EMCL12D2H-87.500M TR

O

ELECTRICAL SPECIFICATIONS

Nominal Frequency	87.500 MHz
Frequency Tolerance/Stability	$\pm 50 \mathrm{ppm}$ Maximum over $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (Inclusive of all conditions: Calibration Tolerance at $25^{\circ} \mathrm{C}$, Frequency Stability over the Operating Temperature Range, Supply Voltage Change, Output Load Change, 1st Year Aging at $25^{\circ} \mathrm{C}$, Reflow, Shock, and Vibration)
Aging at $25^{\circ} \mathrm{C}$	$\pm 1 \mathrm{ppm}$ First Year Maximum
Supply Voltage	$+2.5 \mathrm{Vdc} \pm 0.125 \mathrm{Vdc}$
Input Current	75 mA Maximum (Excluding Load Termination Current)
Output Voltage Logic High (Voh)	1.55 Vdc Typical, Vcc-1.025Vdc Minimum
Output Voltage Logic Low (Vol)	0.80 Vdc Typical, Vcc-1.62Vdc Maximum
Rise/Fall Time	150pSec Typical, 300pSec Maximum (Measured over 20\% to 80\% of waveform)
Duty Cycle	50 ± 5 (\%) (Measured at 50% of waveform)
Load Drive Capability	50 Ohms into Vcc-2.0Vdc
Output Logic Type	LVPECL
Logic Control / Additional Output	Output Enable (OE) and Complementary Output
Output Control Input Voltage	Vih of 70% of Vcc Minimum or No Connect to Enable Output and Complementary Output, Vil of 30% of Vcc Maximum to Disable Output and Complementary Output (High Impedance)
Output Enable Current	70mA Maximum (OE) Without Load
Period Jitter (Deterministic)	0.2pSec Typical
Period Jitter (Random)	2.0pSec Typical
Period Jitter (RMS)	1.5pSec Typical, 3.0pSec Maximum
Period Jitter (pk-pk)	20pSec Typical, 25pSec Maximum
RMS Phase Jitter ($\mathrm{Fj}=\mathbf{6 3 7 \mathrm { kHz }}$ to 10MHz; Random)	1.7pSec Typical
RMS Phase Jitter ($\mathrm{Fj}=\mathbf{1 M H z}$ to 20MHz; Random)	1.4pSec Typical
RMS Phase Jitter ($\mathrm{Fj}=1.875 \mathrm{MHz}$ to 20MHz; Random)	1.1pSec Typical
Start Up Time	10mSec Maximum
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

ENVIRONMENTAL \& MECHANICAL SPECIFICATIONS

ESD Susceptibility	M
Flammability	U
Mechanical Shock	M
Moisture Resistance	M
Moisture Sensitivity Level	J-
Resistance to Soldering Heat	M
Resistance to Solvents	M
Solderability	M
Temperature Cycling	M
Thermal Shock	M
Vibration	M

MIL-STD-883, Method 3015, Class 2, HBM 2000V
UL94-V0
MIL-STD-883, Method 2002, Condition G, 30,000G
MIL-STD-883, Method 1004
J-STD-020, MSL 1
MIL-STD-202, Method 210, Condition K
MIL-STD-202, Method 215
MIL-STD-883, Method 2003 (Six I/O Pads on bottom of package only)
MIL-STD-883, Method 1010, Condition B
MIL-STD-883, Method 1011, Condition B
MIL-STD-883, Method 2007, Condition A, 20G

EMCL12D2H-87.500M TR

MECHANICAL DIMENSIONS (all dimensions in millimeters)

PIN	CONNECTION
1	Output Enable (OE)
2	No Connect
3	Case Ground
4	Output
5	Complementary Output
6	Supply Voltage

LINE MARKING

Note A: Center paddle is connected internally to oscillator ground (Pad 3).

