Reset remains asserted as long as MR is low and for trec after MR returns high. This active-low input has an internal pull-up. It can be driven from a TTL or CMOS logic line, or shorted to ground with a switch. Leave open if unused. **WDI.** If WDI remains high or low for 1.6sec, the internal watchdog timer runs out and reset is triggered. The internal watchdog timer clears while reset is asserted or when WDI sees a rising or falling edge. The watchdog function can be disabled by allowing the WDI pin to float. $\overline{\textbf{RST}}.$ Pulses low for t_{rec} when triggered, and stays low whenever V_{CC} is below the reset threshold or when $\overline{\textbf{MR}}$ is a logic low. It remains low for t_{rec} after either V_{CC} rises above the reset threshold, the watchdog triggers a reset, or $\overline{\textbf{MR}}$ goes from low to high. **RST.** Pulses high for t_{rec} when triggered, and stays high whenever V_{CC} is above the reset threshold or when \overline{MR} is a logic high. It remains high for t_{rec} after either V_{CC} falls below the reset threshold, the watchdog triggers a reset, or \overline{MR} goes from high to low. $\textbf{V}_{\text{OUT}}.$ When V_{CC} is above the switchover voltage (VSO), VOUT is connected to VCC through a P-channel MOSFET switch. When VCC falls below VSO, VBAT connects to VOUT. Connect to VCC if no battery is used. V_{BAT} . When V_{CC} falls below V_{SO} , V_{OUT} switches from V_{CC} to V_{BAT} . When V_{CC} rises above V_{SO} + hysteresis, V_{OUT} reconnects to V_{CC} . V_{BAT} may exceed V_{CC} . Connect to V_{CC} if no battery is used. **E.** The input to the chip-enable gating circuit. Connect to ground if unused. \overline{E}_{CON} . \overline{E}_{CON} goes low only when \overline{E} is low and reset is not asserted. If \overline{E}_{CON} is low when reset is asserted, \overline{E}_{CON} will remain low for 15 μ s or until \overline{E} goes high, whichever occurs first. In the disabled mode, \overline{E}_{CON} is pulled up to V_{OUT} . **PFI.** When PFI is less than V_{PFI} or when V_{CC} falls below 2.4V (or V_{SO}), \overline{PFO} goes low; otherwise, \overline{PFO} remains high. Connect to ground if unused. **PFO.** When PFI is <u>less</u> than V_{PFI} , or V_{CC} falls <u>below</u> 2.4V (or V_{SO}), <u>PFO</u> goes low; otherwise, <u>PFO</u> remains high. Leave open if unused. **Table 3. Pin Description** | | Р | in | | Name | Function | |--------|--|----------------------------|--------|------------------|-----------------------------------| | STM818 | STM690A
STM692A
STM802
STM817 | STM703
STM704
STM819 | STM805 | | | | _ | _ | 6 | _ | MR | Push-button Reset Input | | 6 | 6 | - | 6 | WDI | Watchdog Input | | 7 | 7 | 7 | _ | RST | Active-Low Reset Output | | _ | _ | - | 7 | RST | Active-High Reset Output | | 1 | 1 | 1 | 1 | V _{OUT} | Supply Output for External LPSRAM | | 2 | 2 | 2 | 2 | V _{CC} | Supply Voltage | | 8 | 8 | 8 | 8 | V_{BAT} | Backup-Battery Input | | 4 | _ | _ | _ | E | Chip Enable Input | | 5 | _ | _ | _ | ECON | Conditioned Chip Enable Output | | _ | 4 | 4 | 4 | PFI | PFI Power-fail Input | | _ | 5 | 5 | 5 | PFO | PFO Power-fail Output | | 3 | 3 | 3 | 3 | V_{SS} | Ground | Figure 8. Block Diagram (STM690A/692A/802/805/817) Note: 1. For STM805, reset output is active-high. Figure 9. Block Diagram (STM703/704/819) 477 Figure 10. Block Diagram (STM818) Figure 11. Hardware Hookup Note: 1. For STM690A/692A/802/805/817/818. - For STM818 only. Not available on STM818. - 4. For STM703/704/819. ## **OPERATION** #### **Reset Output** The STM690A/692A/703/704/802/805/817/818/819 