SYNCBURST PIPE **5.0V-TOLERANT**

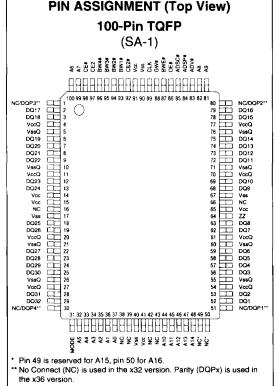
SYNCHRONOUS SRAM

32K x 32/36 SRAM

+3.3V SUPPLY, PIPELINED, SINGLE-CYCLE DESELECT AND SELECTABLE BURST MODE

FEATURES

- Fast access times: 4.5, 5, 6, 7 and 8ns
- Fast OE# access times: 5 and 6ns
- Single +3.3V +10%/-5% power supply
- 5V-tolerant I/O
- SNOOZE MODE for reduced power standby
- Single-cycle disable (Pentium[™] BSRAM compatible)
- Common data inputs and data outputs
- Individual BYTE WRITE control and GLOBAL WRITE
- Three chip enables for simple depth expansion and address pipelining
- Clock controlled, registered, address, data I/O and control for fully pipelined applications
- Internally self-timed WRITE cycle
- WRITE pass-through capability
- Burst control pin (interleaved or linear burst)
- Automatic power-down for portable applications
- 100-lead TQFP package for high density, high speed
- Low capacitive bus loading
- · High 30pF output drive capability at rated access time
- DIMMs also available


OPTIONS	MARKING
 Timing 	
4.5ns access/8ns cycle	-4.5
5ns access/10ns cycle	-5
6ns access/12ns cycle	-6
7ns access/15ns cycle	<i>-7</i>
8ns access/20ns cycle	-8
 Configuration 	
32K x 32	MT58LC32K32D7
32K x 36	MT58LC32K36D7
 Packages 100-pin TQFP 	LG

Part Number Example: MT58LC32K36D7LG-7

GENERAL DESCRIPTION

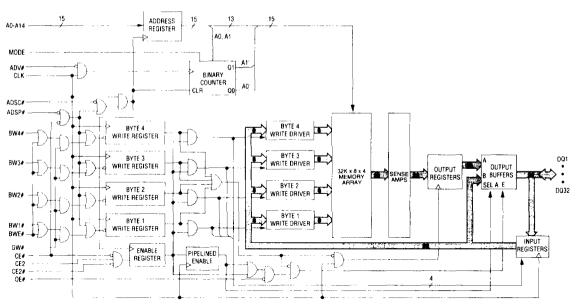
The Micron SyncBurst SRAM family employs highspeed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using an advanced CMOS process.

The MT58LC32K32/36D7 SRAM integrates a 32K x 32 or 32K x 36 SRAM core with advanced synchronous peripheral circuitry and a 2-bit burst counter. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input (CLK). The synchronous inputs

include all addresses, all data inputs, active LOW chip enable (CE#), two additional chip enables for easy depth expansion (CE2, CE2#), burst control inputs (ADSC#, ADSP#, ADV#), byte write enables (BW1#, BW2#, BW3#, BW4#, BWE#) and global write (GW#).

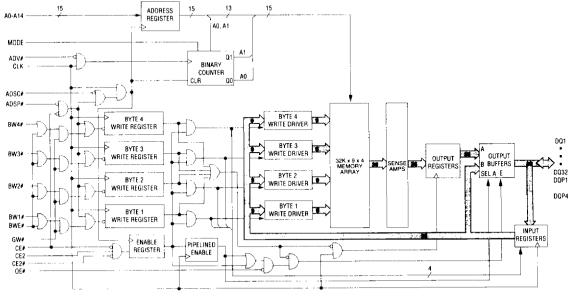
Asynchronous inputs include the output enable (OE#), clock (CLK), snooze enable (ZZ) and burst mode (MODE). The data-out (Q), enabled by OE#, is also asynchronous. WRITE cycles can be from 1 to 4 bytes wide as controlled by the write control inputs.

Burst operation can be initiated with either address status processor (ADSP#) or address status controller (ADSC#) input pins. Subsequent burst addresses can be internally generated as controlled by the burst advance pin (ADV#).


GENERAL DESCRIPTION (continued)

Address and write control are registered on-chip to simplify WRITE cycles. This allows self-timed WRITE cycles. Individual byte enables allow individual bytes to be written. BW1# controls DQ1-DQ8 and DQP1, BW2# controls DQ9-DQ16 and DQP2, BW3# controls DQ17-DQ24 and DQP3, and BW4# controls DQ25-DQ32 and DQP4, conditioned by BWE#being LOW. GW#LOW causes all bytes to be written. WRITE pass-through makes written data immediately available at the output register during the READ cycle following a WRITE as controlled solely by OE# to improve

cache system response. The device incorporates an additional pipelined enable register to allow depth expansion without penalizing system performance.


