32-bit Proprietary Microcontroller
 CMOS

FR60Lite MB91265 Series

MB91266/MB91F267

DESCRIPTION

The MB91265 series is a 32-bit RISC microcontroller designed by Fujitsu for embedded control applications which require high-speed processing.
The CPU is used the FR family and the compatibility of FR60Lite.

■ FEATURES

- FR60Lite CPU
- 32-bit RISC, load/store architecture with a five-stage pipeline
- Maximum operating frequency : 33 MHz (oscillation frequency 4.192 MHz , oscillation frequency 8 -multiplier (PLL clock multiplication method)
- 16-bit fixed length instructions (basic instructions)
- Execution speed of instructions : 1 instruction per cycle
- Memory-to-memory transfer, bit handling, barrel shift instructions, etc : Instructions suitable for embedded applications
- Function entry/exit instructions, multiple-register load/store instructions : Instructions adapted for C-language
(Continued)

PACKAGE

MB91265 Series

(Continued)

- Register interlock function : Facilitates coding in assembler.
- Built-in multiplier with instruction-level support
- 32-bit multiplication with sign : 5 cycles
- 16-bit multiplication with sign : 3 cycles
- Interrupt (PC, PS save) : 6 cycles, 16 priority levels
- Harvard architecture allowing program access and data access to be executed simultaneously
- Instruction compatible with FR family
- Internal peripheral functions
- Capacity of internal ROM and ROM type

MASK ROM : 64 Kbytes (MB91266)
FLASH ROM : 128 Kbytes (MB91F267)

- Capacity of internal RAM : 2 Kbytes (MASK product)/4 Kbytes (FLASH product)
- A/D converter (sequential comparison type)
- External interrupt input : 8 channels
- Bit search module (for REALOS)

Function for searching the MSB (upper bit) in each word for the first 1-to-0 inverted bit position

- UART (Full-duplex double buffer) : 2 channels

Selectable parity On/Off
Asynchronous (start-stop synchronized) or clock-synchronous communications selectable
Internal timer for dedicated baud rate (U-Timer) on each channel
External clock can be used as transfer clock
Error detection function for parity, frame, and overrun errors

- 8/16-bit PPG timer : 8 channels (at 8-bit) / 4 channels (at 16-bit)
- Timing generator
- 16-bit reload timer : 3 channels (with cascade mode, without output of reload timer 0)
- 16-bit free-run timer : 3 channels
- 16-bit PWC timer : 1 channel
- Input capture : 4 channels (interface with free-run timer)
- Output compare : 6 channels (interface with free-run timer)
- Waveform generator

Various waveforms which are generated by using output compare, 16-bit PPG timer 0, and 16-bit dead timer

- SUM of products macro

RAM : instruction RAM (I-RAM) 256×16-bit
X-RAM 64×16-bit
Y-RAM $\quad 64 \times 16$-bit
Execution of 1 cycle MAC (16-bit $\times 16$-bit +40 bits)
Operation results are extracted rounded from 40 to 16 bits

- DMAC (DMA Controller) : 5 channels

Operation of transfer and activation by internal peripheral interrupts and software

- Watchdog timer
- Low-power consumption mode

Sleep/stop function

- Package : LQFP-64P
- Technology : CMOS $0.35 \mu \mathrm{~m}$
- Power supply : 1-power supply (Vcc $=4.0 \mathrm{~V}$ to 5.5 V)

MB91265 Series

PIN ASSIGNMENT

(FPT-64P-M09)

MB91265 Series

PIN DESCRIPTION

Pin no.	Pin name	Circuit type	Description
3	ANO	G	Analog input terminal of A/D converter 1. This function becomes valid when set the corresponding AICR1 register to analog input.
	P50		General purpose input/output port. This function becomes valid when analog input is set to disabled.
4	AN1	G	Analog input terminal of A/D converter 1. This function becomes valid when set the corresponding AICR1 register to analog input.
	P51		General purpose input/output port. This function becomes valid when analog input is set to disabled.
5	AN2	G	Analog input terminal of A/D converter 1. This function becomes valid when set the corresponding AICR1 register to analog input.
	P52		General purpose input/output port. This function becomes valid when analog input is set to disabled.
6	AN3	G	Analog input terminal of A/D converter 1. This function becomes valid when set the corresponding AICR1 register to analog input.
	P53		General purpose input/output port. This function becomes valid when analog input is set to disabled.
7	AN4	G	Analog input terminal of A/D converter 2. This function becomes valid when set the corresponding AICR2 register to analog input.
	P54		General purpose input/output port. This function becomes valid when analog input is set to disabled.
8	AN5	G	Analog input terminal of A/D converter 2. This function becomes valid when set the corresponding AICR2 register to analog input.
	P55		General purpose input/output port. This function becomes valid when analog input is set to disabled.
9	AN6	G	Analog input terminal of A/D converter 2. This function becomes valid when set the corresponding AICR2 register to analog input.
	P56		General purpose input/output port. This function becomes valid when analog input is set to disabled.
10	AN7	G	Analog input terminal of A/D converter 2. This function becomes valid when set the corresponding AICR2 register to analog input.
	P57		General purpose input/output port. This function becomes valid when analog input is set to disabled.
11	AN8	G	Analog input terminal of A/D converter 2. This function becomes valid when set the corresponding AICR2 register to analog input.
	P44		General purpose input/output port. This function becomes valid when analog input is set to disabled.
12	AN9	G	Analog input terminal of A/D converter 2. This function becomes valid when set the corresponding AICR2 register to analog input.
	P45		General purpose input/output port. This function becomes valid when analog input is set to disabled.

(Continued)

Pin no.	Pin name	Circuit type	Description
13	AN10	G	Analog input terminal of A/D converter 2. This function becomes valid when set the corresponding AICR2 register to analog input.
	P46		General purpose input/output port. This function becomes valid when analog input is set to disabled.
14	$\overline{\text { NMI }}$	H	NMI (Non Maskable Interrupt) input terminal.
18	INT4	E	External interrupt input terminal. Since this input is used as required while the corresponding external interrupt is enabled, the port output must remain off unless intentionally used.
	PPG1		Output terminal of PPG timer 1. This function becomes valid when output of PPG timer 1 is set to enabled.
	P00		General purpose input/output port. This function becomes valid when output of PPG timer 1 and external interrupt input are set to disabled.
19	PPG2	D	Output terminal of PPG timer 2. This function becomes valid when output of PPG timer 2 is set to enabled.
	P01		General purpose input/output port. This function becomes valid when output of PPG timer 2 is set to disabled.
20	INT5	E	External interrupt input terminal. Since this input is used as required while the corresponding external interrupt is enabled, the port output must remain off unless intentionally used.
	PPG3		Output terminal of PPG timer 3. This function becomes valid when output of PPG timer 3 is set to enabled.
	P02		General purpose input/output port. This function becomes valid when output of PPG timer 3 and external interrupt input are set to disabled.
21	TINO	D	External trigger input terminal of reload timer 0 . Since this input is used as required while the trigger input is enabled, the port output must remain off unless intentionally used.
	P03		General purpose input/output port. This function becomes valid when external clock input of reload timer 0 is set to disabled.
22	TIN1	D	External trigger input terminal of reload timer 1. Since this input is used as required while the trigger input is enabled, the port output must remain off unless intentionally used.
	P04		General purpose input/output port. This function becomes valid when external clock input of reload timer 1 is set to disabled.
23	TIN2	D	External trigger input terminal of reload timer 2. Since this input is used as required while the trigger input is enabled, the port output must remain off unless intentionally used.
	P05		General purpose input/output port. This function becomes valid when external clock input of reload timer 2 is set to disabled.