Supervisor asserts a reset signal to the MCU whenever V_{CC} goes below the reset threshold (V_{RST}), a watchdog time-out occurs, or when the Push-button Reset Input (\overline{MR}) is taken low. \overline{RST} is guaranteed to be a logic low (logic high for STM805) for 0V < V_{CC} < V_{RST} if V_{BAT} is greater than 1V. Without a back-up battery, \overline{RST} is guaranteed valid down to V_{CC} =1V. During power-up, once V_{CC} exc<u>eeds</u> the reset threshold an internal timer keeps \overline{RST} low fo<u>r the</u> reset time-out period, t_{rec} . After this interval \overline{RST} returns high. If V_{CC} drops below the reset threshold, \overline{RST} goes low. Each time \overline{RST} is asserted, it stays low for at least the reset time-out period (t_{rec}). Any time V_{CC} goes below the reset threshold the internal timer clears. The reset timer starts when V_{CC} returns above the reset threshold. #### Push-button Reset Input (STM703/704/819) A logic low on \overline{MR} asserts reset. Reset remains asserted while \overline{MR} is low, and for t_{rec} (see Figure 38., page 24) after it returns high. The \overline{MR} input has an internal $40k\Omega$ pull-up resistor, allowing it to be left open if not used. This input can be driven with TTL/CMOS-logic levels or with open-drain/collector outputs. Connect a normally open momentary switch from \overline{MR} to GND to create a manual reset function; external debounce circuitry is not required. If $\overline{\text{MR}}$ is driven from long cables or the device is used in a noisy environment, connect a 0.1 μ F capacitor from $\overline{\text{MR}}$ to GND to provide additional noise immunity. $\overline{\text{MR}}$ may float, or be tied to V_{CC} when not used. # Watchdog Input (NOT available on STM703/704/819) The watchdog timer can be used to detect an out-of-control MCU. If the MCU does not toggle the Watchdog Input (WDI) within t_{WD} (1.6sec typ), the reset is asserted. The internal watchdog timer is cleared by either: - 1. a reset pulse, or - by toggling WDI (high-to-low or low-to-high), which can detect pulses as short as 50ns. If WDI is tied high or low, a reset pulse is triggered every 1.8sec (t_{WD} + t_{rec}). The timer remains cleared and does not count for as long as reset is asserted. As soon as reset is released, the timer starts counting (see Figure 39., page 24). **Note:** The watchdog function may be disabled by floating WDI or tri-stating the driver connected to WDI. When tri-stated or disconnected, the maximum allowable leakage current is 10uA and the maximum allowable load capacitance is 200pF. **Note:** Input frequency greater than 20ns (50MHz) will be filtered. #### **Back-up Battery Switchover** In the event of a power failure, it may be necessary to preserve the contents of external SRAM through $V_{OUT}.$ With a backup battery installed with voltage $V_{BAT},$ the devices automatically switch the SRAM to the back-up supply when V_{CC} falls. **Note:** If back-up battery is not used, connect both V_{BAT} and V_{OUT} to V_{CC} . This family of Supervisors does not always connect V_{BAT} to V_{OUT} when V_{BAT} is greater than V_{CC} . V_{BAT} connects to V_{OUT} (through a 100Ω switch) when V_{CC} is below V_{RST} and V_{BAT} . This is done to allow the back-up battery (e.g., a 3.6V lithium cell) to have a higher voltage than V_{CC} . Assuming V_{BAT} > 2.0V, switchover at V_{SO} ensures that battery back-up mode is entered before V_{OUT} gets too close to the 2.0V minimum required to reliably retain data in most external SRAMs. When V_{CC} recovers, hysteresis