The MT58LC32K32/36D7 operates from a +3.3V power supply and all inputs and outputs are TTL-compatible and 5V-tolerant. The device is ideally suited for Pentium and PowerPC™ pipelined systems and systems that benefit from a very wide high-speed data bus. The device is also ideal in generic 32-, 36-, 64- and 72-bit-wide applications.

FUNCTIONAL BLOCK DIAGRAM 32K x 32

 NOTE: 1. Functional Block Diagrams illustrate simplified device operation. See Truth Table, Pin Descriptions and timing diagrams for detailed information.

FUNCTIONAL BLOCK DIAGRAM 32K x 36

PIN DESCRIPTIONS

Ì	FIN DESCRIPTIONS			
	TQFP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
, , ,	37, 36, 35, 34, 33, 32, 100, 99, 82, 81, 44, 45, 46, 47, 48	A0-A14	Input	Synchronous Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
	93, 94, 95, 96	BW1#, BW2#, BW3#, BW4#	Input	Synchronous Byte Write Enables: These active LOW inputs allow individual bytes to be written when BWE# is LOW and must meet the setup and hold times around the rising edge of CLK. A Byte Write Enable is LOW for a WRITE cycle and HIGH for a READ cycle. BW1# controls DQ1-DQ8 and DQP1. BW2# controls DQ9-DQ16 and DQP2. BW3# controls DQ17-DQ24 and DQP3. BW4# controls DQ25-DQ32 and DQP4. Data I/O are tristated if any of these four inputs are LOW.
	89	CLK	Input	Clock: This signal registers the address, data, chip enables, byte write enables and burst control inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.
; ;	98	CE#	Input	Synchronous Chip Enable: This active LOW input is used to enable the device and conditions the internal use of ADSP#. This input is sampled only when a new external address is loaded.
]	92	CE2#	Input	Synchronous Chip Enable: This active LOW input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
	97	CE2	Input	Synchronous Chip Enable: This active HIGH input is used to enable the device. This input is sampled only when a new external address is loaded. This input can be used for memory depth expansion.
)	86	OE#	Input	Output Enable: This active LOW asynchronous input enables the data I/O output drivers.
	83	ADV#	Input	Synchronous Address Advance: This active LOW input is used to advance the internal burst counter, controlling burst access after the external address is loaded. A HIGH on this pin effectively causes wait states to be generated (no address advance). This pin must be HIGH at the rising edge of the first clock after an ADSP# cycle is initiated if a WRITE cycle is desired (to ensure use of correct address).
;	84	ADSP#	Input	Synchronous Address Status Processor: This active LOW input interrupts any ongoing burst, causing a new external address to be registered. A READ is performed using the new address, independent of the byte write enables and ADSC#, but dependent upon CE2 and CE2#. ADSP# is ignored if CE# is HIGH. Power-down state is entered if CE2 is LOW or CE2# is HIGH.
	85	ADSC#	Input	Synchronous Address Status Controller: This active LOW input interrupts any ongoing burst and causes a new external address to be registered. A READ or WRITE is performed using the new address if all chip enables are active. Powerdown state is entered if one or more chip enables are inactive.

SYNCBURST PIPELINED – 5.0V-TOLERANT I/O

SUPERSEDED BY MT58LC32K32/36D8 MT58LC32K32/36D7 32K x 32/36 SYNCBURST SRAM

PIN DESCRIPTIONS (continued)