(Continued)

MB91265 Series

Pin no.	$\begin{gathered} \hline \text { Pin } \\ \text { name } \end{gathered}$	Circuit type	Description
24	TOT1	D	Output terminal of reload timer 1. This function becomes valid when output of reload timer 1 is set to enabled.
	P06		General purpose input/output port. This function becomes valid when output of reload timer 1 is set to disabled.
25	TOT2	D	Output terminal of reload timer 2. This function becomes valid when output of reload timer 2 is set to enabled.
	P07		General purpose input/output port. This function becomes valid when output of reload timer 2 is set to disabled.
26	SOT0	D	UART0 data output terminal. This function becomes valid when data output of UART0 is set to enabled.
	P10		General purpose input/output port. This function becomes valid when data output of UARTO is set to disabled.
27	SINO	D	UART0 data input terminal. Since this input is used as required while the UART0 input is enabled, the port output must remain off unless intentionally used.
	P11		General purpose input/output port. This function becomes valid when data input of UARTO is set to disabled.
28	SCK0	D	UARTO clock input/output terminal. This function becomes valid when clock output of UARTO is set to enabled.
	P12		General purpose input/output port. This function becomes valid when clock output of UARTO is set to disabled.
29	SOT1	D	UART1 data output terminal. This function becomes valid when data output of UART1 is set to enabled.
	P13		General purpose input/output port. This function becomes valid when data output of UART1 is set to disabled.
30	SIN1	D	UART1 data input terminal. Since this input is used as required while the UART1 input is enabled, the port output must remain off unless intentionally used.
	P14		General purpose input/output port. This function becomes valid when data input of UART1 is set to disabled.
31	SCK1	D	UART1 clock input/output terminal. This function becomes valid when clock output of UART1 is set to enabled.
	P15		General purpose input/output port. This function becomes valid when clock output of UART1 is set to disabled.
32	INT6	E	External interrupt input terminal. Since this input is used as required while the corresponding external interrupt is enabled, the port output must remain off unless intentionally used.
	PPG5		Output terminal of PPG timer 5. This function becomes valid when output of PPG timer 5 is set to enabled.
	P16		General purpose input/output port. This function becomes valid when output of PPG timer 5 is set to disabled.

(Continued)

Pin no.	Pin name	Circuit type	Description
33	PPG6	D	Output terminal of PPG timer 6. This function becomes valid when output of PPG timer 6 is set to enabled.
	P17		General purpose input/output port. This function becomes valid when output of PPG timer 6 is set to disabled.
34	ADTG1	D	External trigger input terminal of A/D converter 1. Since this input is used as required while it selects as A/D activation trigger cause, the port output must remain off unless intentionally used.
	IC2		Trigger input terminal of input capture 2. The port can serve as an input when set for input with the setting of the input capture trigger input. When the port is used for input capture input, this input is used as required. The port output must therefore remain off unless intentionally used.
	P20		General purpose input/output port. This function becomes valid when the setting of the external trigger input of A / D converter 1 or the setting of the input capture trigger input is set to disabled.
35	ADTG2	D	External trigger input terminal of A / D converter 2. Since this input is used as required while it selects as A/D activation trigger cause, the port output must remain off unless intentionally used.
	IC3		Trigger input terminal of input capture 3. The port can serve as an input when set for input with the setting of the input capture trigger input. When the port is used for input capture input, this input is used as required. The port output must therefore remain off unless intentionally used.
	P21		General purpose input/output port. This function becomes valid when the setting of the external trigger input of A / D converter 2 or the setting of the input capture trigger input is set to disabled.
36	PWIO	D	Pulse width counter input of PWC timer 0 This function becomes valid when pulse width counter input of PWC timer 0 is set to enabled.
	P22		General purpose input/output port. This function becomes valid when pulse width counter input of PWC timer 0 is set to disabled.
37	DTTI	D	Control input signal of multi-function timer waveform generator output RTO0 to RTO5. This function becomes valid when DTTI input is set to enabled.
	P23		General purpose input/output port. This function becomes valid when input of DTTI is set to disabled.
38	CKI	D	External clock input terminal of free-run timer. Since this input is used as required while the port is used for external clock input terminal of free-run timer, the port output must remain off unless intentionally used.
	P24		General purpose input/output port. This function becomes valid when external clock input of free-run timer is set to disabled.

(Continued)

MB91265 Series

Pin no.	$\begin{gathered} \text { Pin } \\ \text { name } \end{gathered}$	Circuit type	Description
39	IC0	D	Trigger input terminal of input capture 0. The port can serve as an input when set for input with the setting of the trigger input of input capture 0 . When the port is used for input capture input, this input is used as required. The port output must therefore remain off unless intentionally used.
	P25		General purpose input/output port. This function becomes valid when trigger input of input capture 0 is set to disabled.
40	IC1	D	Trigger input terminal of input capture 1. The port can serve as an input when set for input with the setting of the trigger input of input capture 1. When the port is used for input capture input, this input is used as required. The port output must therefore remain off unless intentionally used.
	P26		General purpose input/output port. This function becomes valid when trigger input of input capture 1 is set to disabled.
41	P27	D	General purpose input/output port.
42	PPG0	D	Output terminal of PPG timer 0. This function becomes valid when output of PPG timer 0 is set to enabled.
	PG1		General purpose input/output port. This function becomes valid when output of PPG timer 0 is set to disabled.
43	MD2	H, K	Mode terminal 2. Setting these pins determines the basic operation mode. Connect to V_{cc} or $\mathrm{V}_{\text {ss }}$. The circuit type of flash models is K.
44	MD1	H, K	Mode terminal 1. Setting these pins determines the basic operation mode. Connect to V_{cc} or V_{ss}. The circuit type of flash models is K.
45	MD0	H	Mode terminal 0. Setting these pins determines the basic operation mode. Connect to V_{cc} or V_{ss}.
46	X0	A	Clock (oscillation) output terminal.
47	X1	A	Clock (oscillation) input terminal.
49	PPG4	D	Output terminal of PPG timer 4. This function becomes valid when output of PPG timer 4 is set to enabled.
	P37		General purpose input/output port. This function becomes valid when output of PPG timer 4 is set to disabled.
50	INT7	E	External interrupt input terminal. Since this input is used as required while the corresponding external interrupt is enabled, the port output must remain off unless intentionally used.
	PPG7		Output terminal of PPG timer 7. This function becomes valid when output of PPG timer 7 is set to enabled.
	P36		General purpose input/output port. This function becomes valid when output of PPG timer 7 is set to disabled.
51	$\overline{\text { INIT }}$	1	External reset input terminal.

(Continued)

MB91265 Series

Pin no.	$\begin{gathered} \text { Pin } \\ \text { name } \end{gathered}$	Circuit type	Description
52	RTO5	J	Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled.
	P35		General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled.
53	RTO4	J	Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled.
	P34		General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled.
54	RTO3	J	Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled.
	P33		General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled.
55	RTO2	J	Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled.
	P32		General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled.
56	RTO1	J	Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled.
	P31		General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled.
57	RTO0	J	Waveform generator output terminal of multi-function timer. This terminal outputs waveform set at the waveform generator. This function becomes valid when waveform generator output of multi-function timer is set to enabled.
	P30		General purpose input/output port. This function becomes valid when output of waveform generator is set to disabled.
58	INTO	E	External interrupt input terminal. Since this input is used as required while the corresponding external interrupt is enabled, the port output must remain off unless intentionally used.
	P40		General purpose input/output port. This function becomes valid when external interrupt input is set to disabled.
59	INT1	E	External interrupt input terminal. Since this input is used as required while the corresponding external interrupt is enabled, the port output must remain off unless intentionally used.
	P41		General purpose input/output port. This function becomes valid when external interrupt input is set to disabled.
60	INT2	E	External interrupt input terminal. Since this input is used as required while the corresponding external interrupt is enabled, the port output must remain off unless intentionally used.
	P42		General purpose input/output port. This function becomes valid when external interrupt input is set to disabled.

(Continued)

MB91265 Series

(Continued)

Pin no.	Pin name	Circuit type	Description
61	INT3	E	External interrupt input terminal. Since this input is used as required while the corresponding external interrupt is enabled, the port output must remain off unless intentionally used.
	P43		

- Power supply and GND pins

Pin no.	Pin name	Description
16,48	Vss	GND pins. Apply equal potential to all of the pins.
17	Vcc	Power supply pin. Apply equal potential to all of the pins.
64	AVcc	Analog power supply pin for A/D converter.
63	AVRH2	Analog reference power supply pin for A/D converter 2.
62	AVRH1	Analog reference power supply pin for A/D converter 1.
1	AVss	Analog GND pin for A/D converter.
15	C	Condenser connection pin for internal regulator.
2	ACC	Condenser connection pin for analog.