is used to avoid oscillation around the V_{SO} point. V_{OUT} is connected to V_{CC} through a 3 Ω PMOS power switch. **Note:** The back-up battery may be removed while V_{CC} is valid, assuming V_{BAT} is adequately decoupled (0.1µF typ), without danger of triggering a reset. Table 4. I/O Status in Battery Back-up | Pin | Status | |------------------|---| | V _{OUT} | Connected to V _{BAT} through internal switch | | Vcc | Disconnected from V _{OUT} | | PFI | Disabled | | PFO | Logic low | | Ē | High impedance | | Econ | Logic high | | WDI | Watchdog timer is disabled | | WDO | Logic low | | MR | Disabled | | RST | Logic low | | RST | Logic high | | V _{BAT} | Connected to V _{OUT} | ## **Chip-Enable Gating (STM818 only)** Internal gating of the chip enable (\overline{E}) signal prevents erroneous data from corrupting the external CMOS RAM in the event of an undervoltage condition. The STM818 uses a series transmission gate from \overline{E} to \overline{E}_{CON} (see Figure 12., page 11). During normal operation (reset not asserted), the \overline{E} transmission gate is enabled and passes all \overline{E} transitions. When reset is asserted, this path becomes disabled, preventing erroneous data from corrupting the CMOS RAM. The short \overline{E} propagation delay from \overline{E} to \overline{E}_{CON} enables the STM818 to be used with most $\mu Ps.$ If \overline{E} is low when reset asserts, \overline{E}_{CON} remains low for typically 15 μ s to permit the current WRITE cycle to complete. Connect \overline{E} to V_{SS} if unused. ## Chip Enable Input (STM818 only) The chip-enable transmission gate is disabled and \overline{E} is high impedance (disabled mode) while reset is asserted. During a power-down sequence when V_{CC} passes the reset threshold, the chip-enable transmission gate disables and \overline{E} immediately becomes high impedance if the voltage at \overline{E} is high. If \overline{E} is low when reset asserts, the chip-enable transmission gate will disable 15µs after reset asserts (see Figure 13., page 11). This permits the current WRITE cycle to complete during power-down. Any time a reset is generated, the chip-enable transmission gate remains disabled and \overline{E} remains high impedance (regardless of \overline{E} activity) for the reset time-out period. When the chip enable transmission gate is enabled, the impedance of \overline{E} appears as a 40Ω resistor in series with the load at E_{CON}. The propagation delay through the chip-enable transmission gate depends on V_{CC}, the source impedance of the drive connected to E, and the loading on ECON. The chip enable propagation delay is production tested from the 50% point on E to the 50% point on \overline{E}_{CON} using a 50Ω driver and a 50pF load capacitance (see Figure 37., page 24). For minimum propagation delay, minimize the capacitive load at E_{CON} and use a low-output impedance driver. #### Chip Enable Output (STM818 only) When the chip-enable transmission gate is enabled, the impedance of \overline{E}_{CON} is equivalent to a 40Ω resistor in series with the source driving $\overline{E}.