TQFP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
87	BWE#	Input	Byte Write Enable: This active LOW input permits byte write operations and must meet the setup and hold times around the rising edge of CLK.
88	GW#	Input	Global Write: This active LOW input allows a full 32-bit WRITE to occur independent of the BWE# and BWn# lines and must meet the setup and hold times around the rising edge of CLK.
64	ZZ	Input	Snooze Enable: This active HIGH asynchronous input causes the device to enter a low-power standby mode in which all data in the memory array is retained. When active, all other inputs are ignored.
16, 38*, 39*, 42*, 43*, 49, 50, 66	NC	-	No Connect: These signals are not internally connected. These signals may be connected to ground to improve package heat dissipation.
52, 53, 56, 57, 58, 59, 62, 63, 68, 69, 72, 73, 74, 75, 78, 79, 2, 3, 6, 7, 8, 9, 12, 13, 18, 19, 22, 23, 24, 25, 28, 29	DQ1-DQ32	Input/ Output	SRAM Data I/O: Byte 1 is DQ1-DQ8; Byte 2 is DQ9-DQ16; Byte 3 is DQ17-DQ24; Byte 4 is DQ25-DQ32. Input data must meet setup and hold times around the rising edge of CLK.
51, 80, 1, 30	DQP1-DQP4	Input/ Output	Parity Data I/O: Byte 1 Parity is DQP1; Byte 2 Parity is DQP2; Byte 3 Parity is DQP3; Byte 4 Parity is DQP4.
31	MODE	Input	Mode: This input selects the burst sequence. A LOW on this pin selects LINEAR BURST. NC or HIGH on this pin selects INTERLEAVED BURST. Do not after input state while device is operating.
4, 11, 14, 15, 20, 27, 41, 54, 61, 65, 70, 77, 91	Vcc	Supply	Power Supply: +3.3V +10%/-5%
5, 10, 17, 21, 26, 40, 55, 60, 67, 71, 76, 90	Vss	Supply	Ground: GND

^{*}These pins are reserved as DNU pins (Do Not Use) on new 1 Meg devices and the 2 Meg and 4 Meg versions of the SyncBurst family. It is recommended that these pins be left unconnected or connected to GND in any designs to allow for future upgradability.

INTERLEAVED BURST ADDRESS TABLE (MODE = NC OR HIGH)

First Address (External)	Second Address (Internal)	Third Address (Internal)	Fourth Address (Internal)
XX00	XX01	XX10	XX11
XX01	XX00	XX11	XX10
XX10	XX11	XX00	XX01
XX11	XX10	XX01	XX00

LINEAR BURST ADDRESS TABLE (MODE = GND)

First Address (External)	Second Address (internal)	Third Address (Internal)	Fourth Address (Internal)		
XX00	XX01	XX10	XX11		
XX01	XX10	XX11	XX00		
XX10	XX11	XX00	XX01		
XX11	XX00	XX01	XX10		

PARTIAL TRUTH TABLE FOR WRITE COMMANDS

Function	GW#	BWE#	BW1#	BW2#	BW3#	BW4#
READ	Н	Н	Х	_ X	Х	Х
READ	н	L	Н	Н	Н	Н
WRITE Byte 1	Н	L	L	Н	Н	Н
WRITE all bytes	Н	L	L	L	L	L
WRITE all bytes	L	Х	Х	Х	х	Х

NOTE: Using BWE# and BW1# through BW4#, any one or more bytes may be written.

WRITE PASS-THROUGH TRUTH TABLE

PREVIOUS CYCLE ¹	PRESENT CYC	NEXT CYCLE						
OPERATION	BWs#	OPERATION	CE#	BWs#	OE#	OPERATION		
Initiate WRITE cycle, all bytes Address = A(n-1), data = D(n-1)	All L ^{2, 3}	Initiate READ cycle Register A(n), Q = D(n-1)	L	н	L	Read D(n)		
Initiate WRITE cycle, all bytes Address = A(n-1), data = D(n-1)	All L ^{2, 3}	No new cycle Q = D(n-1)	Н	Н	L	No carry-over from previous cycle		
Initiate WRITE cycle, all bytes Address = A(n-1), data = D(n-1)	All L ^{2, 3}	No new cycle Q = HIGH-Z	Н	Н	Н	No carry-over from previous cycle		
Initiate WRITE cycle, one byte Address = $A(n-1)$, data = $D(n-1)$	One L ²	No new cycle Q = D(n-1) for one byte	Н	Н	L	No carry-over from previous cycle		

NOTE:

- 1. Previous cycle may be either BURST or NONBURST cycle.
- 2. BWE# is LOW when one or more BWn#'s are LOW.
- 3. GW# LOW will yield identical results.