MB91265 Series

- I/O CIRCUIT TYPE

Type	Circuit type	Remarks
A		- Oscillation feedback resistance for high speed (main clock oscillation) : approx. $1 \mathrm{M} \Omega$
D		- CMOS level output - CMOS level hysteresis input - With standby control - With Pull-up control - Pull-up resistance value = approx. $50 \mathrm{k} \Omega$ (Typ) - $\mathrm{loL}=4 \mathrm{~mA}$
E		- CMOS level output - CMOS level hysteresis input - Without standby control - With Pull-up control - Pull-up resistance value = approx. $50 \mathrm{k} \Omega$ (Typ) - loL $=4 \mathrm{~mA}$

(Continued)

MB91265 Series

Type	Circuit type	Remarks
G		- Analog/CMOS level hysteresis input/output pin - CMOS level output - CMOS level hysteresis input (attached with standby control) - Analog input (Analog input is enabled when AICR's corresponding bit is set to " 1 ".) - $\mathrm{loL}=4 \mathrm{~mA}$
H		- CMOS level hysteresis input - Without standby control
I		- CMOS level hysteresis input - With pull-up resistor - Pull-up resistance value = approx. $50 \mathrm{k} \Omega$ (Typ) - Without standby control

(Continued)
(Continued)

Type	Circuit type	Remarks
J		- CMOS level output - CMOS level hysteresis input - With standby control - $\mathrm{loL}=12 \mathrm{~mA}$
K		FLASH product only - CMOS level input - High voltage control for test of FLASH

MB91265 Series

■ HANDLING DEVICES

- Preventing Latchup

Latch-up may occur in a CMOS IC if a voltage greater than $V_{c c}$ or less than $V_{\text {ss }}$ is applied to an input or output pin or if an above-rating voltage is applied between $\mathrm{V}_{\text {cc }}$ pin and V ss pin. A latchup, if it occurs, significantly increases the power supply current and may cause thermal destruction of an element. When you use a CMOS IC, don't exceed the absolute maximum rating.

- Treatment of Unused Input Pins

Do not leave an unused input pin open, since it may cause a malfunction. Handle by, for example, using a pullup or pull-down resistor.

- About power supply pins

In products with multiple V_{cc} and V ss pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with the $V_{c c}$ and $V_{s s}$ pins of this device at the low impedance.
It is also advisable to connect a ceramic bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ between V_{cc} and V ss near this device.

- About Crystal oscillator circuit

Noise near the X 0 and X 1 pins may cause the device to malfunction. Design the printed circuit board so that $\mathrm{X} 0, \mathrm{X} 1$, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended to design the PC board artwork with the X 0 and X 1 pins surrounded by ground plane because stable operation can be expected with such a layout.

- Mode pins (MD0 to MD2)

These pins should be connected directly to V cc pin or $\mathrm{V}_{\text {ss }}$ pin.
To prevent the device erroneously switching to test mode due to noise, design the printed circuit board such that the distance between the mode pins and V cc or V ss is as short as possible and the connection impedance is low.

- Operation at start-up

Be sure to execute setting initialized reset (INIT) with INIT pin immediately after start-up.
Also, in order to provide a delay while the oscillator circuit stabilize immediately after start-up, maintain the "L" level input to the INIT pin for the required stabilization wait time of the oscillation circuit.
(For INIT via the $\overline{\text { INIT }}$ pin, the oscillation stabilization wait time setting is initialized to the minimum value.)

MB91265 Series

- Order of power turning ON/OFF

Use the following procedure for turning the power on or off.
Note that, even if the A/D converter is not used, keep the following pins connected with the level as described below.
AV cc $=\mathrm{V}_{\mathrm{cc}}$ level
$A V_{s s}=V_{s s}$ level

- When Powering ON : Vcc $\rightarrow \mathrm{AV} \mathrm{cc} \rightarrow \mathrm{AVRH}$
- When Powering OFF : AVRH $\rightarrow \mathrm{AV} \mathrm{cc} \rightarrow \mathrm{Vcc}$
- About oscillation input at power on

When turning the power on, maintain clock input until the device is released from the oscillation stabilization wait state.

MB91265 Series

- Caution for operation during PLL clock mode

Even if the oscillator comes off or the clock input stops with the PLL clock selected for this device, the device may continue to operate at the free-run frequency of the PLL's internal self-oscillating oscillator circuit.
Performance of this operation, however, cannot be guaranteed.

- External clock

When external clock is selected, the opposite phase clock to X 0 pin must be supplied to X 1 pin simultaneously.
If the STOP mode (oscillation stop mode) is used simultaneously, the X1 pin is stopped with the "H" output. So, when STOP mode is specified, approximately $1 \mathrm{k} \Omega$ of resistance should be added externally to avoid the collision of output.
The following figure shows using an external clock.

Using an external clock

- C pin

A bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ should be connected the C pin for built-in regulator.

- ACC pin

A capacitor of approximately $0.1 \mu \mathrm{~F}$ should be inserted between the ACC pin and the AV ss pin as this product has built-in A/D converter.

MB91265 Series

- Clock control block

Take the oscillation stabilization wait time during "L" level input to the INIT pin.

- Switch shared port function

To switch between the use as a port and the use as a dedicated pin, use the port function register (PFR).

- Low-power Consumption Mode
(1) To enter the standby mode, use the synchronous standby mode (set with the SYNCS bit as bit 8 in the TBCR: or time-base counter control register) and be sure to use the following sequence
(LDI \#value_of_standby, R0) : value_of standby is write data to STCR.
(LDI \#_STCR, R12) : _STCR is address (481H) of STCR.
STB R0, @R12 : Writing to standby control register (STCR)
LDUB @R12, R0 : STCR read for synchronous standby
LDUB @R12, R0 : Dummy re-read of STCR
NOP : NOP $\times 5$ for arrangement of timing
NOP
NOP
NOP
NOP
In addition, please set I flag, ILM, and ICR to diverge to the interruption handler that is the return factor after the standby returns.
(2) Please do not do the following when the monitor debugger is used.
- Break point setting for above instruction lines
- Step execution for above instruction lines
- Notes on the PS register

As the PS register is processed by some instructions in advance, exception handling below may cause the interrupt handling routine to break when the debugger is used or the display contents of flags in the PS register to be updated.
As the microcontroller is designed to carry out reprocessing correctly upon returning from such an EIT event, it performs operations before and after the EIT as specified in either case.

1. The following operations are performed when the instruction followed by a DIVOU/DIVOS instruction results in : (a) acceptance of a user interrupt or NMI, (b) step execution, or (c) a break at a data event or emulator menu.
(1) The D0 and D1 flags are updated in advance.
(2) An EIT handling routine (user interrupt, NMI, or emulator) is executed.
(3) Upon returning from the EIT, the DIVOU/DIV0S instruction is executed and the D0 and D1 flags are updated to the same values as in (1).
2. The following operations are performed when the ORCCR/STILM/MOV Ri and PS instructions are executed to enable interruptions when a user interrupt or NMI trigger even has occurred.
(1) The PS register is updated in advance.
(2) An EIT handling routine (user interrupt, NMI) is executed.
(3) Upon returning from the EIT, the above instructions are executed and the PS register is updated to the same value as in (1).

MB91265 Series

- Watchdog timer

The watchdog timer built in this model monitors a program that it defers a reset within a certain period of time. The watchdog timer resets the CPU if the program runs out of controls, preventing the reset defer function from being executed. Once the function of the watchdog timer is enabled, therefore, the watchdog timer keeps on operating programs until it resets the CPU.
As an exception, the watchdog timer defers a reset timing automatically under the condition in which the CPU stops program execution.

MB91265 Series

■ NOTE ON DEBUGGER

- Step execution of RETI command

If an interrupt occurs frequently during step execution, the corresponding interrupt handling routine is executed repeatedly after step execution.
This will prevent the main routine and low-interrupt-level programs from being executed.
Do not execute step of RETI instruction for escape.
Disable the corresponding interrupt and execute debugger when the corresponding interrupt handling routine no longer needs debugging.

- Operand break

Do not apply a data event break to access to the area containing the address of a system stack pointer.

- Execution in an unused area of FLASH memory

Accidentally executing an instruction in an unused area of FLASH memory (with data placed at 0xFFFF) prevents breaks from being accepted.

To prevent this, the code event address mask function of the debugger should be used to cause a break when accessing an instruction in an unused area.

- Power-on debugging

All of the following three conditions must be satisfied when the power supply is turned off by power-on debugging.
(1) The time for the user power to fall from $0.9 \mathrm{~V} c \mathrm{cc}$ to 0.5 Vcc is $25 \mu \mathrm{~s}$ or longer.