$ In the disabled mode, the transmission gate is off and an active pull-up connects \overline{E}_{CON} to V_{OUT} (see Figure 12., page 11). This pull-up turns off when the transmission gate is enabled. ## Figure 12. Chip-Enable Gating # Figure 13. Chip Enable Waveform #### Power-fail Input/Output (NOT available on STM818) The Power-fail Input (PFI) is compared to an internal reference voltage (independent from the V_{RST} comparator). If PFI is less than the power-fail threshold (VPFI), the Power-Fail Output (PFO) will go low. This function is intended for use as an undervoltage detector to signal a failing power supply. Typically PFI is connected through an external voltage divider (see Figure 11., page 8) to either the unregulated DC input (if it is available) or the regulated output of the V_{CC} regulator. The voltage divider can be set up such that the voltage at PFI falls below V_{PFI} several milliseconds before the regulated V_{CC} input to the STM690A/692A/703/ 704/802/805/817/818/819 Supervisor or the microprocessor drops below the minimum operating voltage. During battery back-up, the power-fail comparator turns off and PFO goes (or remains) low (see Figure 14 and Figure 15., page 13). This occurs after V_{CC} drops below 2.4V (or V_{SO}). When power returns, PFO is forced high (STM817/819 only), irrespective of V_{PFI} for the WRITE protect time (trec). At the end of this time, the power-fail comparator is enabled and PFO follows PFI. If the comparator is unused, PFI should be connected to \overline{V}_{SS} and \overline{V}_{SS} PFO left unconnected. PFO may be connected to \overline{V}_{SS} on the STM703/704/818 so that a low voltage on PFI will generate a reset output. ## **Applications Information** These Supervisor circuits are not short-circuit protected. Shorting V_{OUT} to ground - excluding power-up transients such as charging a decoupling capacitor - destroys the device. Decouple both V_{CC} and V_{BAT} pins to ground by placing $0.1\mu F$ capacitors as close to the device as possible. Figure 14. Power-fail Comparator Waveform (STM817/818/819) Figure 15. Power-fail Comparator Waveform (STM690A/692A/703/704/802/805) ## Using a SuperCap[™] as a Backup Power Source SuperCapsTM are capacitors with extremely high capacitance values (e.g., order of 0.47F) for their size. Figure 16 shows how to use a SuperCap as a back-up power source. The SuperCap may be connected through a diode to the 5V input. Since V_{BAT} can exceed V_{CC} while V_{CC} is above the reset threshold, there are no special precautions when using these supervisors with a SuperCap. ## **Negative-Going V_{CC} Transients** STM690A/692A/703/704/802/805/817/818/ 819 Supervisor are relatively immune to negative-Vcc transients (glitches). 34., page 22 shows typical transient duration versus reset comparator overdrive (for which the STM690A/692A/703/704/802/805/817/818/819 will NOT generate a reset pulse). The graph was generated using a negative pulse applied to V_{CC}, starting at V_{RST} + 0.3V and ending below the reset threshold by the magnitude indicated (comparator overdrive). The graph indicates the maximum pulse width a negative V_{CC} transient can have without causing a reset pulse. As the magnitude of the transient increases (further below the threshold), the maximum allowable pulse width decreases. Any combination of duration and overdrive which lies under the curve will NOT generate a reset signal. Typically, a V_{CC} transient that goes 100mV below the reset threshold and lasts 40µs or less will not cause a reset pulse. A 0.1µF bypass capacitor mounted as close as possible to the V_{CC} pin provides additional transient immunity. ## Battery Freshness Seal (STM817/818/819) The battery freshness seal disconnects the back-up battery from internal circuitry and V_{OUT} until it is needed. This allows an OEM to ensure that the back-up battery connected to V_{BAT} will be fresh when the final product is put to use. To enable the freshness seal: - Connect a battery to V_{BAT}; - Ground PFO; - Bring V_{CC} above the