SYNCBURST PIPELINED – 5.0V-TOLERANT I/C

SUPERSEDED BY MT58LC32K32/36D8 MT58LC32K32/36D7 32K x 32/36 SYNCBURST SRAM

TRUTH TABLE

OPERATION	ADDRESS USED	CE#	CE2#	CE2	ZZ	ADSP#	ADSC#	ADV#	WRITE#	OE#	CLK	DQ
Deselected Cycle, Power-down	None	Н	Х	Х	L	Х	L	Х	Х	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Х	L	L	L	Х	Х	Х	Χ	L-H	High-Z
Deselected Cycle, Power-down	None	Ĺ	Н	Х	L	L	Х	Х	Х	Χ	L-H	High-Z
Deselected Cycle, Power-down	None	L	Х	L	L	Н	L_	Х	X	Х	L-H	High-Z
Deselected Cycle, Power-down	None	L	Н	Х	L	Н	L	Х	Х	X	L-H	High-Z
SNOOZE MODE, Power-down	None	Х	Х	Х	Н	Х	Х	Х	Х	Х	X	High-Z
READ Cycle, Begin Burst	External	L	L	Ξ	L	L	Х	Х	X	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Ι	L	L	X	Х	X	Н	L-H	High-Z
WRITE Cycle, Begin Burst	External	L	L	Н	L	Н	L	Х	L	Х	L-H	D
READ Cycle, Begin Burst	External	L	L	Н	L	Н	L	Х	Н	L	L-H	Q
READ Cycle, Begin Burst	External	L	L	Н	L	Н	L	Х	Н	Н	L-H	High-Z
READ Cycle, Continue Burst	Next	Х	Х	Х	∟	H	Н	L	Н	L	L-H	Q
READ Cycle, Continue Burst	Next	Х	Х	Х	L	Н	Н	L	Н	H	L-H	High-Z
READ Cycle, Continue Burst	Next	Н	Х	Х	L	X	Н	L	Н	L	L-H	Q
READ Cycle, Continue Burst	Next	Н	Х	Х	L	Х	Н	L	Н	H	L-H	High-Z
WRITE Cycle, Continue Burst	Next	Х	Х	Х	L	Н	Н	L	L	Х	L-H	D
WRITE Cycle, Continue Burst	Next	Н	Х	Х	L	X	н	L	L	Х	L-H	D
READ Cycle, Suspend Burst	Current	X	Х	Х	Ĺ	Н	Н	Н	Н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Х	Х	Х	L	Н	Н	Н	Н	Н	L-H	High-Z
READ Cycle, Suspend Burst	Current	Н	Х	Х	L	Х	Н	Н	Н	L	L-H	Q
READ Cycle, Suspend Burst	Current	Н	X	Х	L	X	Н	Н	Н	Ŧ	L-H	High-Z
WRITE Cycle, Suspend Burst	Current	Х	Х	Х	L	Н	Н	Н	L	Х	L-H	D
WRITE Cycle, Suspend Burst	Current	Н	Х	Х	L	X	Н	Н	L	Χ	L-H	D

NOTE:

- X means "don't care." H means logic HIGH. L means logic LOW. WRITE#=L means any one or more byte
 write enable signals (BW1#, BW2#, BW3# or BW4#) and BWE# are LOW or GW# is LOW. WRITE#=H
 means all byte write enable signals are HIGH.
- BW1# enables WRITEs to Byte 1 (DQ1-DQ8, DQP1). BW2# enables WRITEs to Byte 2 (DQ9-DQ16, DQP2).
 BW3# enables WRITEs to Byte 3 (DQ17-DQ24, DQP3). BW4# enables WRITEs to Byte 4 (DQ25-DQ32, DQP4). Parity bits are only available on the x36 version.
- 3. All inputs except OE# must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
- 4. Wait states are inserted by suspending burst.
- For a WRITE operation following a READ operation, OE# must be HIGH before the input data required setup time and held HIGH throughout the input data hold time.
- 6. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
- 7. ADSP# LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals and BWE# LOW or GW# LOW for the subsequent L-H edge of CLK. Refer to WRITE timing diagram for clarification.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to V	ss0.5V to +4.6V
V _{IN}	0.5V to +6V
Storage Temperature (plastic)	55°C to +150°C
Junction Temperature**	+150°C
Short Circuit Output Current	100m A

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**Maximum junction temperature depends upon package type, cycle time, loading, ambient temperature and airflow. See Micron Technical Note TN-05-14 for more information.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = +3.3V +10\%/-5\%$ unless otherwise noted)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		VIH	2.0	5.5	V	1, 2
Input High (Logic 1) Voltage	For MODE and ZZ	ViH	2.4	5.5	V	1, 2
Input Low (Logic 0) Voltage		VIL	-0.3	0.8	V	1, 2
Input Leakage Current	0V ≤ Vin ≤ Vcc	ILı	-1	1	μΑ	14
Output Leakage Current	Output(s) disabled, 0V ≤ Vout ≤ Vcc	ILo	-1	1	μА	_
Output High Voltage	loн = -4.0mA	Vон	2.4		٧	1, 11, 17
Output Low Voltage	loL = 8.0mA	Vol		0.4	٧	1, 11
Supply Voltage		Vcc	3.135	3.6	V	1

