FEATURES

- Available in the Texas Instruments NanoStar ${ }^{\text {TM }}$ and NanoFree ${ }^{\text {TM }}$ Packages
- Operates at 0.8 V to 2.7 V
- Sub-1-V Operable
- Low Power Consumption, $10 \mu \mathrm{~A}$ at 2.7 V
- High On-Off Output Voltage Ratio
- High Degree of Linearity
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

DCT OR DCU PACKAGE

(TOP VIEW)

YEP OR YZP PACKAGE
(BOTTOM VIEW)

DESCRIPTION/ORDERING INFORMATION

This analog switch is operational at $0.8-\mathrm{V}$ to $2.7-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$, but is designed specifically for $1.1-\mathrm{V}$ to $2.7-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.
The SN74AUC2G53 can handle both analog and digital signals. The device permits signals with amplitudes of up to V_{CC} (peak) to be transmitted in either direction.
NanoStar ${ }^{\text {TM }}$ and NanoFree ${ }^{\text {TM }}$ package technology is a major breakthrough in IC packaging concepts, using the die as the package.
Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

ORDERING INFORMATION

TA	PACKAGE ${ }^{(1)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING ${ }^{(2)}$
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	NanoStarTM - WCSP (DSBGA) $0.23-\mathrm{mm}$ Large Bump - YEP	Tape and reel	SN74AUC2G53YEPR	---U4_
	NanoFree ${ }^{\text {TM }}$ - WCSP (DSBGA) $0.23-\mathrm{mm}$ Large Bump - YZP (Pb-free)		SN74AUC2G53YZPR	
	SSOP - DCT	Tape and reel	SN74AUC2G53DCTR	U53_- -
	VSSOP - DCU	Tape and reel	SN74AUC2G53DCUR	U53

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
(2) DCT: The actual top-side marking has three additional characters that designate the year, month, and assembly/test site. DCU: The actual top-side marking has one additional character that designates the assembly/test site.
YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition ($1=\mathrm{SnPb}, \cdot=\mathrm{Pb}-\mathrm{free}$).

FUNCTION TABLE

CONTROL INPUTS		ON CHANNEL
INH	A	
L	L	Y 1
L	H	Y 2
H	X	None

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LOGIC DIAGRAM (POSITIVE LOGIC)

NOTE A: For simplicity, the test conditions shown in Figures 1 through 4 and 6 through 10 are for the demultiplexer configuration. Signals may be passed from COM to Y1 (Y2) or from Y1 (Y2) to COM.

SIMPLIFIED SCHEMATIC, EACH SWITCH (SW)

Absolute Maximum Ratings ${ }^{(1)}$
over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range ${ }^{(2)}$		-0.5	3.6	V
V_{1}	Input voltage range ${ }^{(2)(3)}$		-0.5	3.6	V
$\mathrm{V}_{1 / \mathrm{O}}$	Switch I/O voltage range ${ }^{(2)(3)}$		-0.5	$\mathrm{V}_{C C}+0.5$	V
I_{1}	Control input clamp current	$\mathrm{V}_{1}<0$		-50	mA
$\mathrm{I}_{\text {/OK }}$	I/O port diode current	$\mathrm{V}_{\text {IIO }}<0$ or $\mathrm{V}_{\text {IO }}>\mathrm{V}_{C C}$		± 50	mA
I_{T}	On-state switch current current	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0$ to V_{CC}		± 50	mA
Continuous current through V_{CC} or GND				± 100	mA
$\theta_{\text {JA }}$	Package thermal impedance ${ }^{(4)}$	DCT package		220	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		DCU package		227	
		YEP/YZP package		102	
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to ground unless otherwise specified.
(3) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
(4) The package thermal impedance is calculated in accordance with JESD 51-7.