reset threshold and hold it there until reset is deasserted following the reset timeout period; and 4. Bring V_{CC} down again (Figure 17). Use the same procedure for the STM818, but ground \overline{E}_{CON} instead of \overline{PFO} . Once the battery freshness seal is enabled (disconnecting the back-up battery from internal circuitry and anything connected to V_{OUT}), it remains enabled until V_{CC} is brought above V_{RST} . Figure 16. Using a SuperCap™ Figure 17. Freshness Seal Enable Waveform ## TYPICAL OPERATING CHARACTERISTICS **Note:** Typical values are at $T_A = 25$ °C Figure 18. V_{BAT} -to- V_{OUT} On-Resistance vs. Temperature Figure 19. Supply Current vs. Temperature (no load) Figure 20. V_{PFI} Threshold vs. Temperature Figure 21. Reset Comparator Propagation Delay vs. Temperature Figure 22. Power-up trec vs. Temperature Figure 24. Watchdog Time-out Period vs. Temperature Figure 25. \overline{E} to \overline{E}_{CON} On-Resistance vs. Temperature Figure 26. PFI to PFO Propagation Delay vs. Temperature Figure 27. RST Output Voltage vs. Supply Voltage Figure 29. RST Response Time (Assertion) Figure 30. RST Response Time (Assertion) Figure 31. Power-fail Comparator Response Time (Assertion) Figure 32. Power-fail Comparator Response Time (De-Assertion) Figure 33. V_{CC} to Reset Propagation Delay vs. Temperature Figure 34. Maximum Transient Duration vs. Reset Threshold Overdrive Figure 35. \overline{E} to \overline{E}_{CON} Propagation Delay vs. Temperature ## **MAXIMUM RATING** Stressing the device above the rating listed in the Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not im- plied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. **Table 5. Absolute Maximum Ratings** | Symbol | Parameter | Value | Unit | |-----------------------------------|---|------------------------------|------| | T _{STG} | Storage Temperature (V _{CC} Off) | -55 to 150 | °C | | T _{SLD} ⁽¹⁾ | Lead Solder Temperature for 10 seconds | 260 | °C | | V _{IO} | Input or Output Voltage | -0.3 to V _{CC} +0.3 | V | | V _{CC} /V _{BAT} | Supply Voltage | -0.3 to 6.0 | V | | Io | Output Current | 20 | mA | | P _D | Power Dissipation | 320 | mW | Note: 1. Reflow at peak temperature of 255°C to 260°C for < 30 seconds (total thermal budget not to exceed 180°C for between 90 to 150 seconds). ## DC AND AC PARAMETERS This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in Table 6, Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters. **Table 6. Operating and AC Measurement Conditions** | Parameter | STM690A/692A/703/704/802/
805/817/818/819 | Unit | |--|--|------| | V _{CC} /V _{BAT} Supply Voltage | 1.0 to 5.5 | V | | Ambient Operating Temperature (T _A) | -40 to 85 | °C | | Input Rise and Fall Times | ≤ 5 | ns | | Input Pulse Voltages | 0.2 to 0.8V _{CC} | V | | Input and Output Timing Ref. Voltages | 0.3 to 0.7V _{CC} | V | Figure 36. E to ECON Propagation Delay Test Circuit Note: 1. C_L includes load capacitance and scope probe capacitance. Figure 37. AC Testing Input/Output Waveforms Figure 38. MR Timing Waveform Note: 1. RST for STM805. Figure 39. Watchdog Timing **Table 7. DC and AC Characteristics** | Sym | Alter-
native | Description | Test Condition ⁽¹⁾ | Min | Тур | Max | Unit | |--|----------------------|--|--|--------------------------|---------------------------|--------------------|------| | V _{CC} ,
V _{BAT} ⁽²⁾ | | Operating Voltage | $T_A = -40 \text{ to } +85^{\circ}\text{C}$ | 1.2 ⁽³⁾ | | 5.5 | V | | | | V _{CC} Supply Current | Excluding I _{OUT} (V _{CC} < 5.5V) | | 25 | 60 | μA | | Icc | | V _{CC} Supply Current in