						MAX]	
DESCRIPTION	CONDITIONS	SYM	TYP	-4.5	-5	6	-7	-8	UNITS	NOTES
Power Supply Current: Operating	Device selected; all inputs ≤ Vi∟ or ≥ Viн; cycle time ≥ ¹KC MIN; Vcc = MAX; outputs open	lcc	200	500	425	375	325	275	mA	3, 12, 13
Power Supply Current: Idle	Device selected; Vcc = MAX; ADSC#, ADSP#, GW#, BW#s, ADV# ≥ ViH; all inputs ≤ Vss +0.2 or ≥ Vcc -0.2; cycle time ≥ ^t KC MIN	lcc1	30	81	81	76	66	51	mA	12, 13
CMOS Standby	Device deselected; Vcc = MAX; all inputs ≤ Vss +0.2 or ≥ Vcc -0.2; all inputs static; CLK frequency = 0	ISB2	0.5	5	5	5	5	5	mA	12, 13
TTL Standby	Device deselected; Vcc = MAX; all inputs ≤ V _{IL} or ≥ V _{IH} ; all inputs static; CLK frequency = 0	IsB3	15	25	25	25	25	25	mA	12, 13
Clock Running	Device deselected; Vcc = MAX; all inputs ≤ Vss +0.2 or ≥ Vcc -0.2; CLK cycle time ≥ ¹ KC MIN	ISB4	30	81	81	76	66	51	mA	12, 13

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	TYP	MAX	UNITS	NOTES
Control Input Capacitance	T _A = 25°C; f = 1 MHz	Ci	3	4	pF	4
Input/Output Capacitance (DQ)	Vcc = 3.3V	Co	6	8	рF	4
Address and Clock Input Capacitance		CA	2.5	3	pF	4

THERMAL CONSIDERATIONS

DESCRIPTION	CONDITIONS	SYMBOL	TYP	UNITS	NOTES
Thermal resistance - Junction to Ambient	Still Air, soldered on 4.25 x	θ_{JA}	20	°C/W	
Thermal resistance - Junction to Case	1.125 inch 4-layer circuit board	θ _{JC}	1	°C/W	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (0°C \leq T_A \leq 70°C; Vcc = +3.3V +10%/-5%)

DECORIDATION		-4	.5	-!	5	-	6		7		8		
DESCRIPTION	SYM	MIN	MAX	UNITS	NOTES								
Clock			•										
Clock cycle time	¹KC	8		10		12		15		20		ns	
Clock HIGH time	^t KH	3		4		4.5		5		6		ns	
Clock LOW time	†KL	3		4		4.5		5		6		ns	
Output Times							-						
Clock to output valid	tKQ		4.5		5		6		7		8	ns	
Clock to output invalid	tKQX	2		2		2		2		2	Ī	ns	
Clock to output in Low-Z	¹KQLZ	2		2		2		2		2		ns	4, 6, 7
Clock to output in High-Z	tKQHZ		4.5		5		5		6		6	ns	4, 6, 7
OE# to output valid	'OEQ		4.5		5		5		5		6	ns	9
OE# to output in Low-Z	¹OELZ	0		0		0		0		0		ns	4, 6, 7
OE# to output in High-Z	¹0EHZ		3		4		5		6		6	ns	4, 6, 7
Setup Times													
Address	¹AS	2.5		2.5		2.5		2.5		3.5		ns	8, 10
Address Status (ADSC#, ADSP#)	†ADSS	2.5		2.5		2.5		2.5		3.5		ns	8, 10
Address Advance (ADV#)	¹AAS	2.5	T	2.5		2.5		2.5		3.5		ns	8, 10
Write Signals (BW1#, BW2#, BW3#, BW4#, BWE#, GW#)	tws	2.5		2.5		2.5		2.5		3.5		ns	8, 10
Data-in	†DS	2.5		2.5		2.5		2.5		3.5		ns	8, 10
Chip Enables (CE#, CE2#, CE2)	^t CES	2.5		2.5		2.5		2.5		3.5		ns	8, 10
Hold Times													
Address	¹ AH	0.5		0.5		0.5		0.5		0.8		ns	8, 10
Address Status (ADSC#, ADSP#)	^t ADSH	0.5		0.5		0.5		0.5		0.8		ns	8, 10
Address Advance (ADV#)	†AAH	0.5		0.5		0.5		0.5		0.8		ns	8, 10
Write Signals (BW1#, BW2#, BW3#, BW4#, BWE#, GW#)	HW!	0.5		0.5		0.5		0.5		0.8		ns	8, 10
Data-in	^t DH	0.5		0.5		0.5		0.5		0.8		ns	8, 10
Chip Enables (CE#, CE2#, CE2)	*CEH	0.5		0.5		0.5	i	0.5		0.8		ns	8, 10