Note : In a dual-power system, Vcc indicates the external I/O power supply voltage.
(2) CPU operating frequency must be higher than 1 MHz .
(3) During execution of user program

- Interrupt handler for NMI request (tool)

Add the following program to the interrupt handler to prevent the device from malfunctioning in case the factor flag to be set only in response to a break request from the ICE is set, for example, by an adverse effect of noise to the DSU pin while the ICE is not connected. Enable to use the ICE while adding this program.
Additional location
Next interrupt handler

Interrupt source
Interrupt number
Offset
Address TBR is default
: NMI request (tool)
: \#13 (decimal), OD (hexadecimal)
: 3С8
: 000FFFC8H

Additional program
STM (R0, R1)
LDI \#ВООн, RO; : BOOH is the address of DSU break factor register.
LDI \#0, R1
STB R1, @R0 : Clear the break factor register.
LDM (R0, R1)
RETI

MB91265 Series

BLOCK DIAGRAM

MB91265 Series

MEMORY SPACE

1. Memory space

The FR family has 4 Gbytes of logical address space (2^{32} addresses) available to the CPU by linear access.

- Direct Addressing Areas

The following address space areas are used as I/O areas.
These areas are called direct addressing areas, in which the address of an operand can be specified directly during an instruction.
The size of directly addressable areas depends on the data size to be being accessed as follows.

$$
\begin{array}{ll}
\rightarrow \text { byte data access } & : 000 \mathrm{H}-0 \mathrm{FFH} \\
\rightarrow \text { half word data access } & : 000 \mathrm{H}-1 \mathrm{FFH} \\
\rightarrow \text { word data access } & : 00 \mathrm{H}-3 \mathrm{FFH}
\end{array}
$$

2. Memory Map

MB91265 Series

MODE SETTINGS

The FR family uses mode pins (MD2 to MD0) and a mode data to set the operation mode.

1. Mode Pins

The MD2, MD1, and MD0 pins specify how the mode vector fetch and reset vector fetch is performed. Setting is prohibited other than that shown in the following table.

Mode Pins			Mode name	Reset vector access area	Remarks
MD2	MD1	MD0		Internal	
0	0	0	Internal ROM mode vector	External	Prohibit
0	0	1	External ROM mode vector		

2. Mode data

Data written to the internal mode register (MODR) by a mode vector fetch is called mode data.
After an operation mode has been set in the mode register, the device operates in the operation mode.
The mode data is set by all reset sources. User programs cannot set data to the mode register.
<Details of mode data description>

[bit31 to 24] Reserved bit
Be sure to set this bit to "000001118".
Operation is not guaranteed when any value other than " 00000111 B " is set.

3. Note

Mode data set in the mode vector must be placed as byte data at 0x000FFFF8.
Use the highest byte from bit 31 to bit 24 for placement as the FR family uses the big endian method for byte endian.
$\begin{array}{llllll}31 & 24 & 23 & 16 & 15 & 87\end{array}$

Incorrect 0x000FFFF8 \begin{tabular}{|l|l|l|l|}
\hline \& XXXXXXXX \& XXXXXXXX \& XXXXXXXX

 Mode Data

M

\cline { 2 - 4 }
\end{tabular}

Correct	0x000FFFF8	Mode Data	XXXXXXXX	XXXXXXXX	XXXXXXXX
	0x000FFFFC	Reset Vector			

MB91265 Series

I/O MAP

This shows the location of the various peripheral resource registers in the memory space.
[How to read the table]

Address	Register				Block
	+ 0	+1	+2	+3	
000000н	PDR0 [R/W]B $\triangle X X X X X X X X$	PDR1 [R/W]B XXXXXXXX	$\begin{aligned} & \hline \text { PDR2 [R/W]B } \\ & \text { XXXXXXX } \end{aligned}$	PDR3 [R/W]B XXXXXXXX	Port data register
	\qquad	Read/write attribute, Access unit (B : byte, H : half word, W : word) \qquad Initial value after a reset \qquad Register name (First-column register at address 4n; second-column register at address $4 \mathrm{n}+2$)			
		Location of left-most register (When using word access, the register in column 1 is in the MSB side of the data.)			

Note : Initial values of register bits are represented as follows :
"1" : Initial Value: "1"
"0" : Initial Value:"0"
" X " : Initial Value: "undefined"
"- " : No physical register at this location

MB91265 Series

Address	Register				Block
	+ 0	+1	+ 2	+ 3	
000000 ${ }_{\text {H }}$	$\begin{gathered} \text { PDR0 [R/W] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { PDR1 [R/W] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PDR2 [R/W] B, H, W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \hline \text { PDR3 [R/W] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	Port data register
000004н	$\begin{gathered} \text { PDR4 [R/W] B, H, W } \\ -X X X X X X X \end{gathered}$	$\begin{aligned} & \text { PDR5 [R/W] B, H, W } \\ & \text { XXXXXXXX } \end{aligned}$	-	-	
000008н	-	-	-	-	
00000Сн	-	-	-	-	
000010 ${ }^{\text {H }}$	$\begin{gathered} \text { PDRG [R/W] B, H, W } \\ \text {------X- } \end{gathered}$	-	-	-	
$\begin{aligned} & 000014 \mathrm{H} \\ & \text { to } \\ & 00003 \mathrm{C}_{\mathrm{H}} \end{aligned}$	-				Reserved
000040 ${ }^{\text {H }}$	$\begin{gathered} \text { EIRR0 [R/W] B, H, W } \\ 00000000 \end{gathered}$	ENIR0 [R/W] B, H, W 00000000	ELVR0 [R/W] B, H, W 0000000000000000		External interrupt (INT0 to INT7)
000044H	$\begin{gathered} \text { DICR [R/W] B, H, W } \\ \text {-------0 } \end{gathered}$	$\begin{gathered} \hline \text { HRCL [R/W, R] B, H, W } \\ 0--11111 \end{gathered}$	-	-	Delay interrupt/ Hold request
000048н	$\begin{gathered} \text { TMRLRO [W] H, W } \\ \text { XXXXXXXXXXXXX } \end{gathered}$		$\begin{gathered} \text { TMRO [R] H, W } \\ \text { XXXXXXX XXXXXXX } \end{gathered}$		Reload timer 0
00004CH	-		TMCSRO [R/W, R] B, H, W ---00000 00000000		
000050 ${ }_{\text {H }}$	$\begin{gathered} \text { TMRLR1 [W] H, W } \\ \text { XXXXXXXX XXXXXXX } \end{gathered}$		TMR1 [R] H, W XXXXXXXX XXXXXXXX		Reload timer 1
000054H	-		$\begin{aligned} & \text { TMCSR1 [R/W, R] B, H, W } \\ & ---0000000000000 \end{aligned}$		
000058 ${ }_{\text {H }}$	TMRLR2 [W] H, W XXXXXXXX XXXXXXXX		TMR2 [R] H, W XXXXXXXX XXXXXXXX		Reload timer 2
00005CH	-		TMCSR2 [R/W, R] B, H, W---0000000000000		
000060н	$\begin{gathered} \text { SSR0 [R/W, R] B, H, W } \\ 00001000 \end{gathered}$	SIDR0 [R]/SODRO[W] B, H, W XXXXXXXX	$\begin{aligned} & \text { SCRO [R/W] B, H, W } \\ & 00000100 \end{aligned}$	SMR0 [R/W, W] B, H, W 00--0-0-	UART0
000064 ${ }_{\text {H }}$	UTIMO [R] H / UTIMRO [W] H 0000000000000000		DRCLO [W] B	$\begin{gathered} \hline \text { UTIMCO [R/W] B } \\ 0--00001 \end{gathered}$	U-timer 0
000068 ${ }^{\text {H }}$	SSR1 [R/W, R] B, H, W 00001000	SIDR1 [R]/SODR1[W] B, H, W XXXXXXXX	$\begin{gathered} \text { SCR1 [R/W] B, H, W } \\ 00000100 \end{gathered}$	SMR1 [R/W] B, H, W 00--0-0-	UART1
00006CH	UTIM1 [R] H / 00000000	UTIMR1 [W] H 00000000	DRCL1 [W] B	UTIMC1 [R/W] B 0--00001	U-timer 1
000070н	-	-	-	-	
000074 ${ }_{\text {H }}$	-	-	-	-	
000078н	-	-	-	-	
00007CH	-	-	-	-	

(Continued)