Battery Back-up Mode | Excluding I_{OUT} ($V_{BAT} = 2.3V$, $V_{CC} = 2.0V$, $\overline{MR} = V_{CC}$) | | 25 | 35 | μA | | I _{BAT} ⁽⁴⁾ | | V _{BAT} Supply Current in
Battery Back-up Mode | Excluding I _{OUT} (V _{BAT} = 3.6V) | | 0.4 | 1.0 | μΑ | | | | | I _{OUT1} = 5mA ⁽⁵⁾ | V _{CC} – 0.03 | V _{CC} – 0.015 | | ٧ | | V _{OUT1} | | V _{OUT} Voltage (Active) | I _{OUT1} = 75mA | V _{CC} - 0.3 | V _{CC} –
0.15 | | ٧ | | | | | $I_{OUT1} = 250 \mu A, V_{CC} > 2.5 V^{(5)}$ | V _{CC} – 0.0015 | V _{CC} – 0.0006 | | ٧ | | V _{OUT2} | | V _{OUT} Voltage (Battery | $I_{OUT2} = 250 \mu A, V_{BAT} = 2.3 V$ | V _{BAT} – 0.1 | V _{BAT} – 0.034 | | ٧ | | V0012 | | Back-up) | $I_{OUT2} = 1$ mA, $V_{BAT} = 2.3$ V | | V _{BAT} – 0.14 | | ٧ | | | V _{CC} to \ | V _{OUT} On-resistance | | | 3 | 4 | Ω | | | V _{BAT} to | V _{OUT} On-resistance | | | 100 | | Ω | | | | Input Leakage Current (MR) | 4.5V < V _{CC} < 5.5V | 75 | 125 | 300 | μΑ | | ILI | | Input Leakage Current (PFI) | $0V = V_{IN} = V_{CC}$ | -25 | 2 | +25 | nA | | 'LI | VCC to VBAT to | Input Leakage Current | WDI = V _{CC} , time average | | 120 | 160 | μΑ | | | | (WDI) ⁽⁶⁾ | WDI = GND, time average | <pre></pre> | | μΑ | | | V_{IH} | | Input High Voltage (MR) | 4.5V < V _{CC} < 5.5V | 2.0 | | | V | | V_{IH} | | Input High Voltage (WDI) | V_{RST} (max) < V_{CC} < 5.5 V | 0.7V _{CC} | | | V | | V_{IL} | | Input Low Voltage (MR) | $4.5V < V_{CC} < 5.5V$ | | | 8.0 | V | | V _{IL} | | Input Low Voltage (WDI) | V _{RST} (max) < V _{CC} < 5.5V | | | 0.3V _{CC} | V | | \/ | | Output Low Voltage (PFO, RST, RST) | $V_{CC} = V_{RST}$ (max), $I_{SINK} = 3.2$ mA | | | 0.3 | V | | V _{OL} | | Output Low Voltage (E _{CON}) | $V_{CC} = V_{RST} \text{ (max)},$ $I_{OUT} = 1.6\text{mA}, \overline{E} = 0\text{V}$ | | | 0.2V _{CC} | V | | Ve | | Output Low Veltors (DCT) | $I_{SINK} = 50 \mu A; V_{CC} = 1.0 V; V_{BAT} = V_{CC}; T_A = 0 ^{\circ}C to 85 ^{\circ}C$ | | | 0.3 | ٧ | | V _{OL} | | Output Low Voltage (RST) | I_{SINK} = 100µA; V_{CC} = 1.2V; $V_{BAT} = V_{CC}$ | | | 0.3 | V | ## STM690A/692A/703/704/802/805/817/818/819 | Sym | Alter-
native | Description | Test Condition ⁽¹⁾ | | Min | Тур | Max | Unit | |--------------------|------------------|--|-------------------------------|--|--------------------|------------------|-------|------| | RST) | | Output High Voltage (RST, RST) | | E = 1mA,
RST (max) | 2.4 | | | V | | | | Output High Voltage (\overline{E}_{CON}) | | _{RST} (max),
mA, E = V _{CC} | 0.8V _{CC} | | | V | | | | Output High Voltage (PFO) | | E = 75μA,
_{RST} (max) | 0.8V _{CC} | | | ٧ | | V _{OH} | | Output High Voltage | | $IA; V_{CC} = 1.1V;$
$I_A = 0^{\circ}C \text{ to } 85^{\circ}C$ | | | 0.8 | V | | VOH | | Output Flight Voltage | | $V_{CC} = 1.2V;$
$V_{CC} = V_{CC}$ | | | 0.9 | V | | V _{OHB} | | V _{OH} Battery Back-up (\overline{E}_{CON} , RST, RST) | I _{SOURCE} | 0.8V _{BAT} | | | V | | | Power-fa | ail Compa | arator (NOT available on STM | 818) | | | | | | | V _{PFI} | | PFI Input Threshold | PFI Falling | All other versions | 1.20 | 1.25 | 1.30 | V | | | | | $(V_{CC} = 5V)$ | STM802 | 1.225 | 1.250 | 1.275 | V | | t _{PFD} | | PFI to PFO Propagation Delay | | | | 2 | | μs | | I _{SC} | | PFO Output Short to