MICRON

SUPERSEDED BY MT58LC32K32/36D8 MT58LC32K32/36D7 32K x 32/36 SYNCBURST SRAM

5.0V-TOLERANT

AC TEST CONDITIONS

Input pulse levels Vss to	3.0V
Input rise and fall times	2.5ns
Input timing reference levels	. 1.5V
Output reference levels	. 1.5V
Output load See Figures 1	and 2

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{IH} \le +6.0V$ for $t \le {}^{t}KC$ /2 Undershoot: VIL \geq -2.0V for $t \leq {}^{t}KC$ /2 $V_{IH} \le +6.0V$ and $V_{CC} \le 3.135V$ Power-up:

for $t \le 200 \text{ms}$

- 3. Icc is given with no output current. Icc increases with greater output loading and faster cycle times.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- Output loading is specified with C_L = 5pF as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tKQHZ is less than ^tKQLZ.
- 8. A WRITE cycle is defined by at least one byte write enable LOW and ADSP# HIGH for the required setup and hold times. A READ cycle is defined by all byte write enables HIGH and (ADSC# or ADV# LOW) or ADSP# LOW for the required setup and hold times.
- 9. OE# is a "don't care" when a byte write enable is sampled LOW.
- 10. This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK when either ADSP# or ADSC# is LOW and chip enabled. All other synchronous inputs must meet the setup and hold times with stable logic levels for all rising edges of clock (CLK) when the chip is enabled. Chip enable must be valid at each rising edge of CLK (when either ADSP# or ADSC# is LOW) to remain enabled.
- 11. The load used for Voн, Vot testing is shown in Fig. 2. AC load current is higher than the shown DC values. AC I/O curves are available upon request.
- 12. "Device Deselected" means device is in POWER-DOWN mode as defined in the Truth Table. "Device Selected" means device is active (not in POWER-DOWN mode).

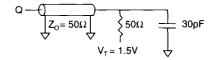


Fig. 1 OUTPUT LOAD **EQUIVALENT**

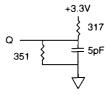


Fig. 2 OUTPUT LOAD **EQUIVALENT**

- 13. Typical values are measured at 3.3V, 25°C and 20ns cycle time.
- 14. MODE pin has an internal pull-up and exhibits an input leakage current of ±10μA.
- 15. Typical values are measured at 25°C.
- 16. The device must have a deselect cycle applied at least one clock cycles before data retention mode is entered.
- 17. DQs are guaranteed to meet VoH MIN for up to 10ms after outputs become static.

LOAD DERATING CURVES

Micron 32K x 32 and 32K x 36 Synchronous SRAM timing is dependent upon the capacitive loading on the outputs. The data sheet is written assuming a load of 30pF. Access time changes with load capacitance as follows:

 $\Delta^{t}KQ = 0.0268 \text{ ns/pF} \times \Delta C_{L} \text{ pF}.$ (Note: this is preliminary information subject to change.)

For example, if the SRAM loading is 22pF, ΔC_1 is -8pF (8pF less than rated load). The clock to valid output time of the SRAM is reduced by $0.0268 \times 8 = 0.214$ ns. If the device is a 12ns part, the worst case tKQ becomes 11.79ns (approximately).

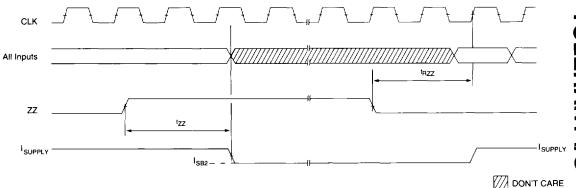
Consult the factory for copies of I/O current versus voltage curves. For capacitive loading derating curves see Micron Technical Note TN-05-20, "3.3V SRAM Capacitive Loading."

SUPERSEDED BY MT58LC32K32/36D8 MT58LC32K32/36D7 32K x 32/36 SYNCBURST SRAM

YNCBURST PIPELINED – 5.0V-TOLERANT I/O

SNOOZE MODE

SNOOZE MODE is a low current, "power-down" mode in which the device is deselected and current is reduced to Is82. The duration of SNOOZE MODE is dictated by the length of time the ZZ pin is in a HIGH state. After entering SNOOZE MODE, all inputs become gated inputs and are ignored.


The ZZ pin (pin 64) is an asynchronous, active HIGH input that causes the device to enter SNOOZE MODE. When the ZZ pin becomes a logic HIGH, ISB2 is guaranteed after the setup time ^tZZ is met. Any access pending when entering SNOOZE MODE is not guaranteed to successfully complete. Therefore, SNOOZE MODE must not be initiated until valid pending operations are completed.