SINGLE-POLE DOUBLE-THROW (SPDT) ANALOG SWITCH OR
www.ti.com 2:1 ANALOG MULTIPLEXER/DEMULTIPLEXER

SCES484A-AUGUST 2003-REVISED MARCH 2005
Recommended Operating Conditions ${ }^{(1)}$

		MIN MAX	UNIT
$V_{\text {CC }} \quad$ Supply voltage		0.8 2.7	V
High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	V_{CC}	V
	$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.95 V	$0.65 \times \mathrm{V}_{\mathrm{CC}}$	
	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.7	
Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	0	V
	$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.95 V	$0.35 \times \mathrm{V}_{\mathrm{CC}}$	
	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	0.7	
I/O port voltage		$0 \quad \mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{1} \quad$ Control input voltage		03.6	V
Input transition rise or fall rate	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 1.6 V	20	ns/V
	$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	10	
	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	3.5	
$\mathrm{T}_{\mathrm{A}} \quad$ Operating free-air temperature		-40 85	${ }^{\circ} \mathrm{C}$

(1) All unused inputs of the device must be held at V_{Cc} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS		V_{cc}	MIN	TYP(1)	MAX	UNIT		
$r_{\text {on }}$	On-state switch resistance		$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{~V}_{1 \text { NH }}=\mathrm{V}_{\text {II }} \\ & \text { (see Fiqure_1 } \\ & \text { (Figure-2) } \end{aligned}$	$\mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA}$	1.1 V			40	Ω		
					1.65 V		12.5	20			
				$\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA}$	2.3 V		6	15			
$\mathrm{r}_{\text {on(}}(\mathrm{p})$	Peak on resistance		$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND}, \\ & \mathrm{~V}_{1 N H}=\mathrm{V}_{11} \\ & \text { (see\|Fiaure-1 and } \\ & \text { Figure_) } \end{aligned}$	$\mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA}$	1.1 V		131	180	Ω		
					1.65 V		32	80			
				$\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA}$	2.3 V		15	20			
$\Delta r_{\text {on }}$	Difference of on-state resistance between switches		$\begin{aligned} & V_{1}=V_{C C} \text { to } G N D, \\ & V_{C}=V_{H} \\ & \text { (see Fiqure_1 } \\ & \text { Figure_d) } \end{aligned}$	$\mathrm{I}_{\mathrm{S}}=4 \mathrm{~mA}$	1.1 V			4	Ω		
			1.65 V				1				
			$\mathrm{I}_{\mathrm{S}}=8 \mathrm{~mA}$	2.3 V			1				
$\mathrm{I}_{\text {(off) }}$	Off-state switch leakage current			$\left.\begin{array}{l} V_{1}=V_{C c} \text { and } V_{O}=G N D \text {, or } \\ V_{1}=G N D \text { and } V_{o}=V_{c c} \\ V_{\text {INH }}=V_{I H}(\text { see Eigure } 3 \end{array}\right)$		2.7 V			± 1	$\mu \mathrm{A}$	
							$\pm 0.1^{(1)}$				
$\mathrm{I}_{\text {(on) }}$	On-state switch leakage current			$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D, \mathrm{~V}_{\text {INH }}=\mathrm{V}_{1 \mathrm{~L}}, \\ & \mathrm{~V}_{\mathrm{O}}=\text { Open (see Eigure 4) } \end{aligned}$			2.7 V			± 1	$\mu \mathrm{A}$
								$\pm 0.1^{(1)}$			
1	Control input current		$\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CC}}$ or GND		2.7 V			± 5	$\mu \mathrm{A}$		
I_{CC}	Supply current		$\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{CC}}$ or GND		2.7 V			10	$\mu \mathrm{A}$		
$\mathrm{Cic}_{\text {ic }}$	Control input capacitance				2.5 V		2		pF		
$\mathrm{C}_{\mathrm{io} \text { (off) }}$	Switch input/output capacitance	Y			2.5 V		3		pF		
		COM					4.5				
$\mathrm{C}_{\mathrm{io} \text { (on) }}$	Switch input/output capacitance				2.5 V		9		pF		