Suggested Solder Pad Layout

All Dimensions in Millimeters

All Tolerances are ± 0.1

EMCL12D2H-87.500M TR

OUTPUT WAVEFORM \& TIMING DIAGRAM

Test Circuit for Tri-State and Complementary Output

Note 1: An external $0.01 \mu \mathrm{~F}$ ceramic bypass capacitor in parallel with a $0.1 \mu \mathrm{~F}$ high frequency ceramic bypass capacitor close (less than 2 mm) to the package ground and supply voltage pin is required.
Note 2: A low capacitance (<12pF), 10X attenuation factor, high impedance (>10Mohms), and high bandwidth (>500MHz) passive probe is recommended.
Note 3: Test circuit PCB traces need to be designed for a characteristic line impedance of 50 ohms.

EMCL12D2H-87.500M TR

Tape \& Reel Dimensions

Quantity Per Reel: 1,000 units

*Compliant to EIA 481A

EMCL12D2H-87.500M TR

Recommended Solder Reflow Methods

High Temperature Infrared/Convection

Ts MAX to T_{L} (Ramp-up Rate)	$3^{\circ} \mathrm{C} /$ second Maximum
Preheat	
- Temperature Minimum ($\mathrm{T}_{\mathrm{s}} \mathrm{MIN}$)	$150^{\circ} \mathrm{C}$
- Temperature Typical (Ts TYP)	$175^{\circ} \mathrm{C}$
- Temperature Maximum (Ts MAX)	$200^{\circ} \mathrm{C}$
- Time ($\mathrm{ts}_{\text {S MIN} \text {) }}$	60-180 Seconds
Ramp-up Rate (T_{L} to T_{P})	$3^{\circ} \mathrm{C} /$ second Maximum
Time Maintained Above:	
- Temperature (T_{L})	$217^{\circ} \mathrm{C}$
- Time (t_{L})	60-150 Seconds
Peak Temperature (T_{P})	$260^{\circ} \mathrm{C}$ Maximum for 10 Seconds Maximum
Target Peak Temperature (T_{P} Target)	$250^{\circ} \mathrm{C}+0 /-5^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of actual peak (t_{p})	20-40 seconds
Ramp-down Rate	$6^{\circ} \mathrm{C} /$ second Maximum
Time $25^{\circ} \mathrm{C}$ to Peak Temperature (t)	8 minutes Maximum
Moisture Sensitivity Level	Level 1

EMCL12D2H-87.500M TR

Recommended Solder Reflow Methods

Low Temperature Infrared/Convection $240^{\circ} \mathrm{C}$

T_{S} MAX to T_{L} (Ramp-up Rate)	$5^{\circ} \mathrm{C} /$ second Maximum
Preheat	
- Temperature Minimum ($\mathrm{T}_{s} \mathrm{MIN}$)	N/A
- Temperature Typical ($\mathrm{T}_{\text {s }}$ TYP)	$150^{\circ} \mathrm{C}$
- Temperature Maximum ($\mathrm{T}_{\mathrm{s}} \mathrm{MAX}$)	N/A
- Time ($\mathrm{t}_{\mathrm{s}} \mathrm{MIN}$)	60-120 Seconds
Ramp-up Rate (T_{L} to T_{P})	$5^{\circ} \mathrm{C} /$ second Maximum
Time Maintained Above:	
- Temperature (T_{L})	$150^{\circ} \mathrm{C}$
- Time (t_{L})	200 Seconds Maximum
Peak Temperature (T_{P})	$240^{\circ} \mathrm{C}$ Maximum
Target Peak Temperature (T_{P} Target)	$240^{\circ} \mathrm{C}$ Maximum 1 Time / $230^{\circ} \mathrm{C}$ Maximum 2 Times
Time within $5^{\circ} \mathrm{C}$ of actual peak (t_{p})	10 seconds Maximum 2 Times / 80 seconds Maximum 1 Time
Ramp-down Rate	$5^{\circ} \mathrm{C} /$ second Maximum
Time $25^{\circ} \mathrm{C}$ to Peak Temperature (t)	N/A
Moisture Sensitivity Level	Level 1

Low Temperature Manual Soldering

$185^{\circ} \mathrm{C}$ Maximum for 10 seconds Maximum, 2 times Maximum.
High Temperature Manual Soldering
$260^{\circ} \mathrm{C}$ Maximum for 5 seconds Maximum, 2 times Maximum.