SNOOZE MODE ELECTRICAL CHARACTERISTICS

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Current during SNOOZE MODE	ZZ ≥ Vıн	ISB2		5	mA	
ZZ HIGH to SNOOZE MODE time		¹ZZ	2(^t KC)		ns	1
SNOOZE MODE Operation recovery time		^t RZZ		2(^t KC)	ns	1

NOTE: 1. This parameter is sampled.

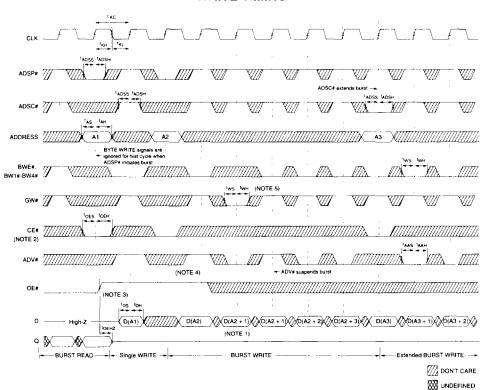
SNOOZE MODE WAVEFORM

READ TIMING CLK ADSC ADDRESS A1 A3 Burst continued with new base address. GW#. BWE# *\\!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!* BW1#-BW4# Deselect CE# (NOTE 2) (NOTE 4) --ADV# suspends burst. (NOTE 3) OEC ^tOELZ ¹kox Q(A2) XX Q(A2 + 1) XX Q(A2) (Q(A2 + 1) 0 Q(A1) Q(A2 + 2) XXQ(A2 + 3) XX Burst wraps around to its inital state. Single READ --BURST BEAD

NOTE:

- 1. Q(A2) refers to output from address A2. Q(A2+1) refers to output from the next internal burst address following A2.
- 2. CE2# and CE2 have timing identical to CE#. On this diagram, when CE# is LOW, CE2# is LOW and CE2 is HIGH. When CE# is HIGH, CE2# is HIGH and CE2 is LOW.
- 3. Timing is shown assuming that the device was not enabled before entering into this sequence. OE# does not cause Q to be driven until after the following clock rising edge.
- 4. Outputs are disabled within one clock cycle after deselect.

READ TIMING PARAMETERS

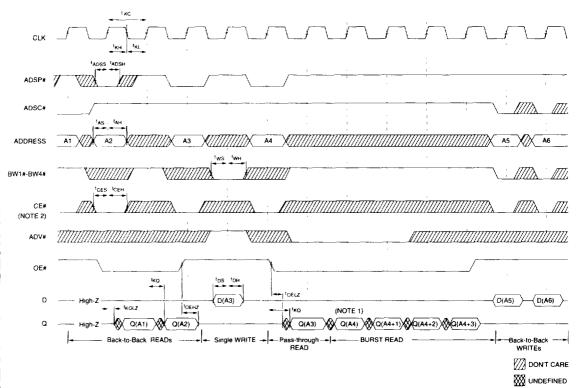

	-4	.5	-5		-6		7		-8		
SYM	MIN	MAX	UNITS								
¹KC	8		10		12		15		20		กร
^t KH	3		4		4.5		5		6		ns
^t KL	3		4		4.5		5		6		пѕ
^t KQ		4.5		5		6		7		8	ns
tKQX	2		2		2		2		2		ns
¹KQLZ	2		2		2		2		2		ns
¹KQHZ		4.5		5		5		6_		6	ns
OEQ.		4.5		5		5		5		6	ns
OELZ	0		0		0		0		0		ns
OEHZ		3		4		5		6		6	ns

	-4.5		-5		-6		7		-8		
SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
^t AS	2.5		2.5		2.5		2.5		3.5		ns
IADSS	2.5		2.5		2.5		2.5		3.5		ns
IAAS	2.5		2.5		2.5		2.5		3.5		ns
†WS	2.5		2.5		2.5		2.5		3.5		ns
CES	2.5		2.5		2.5		2.5		3.5		ns
^t AH	0.5		0.5		0.5		0.5		0.8		ns
'ADSH	0.5		0.5		0.5		0.5		0.8		ns
^t AAH	0.5		0.5		0.5		0.5		0.8		ns
^t WH	0.5		0.5		0.5		0.5		0.8		ns
¹ CEH	0.5		0.5		0.5		0.5		0.8		ns

DON'T CARE W UNDEFINED

WRITE TIMING

NOTE:


- 1. D(A2) refers to input for address A2. D(A2+1) refers to input for the next internal burst address following A2.
- CE2# and CE2 have timing identical to CE#. On this diagram, when CE# is LOW, CE2# is LOW and CE2 is HIGH. When CE# is HIGH, CE2# is HIGH and CE2 is LOW.
- 3. OE# must be HIGH before the input data setup and held HIGH throughout the data hold time. This prevents input/output data contention for the time period prior to the byte write enable inputs being sampled.
- 4. ADV# must be HIGH to permit a WRITE to the loaded address.
- 5. Full width WRITE can be initiated by GW# LOW or GW# HIGH and BWE#, BW1#- BW4# LOW.