MB91265 Series

Address	Register				Block
	+ 0	+1	+ 2	+ 3	
000080н	$\begin{gathered} \text { ADCH1 [R/W] B, H, W } \\ \text { XXXXOXX0 } \end{gathered}$	$\begin{gathered} \hline \text { ADMD1 [R/W] B, H, W } \\ 00001111 \end{gathered}$	$\begin{gathered} \text { ADCD11 [R] B, H, W } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { ADCD10 [R] B, H, W } \\ \text { XXXXXXX } \end{gathered}$	A/D converter 1/ AICR1
000084H	$\begin{gathered} \text { ADCS1 [R/W, W] B, H, W } \\ 00000 \times 00 \end{gathered}$		$\begin{gathered} \text { AICR1 [R/W] B, H, W } \\ ----0000 \end{gathered}$	-	
000088н	$\begin{gathered} \text { ADCH2 [R/W] B, H, W } \\ \text { XXXXOXX0 } \end{gathered}$	$\begin{gathered} \hline \text { ADMD2 [R/W] B, H, W } \\ 00001111 \end{gathered}$	$\begin{gathered} \text { ADCD21 [R] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { ADCD20 [R] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	A/D converter 2/ AICR2
00008CH	$\begin{gathered} \text { ADCS2 [R/W, W] B, H, W } \\ 00000 \times 00 \end{gathered}$	-	$\begin{gathered} \text { AICR2 [R/W] B, H, W } \\ -0000000 \end{gathered}$	-	
000090н	OCCPBHO, OCCPBLO[W]/ OCCPHO, OCCPLO[R] H, W 0000000000000000		OCCPBH1, OCCPBL1[W]/ OCCPH1, OCCPL1 [R] H, W 0000000000000000		16-bit OCU
000094H	OCCPBH2, OCCPBL2[W] / OCCPH2, OCCPL2 [R] H, W 0000000000000000		ОССРВН3, ОССРBL3[W] / OCCPH3, OCCPL3 [R] H, W 0000000000000000		
000098н	$\begin{gathered} \hline \text { OCCPBH4, OCCPBL4[W]/ } \\ \text { OCCPH4, OCCPL4 [R] H,W } \\ 0000000000000000 \end{gathered}$		$\begin{aligned} & \text { OCCPBH5, OCCPBL5[W]/ } \\ & \text { OCCPH5, OCCPL5 [R] H,W } \\ & 0000000000000000 \end{aligned}$		
00009CH	$\begin{gathered} \text { OCSH1 [R/W] B, H, W } \\ \text { X1100000 } \end{gathered}$	$\begin{gathered} \text { OCSLO [R/W] B, H, W } \\ 00001100 \end{gathered}$	$\begin{gathered} \text { OCSH3 [R/W] B, H, W } \\ \text { X1100000 } \end{gathered}$	$\begin{gathered} \text { OCSL2 [R/W] B, H, W } \\ 00001100 \end{gathered}$	
0000AOH	$\begin{gathered} \text { OCSH5 [R/W] B, H, W } \\ \text { X1100000 } \end{gathered}$	$\begin{gathered} \text { OCSL4 [R/W] B, H, W } \\ 00001100 \end{gathered}$	$\begin{gathered} \text { OCMOD [R/W] B, H, W } \\ \text { XX000000 } \end{gathered}$	-	
0000A4н	CPCLRBH0, CPCLRBLO[W]/ CPCLRHO, CPCLRLO[R] H, W 111111111111111		TCDTHO, TCDTLO $[R / W] ~ H, W$0000000000000000		16-bit free-run timer 0
0000A8H	$\begin{gathered} \hline \text { TCCSH0 [R/W] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { TCCSL0 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ 01000000 \end{gathered}$	-	$\begin{gathered} \text { ADTRGC [R/W] B, H, W } \\ \text { XXXX0000 } \end{gathered}$	
0000ACH	IPCPHO, IPCPLO [R] H, W XXXXXXXX XXXXXXXX		IPCPH1, IPCPL1 [R] H, W XXXXXXXX XXXXXXXX		16-bit ICU
0000B0н	IPCPH2, IPCPL2 [R] H, W XXXXXXXX XXXXXXXX		IPCPH3, IPCPL3 [R] H, W XXXXXXXX XXXXXXXX		
0000B4н	$\begin{gathered} \text { PICSH01 [W] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PICSL01 [R/W] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { ICSH23 [R] B, H, W } \\ \text { XXXXXX00 } \end{gathered}$	$\begin{gathered} \text { ICSL23 [R/W]B, H, W } \\ 00000000 \end{gathered}$	
0000B8H	-	-	-	-	
0000BCH	TMRRH0, TMRRLO [R/W] H, W XXXXXXXX XXXXXXXX		TMRRH1, TMRRL1 [R/W] H, W XXXXXXXX XXXXXXXX		Waveform generator
0000СС ${ }^{\text {H }}$	TMRRH2, TMRRL2 [R/W] H, W XXXXXXXX XXXXXXXX		-	-	
0000С4н	$\begin{gathered} \text { DTCRO [R/W] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DTCR1 [R/W] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { DTCR2 [R/W] B, H, W } \\ 00000000 \end{gathered}$	-	
0000C8 ${ }^{\text {H }}$	-	$\begin{gathered} \hline \text { SIGCR1 [R/W] B, H, W } \\ 00000000 \end{gathered}$	-	$\begin{gathered} \text { SIGCR2 [R/W] B, H, W } \\ \text { XXXXXXX1 } \end{gathered}$	

(Continued)

MB91265 Series

Address	Register				Block
	+ 0	+1	+2	+ 3	
0000CCH	-		$\begin{aligned} & \text { ADCOMP1 [R/W] H, W } \\ & 0000000000000000 \end{aligned}$		
0000D0 ${ }^{\text {H }}$	ADCOMP2 [R/W] H, W0000000000000000		$\begin{gathered} \text { ADCOMPC2 [R/W] } \\ \text { B, H, W } \\ \text { XX000000 } \end{gathered}$	$\begin{gathered} \text { ADCOMPC1 [R/W] } \\ \text { B, H, W } \\ \text { XXXXX000 } \end{gathered}$	A/D COMP
0000D4н	-	-	-	-	Reserved
0000D8н	-	-	-	-	
0000DCH	-	-	-	-	
0000EOH	PWCSR0 [R/W, R] B, H, W 0000000000000000		$\begin{gathered} \text { PWCRO [R] H, W } \\ 0000000000000000 \end{gathered}$		$\begin{aligned} & \text { 16-bit PWC } \\ & \text { timer } \end{aligned}$
0000E4H	-	-	-	-	
0000E8H	-	$\begin{gathered} \text { PDIVR0 [R/W] B, H, W } \\ \text { XXXXX000 } \end{gathered}$	-	-	
0000ECн	-	-	-	-	Reserved
0000F0н	-	-	-	-	
$\begin{aligned} & \text { 000F4н } \\ & \text { to } \\ & 000 \mathrm{FC} \mathrm{CH}_{\mathrm{H}} \end{aligned}$	-	-	-	-	
000100H	$\begin{aligned} & \text { PRLHO [R/W] B, H, W } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{aligned} & \text { PRLLO }[\mathrm{R} / \mathrm{W}] B, H, W \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{aligned} & \text { PRLH1 [R/W] B, H, W } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{aligned} & \text { PRLL1 }[R / W] B, H, W \\ & \text { XXXXXXXX } \end{aligned}$	8/16-bit PPG timer 0 to 7
000104H	$\begin{aligned} & \text { PRLH2 [R/W] B, H, W } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{aligned} & \text { PRLL2 } 2 \text { R/W] B, H, W } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{aligned} & \text { PRLH3 [R/W] B, H, W } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{aligned} & \text { PRLL3 [R/W] B, H, W } \\ & \text { XXXXXXXX } \end{aligned}$	
000108н	$\begin{gathered} \hline \text { PPGC0 [R/W] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PPGC1 [R/W] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PPGC2 [R/W] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PPGC3 [R/W] B, H, W } \\ 00000000 \end{gathered}$	
00010CH	$\begin{aligned} & \text { PRLH4 [R/W] B, H, W } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{aligned} & \text { PRLL4 [R/W] B, H, W } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{gathered} \text { PRLH5 [R/W] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{aligned} & \text { PRLL5 [R/W] B, H, W } \\ & \text { XXXXXXXX } \end{aligned}$	
000110H	$\begin{aligned} & \text { PRLH6 [R/W] B, H, W } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{gathered} \text { PRLL6 [R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { PRLH7 [R/W] B, H, W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{aligned} & \text { PRLL7 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ & \text { XXXXXXXX } \end{aligned}$	
000114H	$\begin{gathered} \hline \text { PPGC4 [R/W] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PPGC5 [R/W] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PPGC6 [R/W] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { PPGC7 [R/W] B, H, W } \\ 00000000 \end{gathered}$	
$\begin{aligned} & \text { 000118н } \\ & \text { to } \\ & 00012 \mathrm{C}_{\mathrm{H}} \end{aligned}$	-	-	-	-	Reserved
000130H	TRG [R/W] B, H, W------0000000		-	$\begin{gathered} \text { GATEC [R/W] B, H, W } \\ \text { XXXXXX00 } \end{gathered}$	8/16-bit PPG timer 0 to 7
000134H	REVC [------- 00000000		-	-	
000138н	-	-	-	-	Reserved
00013Cн	-	-	-	-	
000140н	-	-	-	-	