(1) $T_{A}=25^{\circ} \mathrm{C}$

2:1 ANALOG MULTIPLEXER/DEMULTIPLEXER
SCES484A-AUGUST 2003-REVISED MARCH 2005

Switching Characteristics

over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (unless otherwise noted) (see Figure 5

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\mathrm{V}_{\mathrm{cc}}=0.8 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=1.2 \mathrm{~V} \\ \pm 0.1 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V} \\ \pm 0.1 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=1.8 \mathrm{~V} \\ \pm 0.15 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		UNIT
			TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
$\mathrm{t}_{\mathrm{pd}}{ }^{(1)}$	COM or Y	Y or COM	0.3		0.3		0.3			0.2		0.1	ns
$\mathrm{t}_{\text {en }}$	INH	COM or Y	9.2	0.5	3.5	0.5	2.2	0.5	1	1.9	0.5	1.8	ns
$\mathrm{t}_{\text {dis }}$			8.1	0.5	4.2	0.5	3.2	0.5	1.9	3.4	0.5	2.6	
$t_{\text {en }}$	A	COM or Y	9.2	0.5	3.6	0.5	2.3	0.5	1.1	1.9	0.5	1.6	ns
$\mathrm{t}_{\text {dis }}$			10	0.5	3.6	0.5	2.3	0.5	1.1	2	0.5	1.6	

(1) The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

Switching Characteristics

over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (unless otherwise noted) (see Figure 5 ${ }^{\text {) }}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=1.8 \mathrm{~V} \\ \pm 0.15 \mathrm{~V} \end{gathered}$			$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		UNIT
			MIN	TYP	MAX	MIN	MAX	
$\mathrm{t}_{\mathrm{pd}}{ }^{(1)}$	COM or Y	Y or COM			0.4		0.2	ns
$\mathrm{t}_{\text {en }}$	INH	COM or Y	0.5	1.6	3.1	0.5	2.2	ns
$\mathrm{t}_{\text {dis }}$			0.5	2.2	3.4	0.5	2.2	
$t_{\text {en }}$	A	COM or Y	0.5	1.6	3	0.5	2.2	ns
$\mathrm{t}_{\text {dis }}$			0.5	1.6	3	0.5	2.3	

(1) The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

Analog Switch Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V_{cc}	TYP	UNIT
Frequency response ${ }^{(1)}$ (switch ON)	COM or Y	Y or COM	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{i}_{\mathrm{in}}=\text { sine wave } \\ & \text { (see Eigure - }) \end{aligned}$	0.8 V	90	MHz
				1.1 V	101	
				1.4 V	110	
				1.65 V	122	
				2.3 V	198	
			$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}_{\mathrm{in}}=\text { sine wave } \\ & \text { (see Eigure-6) } \end{aligned}$	0.8 V	>500	
				1.1 V	>500	
				1.4 V	>500	
				1.65 V	>500	
				2.3 V	>500	

[^0]
Analog Switch Characteristics (continued)