WRITE TIMING PARAMETERS

	-4	.5	-5		-6		-7		-8		
SYM	MIN	MAX	UNITS								
^t KC	8		10		12		15		20		ns
¹KH	3		4		4.5		5		6		ns
†KL	3		4		4.5		5		6		ns
OEHZ		3		4		5		6		6	ns
¹AS	2.5		2.5		2.5		2.5		3.5		ns
¹ ADSS	2.5		2.5		2.5		2.5		3.5		ns
tAAS	2.5		2.5		2.5		2.5		3.5		ns
†WS	2.5		2.5		2.5		2.5		3.5		ns

	-4	.5	-5		-6		-7		-8		
SYM	MIN	MAX	UNITS								
^t DS	2.5		2.5		2.5		2.5		3.5		ns
^t CES	2.5		2.5		2.5		2.5		3.5		ns
^t AH	0.5		0.5		0.5		0.5		8.0		ns
TADSH	0.5		0.5		0.5		0.5		0.8		ns
^t AAH	0.5		0.5		0.5		0.5		8.0		ns
tWH	0.5		0.5		0.5		0.5		0.8		ns
¹DH_	0.5		0.5		0.5		0.5		0.8		ns
¹CEH	0.5		0.5		0.5		0.5		0.8		ns

READ/WRITE TIMING

NOTE:

- 1. Q(A4) refers to output from address A4. Q(A4+1) refers to output from the next internal burst address following A4.
- CE2# and CE2 have timing identical to CE#. On this diagram, when CE# is LOW, CE2# is LOW and CE2 is HIGH. When CE# is HIGH, CE2# is HIGH and CE2 is LOW.
- 3. The data bus (Q) remains in High-Z following a WRITE cycle unless an ADSP#, ADSC# or ADV# cycle is performed.
- 4. GW# is HIGH.
- 5. Back-to-back READs may be controlled by either ADSP# or ADSC#.

READ/WRITE TIMING PARAMETERS

	-4	.5	-5		-6		-7		-8		
SYM	MIN	MAX	UNITS								
¹KC	8		10		12		15		20		ns
'КН	3		4		4.5		5		6		ns
¹KL	3		4		4.5		5		6		ns
¹KQ		4.5		5		6		7		8	ns
^t KQLZ	2		2		2		2		2		ns
OELZ	0		0		0		0		0		ns
OEHZ		3		4		5		6		6	ns
tAS	2.5		2.5		2.5		2.5		3.5		ns
IADSS	2.5		2.5		2.5		2.5		3.5		ns

-4	-4.5 -5		5	-6		-7		-8		l
MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
2.5		2.5		2.5		2.5		3.5		ns
2.5		2.5		2.5		2.5		3.5		ns
2.5		2.5		2.5		2.5		3.5		ns
0.5		0.5		0.5		0.5		0.8		ns
0.5		0.5		0.5		0.5		0.8		ns
0.5		0.5		0.5		0.5		0.8		ns
0.5		0.5		0.5		0.5		0.8		ns
0.5		0.5		0.5		0.5		0.8		ns
	MIN 2.5 2.5 2.5 0.5 0.5 0.5	MIN MAX 2.5 2.5 2.5 0.5 0.5 0.5 0.5	MIN MAX MIN 2.5 2.5 2.5 2.5 2.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	MIN MAX MIN MAX 2.5 2.5 2.5 2.5 2.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	MIN MAX MIN MAX MIN MAX MIN MIN MIN MIN C.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.5	MIN MAX MIN MAX MIN MAX 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN 2.5 Q.5 Q.5 <td>MIN MAX MIN MAX MIN MAX MIN MAX 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5</td> <td>MIN MAX MIN MAX MIN MIN MAX MIN MAX</td> <td>MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX 2.5 2.5 2.5 3.5</td>	MIN MAX MIN MAX MIN MAX MIN MAX 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	MIN MAX MIN MAX MIN MIN MAX MIN MAX	MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX 2.5 2.5 2.5 3.5