(Continued)

(Continued)

MB91265 Series

Address	Register				Block
	+ 0	+1	+2	+ 3	
$\begin{aligned} & \text { 000228н } \\ & \text { to } \\ & 00023 \text { C }_{H} \end{aligned}$	-				Reserved
000240 ${ }_{\text {H }}$	DMACR [R/W] B$0 \times X 00000$ XXXXXXXX XXXXXXXX XXXXXXXX				DMAC
$\begin{aligned} & \hline 000244 \mathrm{H} \\ & \text { to } \\ & 00024 \mathrm{C}_{\mathrm{H}} \end{aligned}$	-				Reserved
000250н	-	-	-	-	
$\begin{aligned} & \text { 000254н } \\ & \text { to } \\ & 000398 \text { н } \end{aligned}$	-				
00039Сн	-	-	-	-	16 bit MAC
0003A0H	$\begin{gathered} \hline \text { DSP-PC [R/W] } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { DSP-CSR [R/W, R, W] } \\ 00000000 \end{gathered}$	$\begin{array}{r} \text { DSP-1 } \\ \text { XXXXXXX } \end{array}$	$\begin{aligned} & {[R / W]} \\ & X X X X X X X X \end{aligned}$	
0003A4H	$\begin{gathered} \text { DSP-OTO [R] } \\ \mathrm{XXXXXXXXXXXXX} \end{gathered}$		$\begin{gathered} \text { DSP-OT1 [R] } \\ \mathrm{XXXXXXXXXXXXX} \end{gathered}$		
0003A8H	$\begin{gathered} \text { DSP-OT2 [R] } \\ \mathrm{XXXXXXXXXXXX} \end{gathered}$		$\begin{gathered} \text { DSP-OT3 [R] } \\ \mathrm{XXXXXXXXXXXXX} \end{gathered}$		
0003ACH	-	-	-	-	
0003B0н	$\begin{gathered} \text { DSP-OT4 [R] } \\ \mathrm{XXXXXXXXXXXXX} \end{gathered}$		$\begin{gathered} \text { DSP-OT5 [R] } \\ \mathrm{XXXXXXXXXXXXX} \end{gathered}$		
0003B4H	$\begin{gathered} \text { DSP-OT6[R] } \\ \text { XXXXXXX XXXXXXX } \end{gathered}$		$\begin{gathered} \text { DSP-OT7 [R] } \\ \mathrm{XXXXXXXXXXXXX} \end{gathered}$		
0003B8н	-	-	-	-	
$\begin{aligned} & \text { 0003ВСн } \\ & \text { to } \\ & 0003 \text { ЕСн } \end{aligned}$	-				Reserved
0003F0н					Bit search module
0003F4 ${ }_{\text {H }}$	BSD1 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0003F8н	BSDC [W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0003FCH					
000400 ${ }_{\text {H }}$	$\begin{gathered} \text { DDRO [R/W] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DDR1 [R/W] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DDR2 [R/W] B, H, W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DDR3 [R/W] B, H, W } \\ 00000000 \end{gathered}$	
000404H	DDR4 [R/W] B, H, W -0000000	$\begin{gathered} \text { DDR5 [R/W] B, H, W } \\ 00000000 \end{gathered}$	-	-	Data
000408H	-	-	-	-	direction register
00040С ${ }^{\text {¢ }}$	-	-	-	-	
000410н	$\begin{gathered} \text { DDRG } \underset{\text { [-----0- }}{\text { [R/W] B, }} \text { H, W } \\ \hline \end{gathered}$	-	-	-	

(Continued)

MB91265 Series

(Continued)

MB91265 Series

(Continued)
(Continued)

Address	Register				Block
	+ 0	+1	+2	+3	
$\begin{gathered} \hline 001028 \mathrm{H} \\ \text { to } \\ 006 \mathrm{FFC}_{\mathrm{H}} \end{gathered}$	-				Reserved
007000н	$\begin{gathered} \text { FLCR [R/W] B } \\ 01101000 \end{gathered}$	-	-	-	FLASH
007004 ${ }^{\text {H }}$	FLWC $[R / W] B$ 00000011	-	-	-	
007008н	-	-	-	-	
$00700 \mathrm{CH}_{\mathrm{H}}$	-	-	-	-	
007010н	-	-	-	-	
$\begin{array}{\|c\|} \hline 007014_{H} \\ \text { to } \\ 00 B F F C_{H} \end{array}$	-				Reserved
$\begin{gathered} \hline 00 \mathrm{COOOH} \\ \text { to } \\ 00 \mathrm{CO} 07 \mathrm{C}_{\mathrm{H}} \end{gathered}$	X-RAM (coefficient RAM) [R/W] 64×16 bit				16 bit MAC
$\begin{gathered} 00 \mathrm{CO8OH} \\ \text { to } \\ \text { to } \\ 00 \mathrm{FOFC} \end{gathered}$	Y-RAM (variable RAM) [R/W] 64×16 bit				
$\begin{gathered} \text { O0C100н } \\ \text { to } \\ 00 \mathrm{C} 2 \mathrm{FC} \end{gathered}$	I-RAM (instruction RAM) [R/W] 256×16 bit				
$\begin{array}{\|c\|} \hline 00 \mathrm{C} 300_{H} \\ \text { to } \\ 00 \text { FFFC } \end{array}$	-				Reserved

*: The lower 16 bits (DTC[15: 0]) of DMACA0 to DMACA4 cannot be accessed in bytes.
Notes •The initial value of FLWC (7004 H) is " 00010011 B " on EVA tool. Writing " 00000011 B " on the evaluation model has no effect on its operation.

- Do not execute Read Modify Write instructions on registers having a write-only bit.
- Data is undefined in reserved or (-) area.

MB91265 Series

INTERRUPT VECTOR

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address
	Decimal	Hexadecimal			
Reset	0	00	-	3 FCH	000FFFFFC
Mode vector	1	01	-	3F8H	000FFFF8н
System reserved	2	02	-	3F4H	000FFFF4н
System reserved	3	03	-	3 FOH	000FFFFOH
System reserved	4	04	-	3ECH	000FFFECH
System reserved	5	05	-	3E8H	000FFFE8н
System reserved	6	06	-	3E4 ${ }^{\text {¢ }}$	000FFFE4н
Coprocessor absent trap	7	07	-	3E0H	000FFFEOн
Coprocessor error trap	8	08	-	3DCH	000FFFDC
INTE instruction	9	09	-	3D8н	000FFFD8 ${ }_{\text {н }}$
Instruction break exception	10	0A	-	3D4н	000FFFD4н
Operand break trap	11	0B	-	3D0н	000FFFDDO
Step trace trap	12	OC	-	3 CCH	000FFFCCH
NMI request (tool)	13	OD	-	3С8 ${ }^{\text {+ }}$	000FFFC8
Undefined instruction exception	14	OE	-	3C4н	000FFFC4 ${ }_{\text {¢ }}$
NMI request	15	OF	15 (FH) fixed	3 COH	000FFFCOH
External interrupt 0	16	10	ICR00	3BCH	000FFFBCH
External interrupt 1	17	11	ICR01	3B8H	000FFFB8н
External interrupt 2	18	12	ICR02	3B4н	000FFFB44
External interrupt 3	19	13	ICR03	3B0н	000FFFB0н
External interrupt 4	20	14	ICR04	3АС ${ }^{\text {¢ }}$	000FFFACH
External interrupt 5	21	15	ICR05	3А8н	000FFFA8н
External interrupt 6	22	16	ICR06	3А4	000FFFA4н
External interrupt 7	23	17	ICR07	3 AOH	000FFFA0н
Reload timer 0	24	18	ICR08	39 CH	000FFF9C ${ }_{\text {н }}$
Reload timer 1	25	19	ICR09	398н	000FFF98н
Reload timer 2	26	1A	ICR10	394	000FFF94н
UART0(Reception completed)	27	1B	ICR11	390н	000FFF90н
UART0 (RX completed)	28	1 C	ICR12	38 CH	$000 \mathrm{FFF} 8 \mathrm{C}_{\text {н }}$
DTTI	29	1D	ICR13	388н	000FFF88н
DMAC0 (end, error)	30	1E	ICR14	384 ${ }^{\text {H }}$	000FFF84н
DMAC1 (end, error)	31	1F	ICR15	380н	000FFF80н
DMAC2/DMAC3/DMAC4 (end, error)	32	20	ICR16	37 CH	$000 \mathrm{FFF} 7 \mathrm{CH}_{\text {}}$