GND Current | V _{CC} = 5V | , V _{PFO} = 0V | 0.1 | 0.75 | 2.0 | mA | | Battery | Switchov | er | | | | | | | | | | | Power-down | V _{RST} > V _{BAT} | | V _{BAT} | | V | | | | Battery Back-up | Power-down | V _{RST} < V _{BAT} | | V _{RST} | | V | | V_{SO} | | Switchover Voltage ^(7,8) (V _{CC} < V _{BAT} & V _{CC} < V _{RST}) | Dawarus | V _{RST} > V _{BAT} | | V_{BAT} | | V | | | | | Power-up | V _{RST} < V _{BAT} | | V _{RST} | | V | | | | Hysteresis | | | | 40 | | mV | | Reset Th | nresholds | S | | | | | | | | \/ _E == | | Reset Threshold ⁽⁹⁾ | STM690A/7 | 03, STM8XXL | 4.50 | 4.65 | 4.75 | V | | V _{RST} | | Reset Inresnoid(9) | STM692A/704, STM8XXM | | 4.25 | 4.40 | 4.50 | V | | | | Reset Threshold Hysteresis | | | | 25 | | mV | | | | V _{CC} to RST Delay (from V _{RST} , V _{CC} falling at 10V/ms) | STM81 | 7/818/819 | | 100 | | μs | | t _{rec} | | RST Pulse Width | | | 140 | 200 | 280 | ms | | | 1 | l . | I | | 1 | | | 1 | | Sym | Alter-
native | Description | Test Condition ⁽¹⁾ | Min | Тур | Max | Unit | |---|--------------------|-----------------------------|--|------|------|------|------| | Push-bu | tton Res | et Input (STM703/704/819) | | | | | | | t | tur | MR Pulse Width | STM703/704 | 150 | | | ns | | t _{MLMH} | t _{MR} | WIR Pulse Width | STM819 | 1 | | | μs | | t. - . | t | MR to RST Output Delay | STM703/704 | | | 250 | ns | | t _{MLRL} | t _{MRD} | WR to RST Output Delay | STM819 | | 120 | | ns | | | | MR Glitch Immunity | STM819 | | 100 | | ns | | | | MR Pull-up Resistor | $\overline{MR} = 0V; V_{CC} = 5V$ | 45 | 63 | 85 | kΩ | | Watchdo | g Timer | (NOT available on STM703/70 | 04/819) | | | • | | | | t _{WD} | Watchdog Timeout Period | V _{RST} (max) < V _{CC} < 5.5V | 1.12 | 1.60 | 2.24 | s | | | | WDI Pulse Width | V _{RST} (max) < V _{CC} < 5.5V 50 | | | | ns | | Chip-En | able Gati | ng (STM818 only) | | | | | | | | E-to- | CON Resistance | V _{CC} = V _{RST} (max) | | 40 | 150 | Ω | | E-to-E _{CON} Propagation Delay | | | 4.5V < V _{CC} < 5.5V | | 2 | 7 | ns | | Reset-to-E _{CON} High Delay | | | (Power-down) | | 15 | | μs | | | E _{CON} S | hort Circuit Current | Vcc = 5V Disable Mode | | 0.75 | 2.0 | mA | Note: 1. Valid for Ambient Operating Temperature: TA = -40 to 85°C; VCC = 4.75V to 5.5V for "L" versions; VCC = 4.5V to 5.5V for "M" versions; VCC = 4.5V to 5.5V for "L" versions; VCC = 4.5V to 5.5V for "M" versions; VCC = 4.5V to 5.5V for "L" versions; VCC = 4.5V to 5.5V for "M" versions; VCC = 4.5V to 5.5V for "L" versions; VCC = 4.5V to 5.5V for "M" 5. sions; and $V_{BAT} = 2.8V$ (except where noted). - 3. V_{CC} (min) = 1.0V for T_A = 0°C to +85°C. 4. Tested at V_{BAT} = 3.6V, V_{CC} = 3.5V and 0V. - 5. Guaranteed by design. - 6. WDI input is designed to be driven by a three-state output device. To float WDI, the "high impedance mode" of the output device must have a maximum leakage current of 10µA and a maximum output capacitance of 200pF. The output device must also be able to source and sink at least 200µA when active. - 7. When $V_{BAT} > V_{CC} > V_{RST}$, V_{OUT} remains connected to V_{CC} until V_{CC} drops below V_{RST} . 8. When $V_{RST} > V_{CC} > V_{BAT}$, V_{OUT} remains connected to V_{CC} until V_{CC} drops below the battery voltage $(V_{BAT}) 75$ mV. - 9. For V_{CC} falling. ^{2.} V_{CC} supply current, logic input leakage, Watchdog functionality, Push-button Reset functionality, PFI functionality, state of RST and RST tested at V_{BAT} = 3.6V, and V_{CC} = 5.5V. The state of RST or RST and PFO is tested at V_{CC} = V_{CC} (min). Either V_{CC} or V_{BAT} can go to 0V if the object is greater than 2.0V. ## PACKAGE MECHANICAL Figure 40. SO8 - 8-lead Plastic Small Outline, 150 mils body width, Package Mech. Drawing Note: Drawing is not to scale. Table 8. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data | Symb | | mm | | inches | | | | |------|------|------|------|--------|-------|-------|--| | Зушь | Тур | Min | Max | Тур | Min | Max | | | А | - | 1.35 | 1.75 | _ | 0.053 | 0.069 | | | A1 | - | 0.10 | 0.25 | _ | 0.004 | 0.010 | | | В | - | 0.33 | 0.51 | _ | 0.013 | 0.020 | | | С | - | 0.19 | 0.25 | _ | 0.007 | 0.010 | | | D | - | 4.80 | 5.00 | _ | 0.189 | 0.197 | | | ddd | - | - | 0.10 | _ | _ | 0.004 | | | E | - | 3.80 | 4.00 | _ | 0.150 | 0.157 | | | е | 1.27 | _ | - | 0.050 | - | - | | | Н | - | 5.80 | 6.20 | _ | 0.228 | 0.244 | | | h | - | 0.25 | 0.50 | _ | 0.010 | 0.020 | | | L | - | 0.40 | 0.90 | _ | 0.016 | 0.035 | | | α | - | 0° | 8° | - | 0° | 8° | | | N | | 8 | | | 8 | | | Figure 41. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Outline Note: Drawing is not to scale. Table 9. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Mechanical Data | Symb | mm | | | inches | | | |------|------|------|------|--------|-------|-------| | | Тур | Min | Max | Тур | Min | Max | | А | _ | - | 1.10 | - | _ | 0.043 | | A1 | _ | 0.05 | 0.15 | _ | 0.002 | 0.006 | | A2 | 0.85 | 0.75 | 0.95 | 0.034 | 0.030 | 0.037 | | b | _ | 0.25 | 0.40 | _ | 0.010 | 0.016 | | С | _ | 0.13 | 0.23 | _ | 0.005 | 0.009 | | СР | _ | _ | 0.10 | _ | _ | 0.004 | | D | 3.00 | 2.90 | 3.10 | 0.118 | 0.114 | 0.122 | | е | 0.65 | - | _ | 0.026 | _ | _ | | E | 4.90 | 4.65 | 5.15 | 0.193 | 0.183 | 0.203 | | E1 | 3.00 | 2.90 | 3.10 | 0.118 | 0.114 | 0.122 | | L | 0.55 | 0.40 | 0.70 | 0.022 | 0.016 | 0.030 | | L1 | 0.95 | - | - | 0.037 | - | - | | α | - | 0° | 6° | - | 0° | 6° | | N | 8 | | | 8 | | | ## **PART NUMBERING** E = Tubes (Pb-Free - ECO PACK®) F = Tape & Reel (Pb-Free - ECO PACK®) Note: 1. Contact local ST sales office for availability. For other options, or for more information on any aspect of this device, please contact the ST Sales Office nearest you. **Table 11. Marking Description** | Part Number | Reset Threshold | Package | Topside Marking | | |---------------|-----------------|---------|-----------------|--| | STM690A | 4.65V | SO8 | 690A | | | STM692A | 4.65V | SO8 | 692A | | | STM703 | 4.65V | SO8 | 703 | | | STM704 | 4.40V | SO8 | 704 | | | STM802L | 4.65V | SO8 | 802L | | | STM802M | 4.40V | SO8 | 802M | | | STM805L | 4.65V | SO8 | 805L | | | CTM047I | 4.65\/ | SO8 | 817L | | | STM817L | 4.65V | TSSOP8 | | | | CTM047M | 4.40\/ | SO8 | 817M | | | STM817M | 4.40V | TSSOP8 | | | | STM818L | 4.65V | SO8 | 0401 | | | STIVISTOL | 4.05 V | TSSOP8 | 818L | | | STM818M | 4.40V | SO8 | 818M | | | 211/101/01/01 | 4.40 V | TSSOP8 | | | | CTM940I | 4.05\/ | SO8 | 819L | | | STM819L | 4.65V | TSSOP8 | | | | STM910M | 4.40\/ | SO8 | 819M | | | STM819M | 4.40V | TSSOP8 | | | # **REVISION HISTORY** **Table 12. Document Revision History** | Date | Version | Revision Details | | |--------------|---------|--|--| | October 2003 | 1.0 | First Issue | | | 31-Oct-03 | 1.1 | Update DC Characteristics (Table 7) | | | 22-Dec-03 | 2.0 | Reformatted; updated characteristics (Figure 1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17; Table 3, 4, 7, 9, 11) | | | 16-Jan-04 | 2.1 | Add Typical Characteristics (Figure 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35) | | | 08-Apr-04 | 2.2 | Update characteristics (Figure 13, 21, 26, 28, 29, 30, 33, 34; Table 1,7) | | | 25-May-04 | 3.0 | Remove references to 'Open Drain' (Figure 2, 5, 8; Table 2); update characteristics (Table 3, 7) | | | 05-Jul-04 | 4.0 | Update package availability, pin description; promote document (Figure 1, 14, 15; Table 3. 7, 10) | | | 29-Sep-04 | 5.0 | Clarify root part numbers, pin descriptions (Figure 11, 13, 36; Table 7, 10) | | Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners $\ @$ 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 477