$T_{A}=25^{\circ} \mathrm{C}$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V_{CC}	TYP	UNIT
Crosstalk ${ }^{(2)}$ (between switches)	COM or Y	Y or COM	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{f}_{\mathrm{in}}=1 \mathrm{MHz} \text { (sine wave) } \\ & \text { (see Figure } \boldsymbol{Z} \text {) } \end{aligned}$	0.8 V	-59	dB
				1.1 V	-59	
				1.4 V	-59	
				1.65 V	-59	
				2.3 V	-60	
			$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}_{\mathrm{in}}=1 \mathrm{MHz} \text { (sine wave) } \\ & \text { (see Figure } 7 \text {) } \end{aligned}$	0.8 V	-55	
				1.1 V	-55	
				1.4 V	-55	
				1.65 V	-55	
				2.3 V	-55	
Crosstalk (control input to signal output)	INH	COM or Y	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=600 \Omega$, $\mathrm{f}_{\text {in }}=1 \mathrm{MHz}$ (square wave) (see Eigure 8)	0.8 V	0.56	mV
				1.1 V	0.68	
				1.4 V	0.81	
				1.65 V	0.93	
				2.3 V	1.5	
Feed-through attenuation ${ }^{(2)}$ (switch OFF)	COM or Y	Y or COM	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{f}_{\text {in }}=1 \mathrm{MHz} \text { (sine wave) } \\ & \text { (see Eigure-G) } \end{aligned}$	0.8 V	-60	dB
				1.1 V	-60	
				1.4 V	-60	
				1.65 V	-60	
				2.3 V	-60	
			$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{f}_{\mathrm{in}}=1 \mathrm{MHz} \text { (sine wave) } \\ & \text { (see Eigure- } 9 \text {) } \end{aligned}$	0.8 V	-59	
				1.1 V	-59	
				1.4 V	-59	
				1.65 V	-59	
				2.3 V	-59	
Sine-wave distortion	COM or Y	Y or COM	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{f}_{\mathrm{in}}=1 \mathrm{kHz} \text { (sine wave) } \\ & \text { (see Figure } 10 \text {) } \end{aligned}$	0.8 V	6.19	\%
				1.1 V	0.39	
				1.4 V	0.06	
				1.65 V	0.02	
				2.3 V	0.01	
			$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{in}}=10 \mathrm{kHz} \text { (sine wave) } \\ & \text { (see Figure } 10 \text {) } \end{aligned}$	0.8 V	3.55	
				1.1 V	0.38	
				1.4 V	0.04	
				1.65 V	0.02	
				2.3 V	0.02	

(2) Adjust $f_{\text {in }}$ voltage to obtain 0 dBm at input.

Operating Characteristics

for INH input, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER		TEST CONDITIONS	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	UNIT	
		TYP	TYP	TYP	TYP	TYP			
C_{pd}	Power dissipation capacitance		$\mathrm{f}=10 \mathrm{MHz}$	3	3	3	3	3	pF

SN74AUC2G53

SINGLE-POLE DOUBLE-THROW (SPDT) ANALOG SWITCH OR
2:1 ANALOG MULTIPLEXER/DEMULTIPLEXER

SCES484A-AUGUST 2003-REVISED MARCH 2005

Operating Characteristics

for A input, $T_{A}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{cc}}=1.2 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	UNIT	
			TYP	TYP	TYP	TYP	TYP			
C_{pd}	Power dissipation capacitance	Outputs enabled		$\mathrm{f}=10 \mathrm{MHz}$	5.5	5.5	5.5	5.5	5.5	pF
		Outputs disabled	0.5		0.5	0.5	0.5	0.5		

PARAMETER MEASUREMENT INFORMATION

Figure 1. On-State Resistance Test Circuit

Figure 2. Typical $r_{\text {on }}$ as a Function of Voltage $\left(V_{1}\right)$ for $V_{I}=0$ to $V_{C C}$

PARAMETER MEASUREMENT INFORMATION

Condition 2: $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{Cc}}, \mathrm{V}_{\mathrm{O}}=\mathrm{GND}$
Figure 3. Off-State Switch Leakage-Current Test Circuit