(Continued)

MB91265 Series

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address
	Decimal	Hexadecimal			
UART1(Reception completed)	33	21	ICR17	378н	000FFF78 ${ }_{\text {¢ }}$
UART1 (RX completed)	34	22	ICR18	374 н	000FFF74 ${ }_{\text {н }}$
System reserved	35	23	ICR19	370н	000FFF70н
System reserved	36	24	ICR20	$36 \mathrm{CH}_{\mathrm{H}}$	000FFF6CH
16 bit MAC	37	25	ICR21	368н	000FFF68
PPG0/PPG1	38	26	ICR22	364	000FFF664
PPG2/PPG3	39	27	ICR23	360н	000FFFF60н
PPG4/PPG5/PPG6/PPG7	40	28	ICR24	35CH	000FFFF5Cн
System reserved	41	29	ICR25	358н	000FFF58
Waveform0/1/2 (underflow)	42	2 A	ICR26	354н	000FFF544
Free-run timer 1 (compare clear)	43	2B	ICR27	350н	000FFF50н
Free-run timer 1 (zero detection)	44	2C	ICR28	34 CH	000FFF74 ${ }_{\text {н }}$
Free-run timer 2 (compare clear)	45	2D	ICR29	348н	000FFF48н
Free-run timer 2 (zero detection)	46	2E	ICR30	344н	000FFFF44н
Timebase timer overflow	47	2 F	ICR31	340н	000FFFF40н
Free-run timer 0 (compare clear)	48	30	ICR32	$33 \mathrm{CH}_{\mathrm{H}}$	000FFF3Cн
Free-run timer 0 (zero detection)	49	31	ICR33	338н	000FFF38н
System reserved	50	32	ICR34	334	000FFF34н
A/D1	51	33	ICR35	330 ${ }_{\text {H }}$	000FFF30н
A/D2	52	34	ICR36	32 CH	000FFF2Cн
PWC0 (measurement completed)	53	35	ICR37	328н	000FFF28н
System reserved	54	36	ICR38	324 ${ }_{\text {н }}$	000FFF24н
PWC0 (overflow)	55	37	ICR39	320 ${ }^{\text {H}}$	000FFF20н
System reserved	56	38	ICR40	31 CH	000FFF1CH
ICU0 (capture)	57	39	ICR41	318н	000FFFF18н
ICU1 (capture)	58	3A	ICR42	314 ${ }_{\text {H }}$	000FFFF14н
ICU2/3 (capture)	59	3B	ICR43	310н	000FFFF10н
OCU0/1 (match)	60	3C	ICR44	30 CH	000FFFOCH
OCU2/3 (match)	61	3D	ICR45	308н	000FFF08н
OCU4/5 (match)	62	3E	ICR46	304 ${ }_{\text {¢ }}$	000FFFF04н
Delay interrupt source bit	63	3F	ICR47	300н	000FFFF00н
System reserved (Used by REALOS)	64	40	-	2 FCH	000FFEFCH
System reserved (Used by REALOS)	65	41	-	2F8H	000FFEF8н

(Continued)

MB91265 Series

(Continued)

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address
	Decimal	Hexadecimal			
System reserved	66	42	-	2F4н	000FFEF4н
System reserved	67	43	-	2 FOH	000FFEFOH
System reserved	68	44	-	2 ECH	000FFEEC ${ }_{\text {н }}$
System reserved	69	45	-	2E8H	000FFEE8н
System reserved	70	46	-	2E4H	000FFEE4н
System reserved	71	47	-	2Е0н	000FFEEOH
System reserved	72	48	-	2DCH	000FFEDCH
System reserved	73	49	-	2D8н	000FFED8н
System reserved	74	4A	-	2D4н	000FFED4
System reserved	75	4B	-	2D0н	000FFED0н
System reserved	76	4C	-	2 CCH	000FFECCH
System reserved	77	4D	-	2С8	000FFEC8H
System reserved	78	4E	-	2C4H	000FFEC4 ${ }^{\text {¢ }}$
System reserved	79	4F	-	2 COH	000FFECOH
Used by INT instruction	$\begin{gathered} 80 \\ \text { to } \\ 255 \end{gathered}$	$\begin{aligned} & 50 \\ & \text { to } \\ & \text { FF } \end{aligned}$	-	$\begin{gathered} 2 \mathrm{BC}_{\mathrm{H}} \\ \text { to } \\ 000_{\mathrm{H}} \end{gathered}$	$\begin{gathered} \hline \text { O00FFEBC } \\ \text { to } \\ 000 \mathrm{FFC} \mathrm{OO}_{\mathrm{H}} \end{gathered}$

MB91265 Series

$■$ PIN STATUS IN EACH CPU STATE

Terms used as the status of pins mean as follows.

- Input enabled Indicates that the input function can be used.
- Input 0 fixed Indicates that the input level has been internally fixed to be 0 to prevent leakage when the input is released.
- Output Hi-Z
- Output is maintained.

Indicates the output in the output state existing immediately before this mode is established.
If the device enters this mode with an internal output peripheral operating or while serving as an output port, the output is performed by the internal peripheral or the port output is maintained, respectively.

- State existing immediately before is maintained.

When the device serves for output or input immediately before entering this mode, the device maintains the output or is ready for the input, respectively.

- List of pin status (single chip mode)

Pin no.	Pin name	Function	At initializing		At sleep mode	At Stop mode	
			$\overline{\text { INIT }}$ = ${ }^{\text {* }}$	$\overline{\text { INIT }}=\mathbf{H}^{\star 2}$		$\mathrm{Hi}-\mathrm{Z}=0$	$\mathrm{Hi}-\mathrm{Z}=1$
3 to 10	P50 to P57	AN0 to AN7	Output Hi-Z/ Input disabled	Output Hi-Z/ Input enabled	Retention of the immediately prior state	Retention of the immediately prior state	Output Hi-Z/ Input 0 fixed
11 to 13	P44 to P46	AN8 to AN10					
14	$\overline{\mathrm{NMI}}$	NMIX	Input enabled				
18	P00	PPG1/INT4	Output Hi-Z/ Input disabled	Output Hi-Z/ Input enabled			
19	P01	PPG2			Retention of the immediately prior state	Retention of the immediately prior state	Output Hi-Z/ Input 0 fixed
20	P02	PPG3/INT5			Input enabled	Input enabled	Input enabled
21 to 23	P03 to P05	TIN0 to TIN2			Retention of the immediately prior state	Retention of the immediately prior state	Output Hi-Z/ Input 0 fixed
24, 25	P06, P07	TOT1, TOT2					
26	P10	SOT0					
27	P11	SIN0					
28	P12	SCK0					
29	P13	SOT1					
30	P14	SIN1					
31	P15	SCK1					
32	P16	PPG5/INT6			Input enabled	Input enabled	Input enabled

(Continued)

MB91265 Series

(Continued)

Pin no.	Pin name	Function	At initializing		At sleep mode	At Stop mode	
			$\overline{\text { INIT }}=\mathrm{L}^{* 1}$	$\overline{\text { INIT }}=\mathbf{H}^{\star 2}$		$\mathrm{Hi}-\mathrm{Z}=0$	$\mathrm{Hi}-\mathrm{Z}=1$
33	P17	PPG6	Output Hi-Z/ Input disabled	Output Hi-Z/ Input enabled	Retention of the immediately prior state	Retention of the immediately prior state	Output Hi-Z/ Input 0 fixed
34	P20	ADTG1/IC2					
35	P21	ADTG2/IC3					
36	P22	PWIO					
37	P23	DTTI					
38	P24	CKI					
39	P25	IC0					
40	P26	IC1					
41	P27	General port					
42	PG1	PPG0					
49	P37	PPG4					
50	P36	PPG7/INT7			Input enabled	Input enabled	Input enabled
52 to 57	P35 to P30	RTO5 to RTOO			Retention of the immediately prior state	Retention of the immediately prior state	Output Hi-Z/ Input 0 fixed
58 to 61	P40 to P43	INT0 to INT3			Input enabled	Input enabled	Input enabled

*1 : $\overline{\mathrm{INIT}}=\mathrm{L}$: Indicates the pin status with $\overline{\mathrm{INIT}}$ remaining at the "L" level.
*2 : $\overline{\mathbb{N I T}}=\mathrm{H}$: Indicates the pin status existing immediately after $\overline{\mathrm{INIT}}$ transition from " L " to "H" level.