Figure 4. On-State Switch Leakage-Current Test Circuit

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT	V_{cc}	INPUTS		$\mathbf{V}_{\mathbf{M}}$	$V_{\text {LOAD }}$	C_{L}	$\mathbf{R}_{\mathbf{L}}$	V_{Δ}
		V_{1}	t_{r} / t_{f}					
	0.8 V	$V_{C C}$	$\leq 2 \mathrm{~ns}$	$\mathrm{V}_{\mathrm{CC}} / 2$	$2 \times \mathrm{V}_{\text {cC }}$	15 pF	$2 \mathrm{k} \Omega$	0.1 V
	$1.2 \mathrm{~V} \pm 0.1 \mathrm{~V}$	$V_{C C}$	$\leq 2 \mathrm{~ns}$	$\mathrm{V}_{\mathrm{CC}} / 2$	$2 \times V_{C C}$	15 pF	$2 \mathrm{k} \Omega$	0.1 V
	$1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}$	$V_{\text {cc }}$	$\leq 2 \mathrm{~ns}$	$\mathrm{V}_{\mathrm{Cc}} / 2$	$2 \times V_{C C}$	15 pF	$2 \mathrm{k} \Omega$	0.1 V
	$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	$V_{\text {cc }}$	$\leq 2 \mathrm{~ns}$	$\mathrm{V}_{\mathrm{CC}} / 2$	$2 \times V_{C C}$	15 pF	$2 \mathrm{k} \Omega$	0.15 V
	$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	$V_{\text {cc }}$	$\leq 2 \mathrm{~ns}$	$\mathrm{V}_{\mathrm{Cc}} / 2$	$2 \times V_{C C}$	15 pF	$2 \mathrm{k} \Omega$	0.15 V
	$1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$	$V_{\text {cc }}$	$\leq 2 \mathrm{~ns}$	$\mathrm{V}_{\mathrm{CC}} / 2$	$2 \times V_{C C}$	30 pF	$1 \mathrm{k} \Omega$	0.15 V
	$2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	$\mathrm{V}_{\text {cc }}$	$\leq 2 \mathrm{~ns}$	$\mathrm{V}_{\mathrm{CC}} / 2$	$2 \times V_{C C}$	30 pF	500Ω	0.15 V

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

[^1]NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$, slew rate $\geq 1 \mathrm{~V} / \mathrm{ns}$.
D. The outputs are measured one at a time, with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $t_{\text {PZL }}$ and $t_{\text {PZH }}$ are the same as $t_{\text {en }}$.
G. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$.
H. All parameters and waveforms are not applicable to all devices.

Figure 5. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

Figure 6. Frequency Response (Switch On)

Figure 7. Crosstalk (Between Switches)

PARAMETER MEASUREMENT INFORMATION

Figure 8. Crosstalk (Control Input, Switch Output)

Figure 9. Feedthrough (Switch Off)

PARAMETER MEASUREMENT INFORMATION

Figure 10. Sine-Wave Distortion

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SN74AUC2G53DCTR | ACTIVE | SM8 | DCT | 8 | 3000 | Pb-Free
 (RoHS) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74AUC2G53DCTRE4 | ACTIVE | SM8 | DCT | 8 | 3000 | Pb-Free
 (RoHS) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74AUC2G53DCUR | ACTIVE | US8 | DCU | 8 | 3000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74AUC2G53DCURE4 | ACTIVE | US8 | DCU | 8 | 3000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74AUC2G53DCURG4 | ACTIVE | US8 | DCU | 8 | 3000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74AUC2G53YEPR | NRND | WCSP | YEP | 8 | 3000 | TBD | SNPB | Level-1-260C-UNLIM |
| SN74AUC2G53YZPR | ACTIVE | WCSP | YZP | 8 | 3000 |
 no Sb/Br) | SNAGCU | Level-1-260C-UNLIM |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion
D. Falls within JEDEC MO-187 variation DA.

DCU (R-PDSO-G8)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
D. Falls within JEDEC MO-187 variation CA.

YZP (R-XBGA-N8)

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. NanoFree ${ }^{\text {TM }}$ package configuration.
D. This package is lead-free. Refer to the 8 YEP package (drawing 4204725) for tin-lead (SnPb).

NanoFree is a trademark of Texas Instruments.

YEP (R-XBGA-N8)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. NanoStar ${ }^{T M}$ package configuration.
D. This package is tin-lead (SnPb). Refer to the 8 YZP package (drawing 4204741) for lead-free.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless	

[^2]Copyright © 2006, Texas Instruments Incorporated

[^0]: (1) Adjust $f_{\text {in }}$ voltage to obtain 0 dBm at output. Increase $\mathrm{f}_{\text {in }}$ frequency until dB meter reads -3 dB .

[^1]: VOLTAGE WAVEFORMS
 ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

[^2]: Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