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc	Vss - 0.5	Vss +6.0	V	
Analog power supply voltage*1	AVcc	Vss -0.5	Vss +6.0	V	*2
Analog reference voltage*1	AVRH	Vss -0.5	Vss +6.0	V	*2
Input voltage*1	V	Vss -0.3	$\mathrm{Vcc}+0.3$	V	
Analog pin input voltage*1	$V_{\text {IA }}$	Vss -0.3	$\mathrm{AVcc}+0.3$	V	
Output voltage* ${ }^{*}$	Vo	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	
"L" level maximum output current	lot	-	10	mA	*3
"L" level average output current	lolav	-	8	mA	* 4
"L" level total maximum output current	EloL	-	60	mA	
"L" level total average output current	Elolav	-	30	mA	*5
"H" level maximum output current	Іон	-	- 10	mA	*3
"H" level average output current	lohav	-	-4	mA	* 4
"H" level total maximum output current	Σ Іон	-	-30	mA	
" H " level total average output current	Elohav	-	- 12	mA	*5
Power consumption	Po	-	600	mW	
Operating temperature	Ta	-40	+ 85	${ }^{\circ} \mathrm{C}$	At single chip operating
Storage temperature	Tstg	- 55	+ 125	${ }^{\circ} \mathrm{C}$	

*1 : The parameter is based on $\mathrm{V} s \mathrm{~s}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}$.
*2 : Be careful not to exceed V cc +0.3 V , for example, when the power is turned on.
Be careful not to let $A V c c$ exceed $V c c$, for example, when the power is turned on.
*3 : The maximum output current is the peak value for a single pin.
*4 : The average output current is the average current for a single pin over a period of 100 ms .
*5 : The total average output current is the average current for all pins over a period of 100 ms .

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB91265 Series

2. Recommended Operating Conditions

$$
(\mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V})
$$

Parameter	Symbol	Value		Unit	Remarks	
		Min	Max			
Power supply voltage	V Cc	4.0	5.5	V	At normal operating	
Analog power supply voltage	AV cc	$\mathrm{V}_{\mathrm{ss}}+4.0$	$\mathrm{~V}_{\mathrm{ss}}+5.5$	V		
Analog reference voltage	AVRH 1	AV ss	AV cc	V	For A/D converter 1	
	AVRH 2	AVss	AV cc	V	For A/D converter 2	
Operating temperature	Ta	-40	+85	${ }^{\circ} \mathrm{C}$	At single chip operating	

Note : Upon power up, it takes approx. 100μ s for stabilization of internal power supply after the Vcc power supply is stabilized. Keep applying INIT signal during that period.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB91265 Series

3. DC Characteristics

$(\mathrm{Vcc}=4.0 \mathrm{~V}$ to 5.5 V , V ss $=\mathrm{AVss}=0 \mathrm{~V})$

Parameter	Symbol	Pin	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
"H" level input voltage	Vihs	Hysteresis input pin	-	Vcc $\times 0.8$	-	Vcc +0.3	V	
"L" level input voltage	Vıs	Hysteresis input pin	-	Vss - 0.3	-	Vss $\times 0.2$	V	
"H" level output voltage	Vон	Other than port 30 to 35	$\begin{aligned} & \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, \\ & \mathrm{loн}=4.0 \mathrm{~mA} \end{aligned}$	Vcc - 0.5	-	-	V	
	Vон2	Port 30 to 35	$\begin{aligned} & \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, \\ & \mathrm{loH}=8.0 \mathrm{~mA} \end{aligned}$	Vcc - 0.7	-	-	V	
"L" level output voltage	VoL	Other than port 30 to 35	$\begin{aligned} & \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
	Vol2	Port 30 to 35	$\begin{aligned} & \mathrm{Vcc}=5.0 \mathrm{~V}, \\ & \text { loL }=12 \mathrm{~mA} \end{aligned}$	-	-	0.6	V	
Input leak current	1 L	-	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{\mathrm{l}}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	- 5	-	5	$\mu \mathrm{A}$	
Pull-up resistance	Rpull	INIT, Pull-up pin	-	-	50	-	k Ω	
Power supply current	Icc	Vcc	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, 33 \mathrm{MHz}$	-	90	100	mA	
	Icos	Vcc	$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, 33 \mathrm{MHz}$	-	60	80	mA	At SLEEP
	Icch	Vcc	$\begin{aligned} & \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}, \\ & \mathrm{Ta}=+25^{\circ} \mathrm{C} \end{aligned}$	-	300	-	$\mu \mathrm{A}$	At STOP
Input capacitance	Cin	Other than Vcc , $\mathrm{V}_{\mathrm{ss}}, \mathrm{AV} \mathrm{cc}, \mathrm{A} \mathrm{Vss}_{\mathrm{ss}}$, AVRH1, AVRH2	-	-	5	15	pF	

4. FLASH MEMORY write/erase characteristics

Parameter	Conditions	Value			Unit	Remarks	
		Min	Typ	Max			
Sector erase time $(4$ Kbytes sector)	$\mathrm{Ta}=+25^{\circ} \mathrm{C}$, $\mathrm{Vcc}=5.0 \mathrm{~V}$	-	0.2	0.5	s	Not including time for internal writing before deletion.	
Byte write time	$\mathrm{Ta}=+25^{\circ} \mathrm{C}$, $\mathrm{Vcc}=5.0 \mathrm{~V}$	-	32	3,600	$\mu \mathrm{~s}$	Not including system-level overhead time.	
Erase/write cycle		10,000	-	-	Cycle		

MB91265 Series

5. AC Characteristics

(1) Clock Timing Ratings
$(\mathrm{V} \mathrm{cc}=4.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V})$

Parameter	Symbol	Pin	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	fc	$\begin{aligned} & \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$		3.6 *2	-	12	MHz	For using the PLL within the self-oscilla-
Clock cycle time	tc	$\begin{aligned} & \text { X0 } \\ & \text { X1 } \end{aligned}$	-	83.3	-	278*2	ns	set the multiplier for the internal clock not to let the operating frequency exceed 33 MHz .
Input clock pulse width	$\begin{aligned} & \text { Pwh } \\ & \mathrm{P}_{\mathrm{wL}} \end{aligned}$	X0	-	100	-	-	ns	The standard of the duty ratio is 40% to 60%.
Input clock rising, falling time	$\begin{aligned} & \text { tcF } \\ & \text { tcR } \end{aligned}$	X0	-	-	-	5	ns	At external clock
Internal operating clock frequency	fcp	-	When 4.125 MHz is input as the XO clock frequency and $\times 8$ multiplication is set for the PLL of the oscillator circuit.	2.06*1	-	33	MHz	CPU
	fcpp			$2.06{ }^{\star 1}$	-	33	MHz	Peripheral
Internal operating clock cycle time	tcp	-		30.3	-	485*1	ns	CPU
	tcpp			30.3	-	485*1	ns	Peripheral

*1: The values assume a gear cycle of $1 / 16$.
*2 : When the PLL is used, the lower-limit frequency of the input clock to the X0 and X1 pins determines depending on the PLL multiplication.
At $\times 1$ multiplication : more than 8 MHz
At $\times 2$ to $\times 8$ multiplication: more than 4 MHz

- Conditions for measuring the clock timing ratings

MB91265 Series

- Operation Assurance Range

- Internal clock setting range

Notes: - Oscillation stabilization time of PLL $>600 \mu \mathrm{~s}$

- The internal clock gear setting should be within the value shown in clock timing ratings table.

MB91265 Series

(2) Reset Input Ratings

$(\mathrm{Vcc}=4.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=\mathrm{AV}$ ss $=0 \mathrm{~V})$							
Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
$\overline{\overline{\text { NIIT }} \text { input time }}$ (at power-on and STOP mode)	tintl	INIT	-	Oscillation time of oscillator + tc $\times 10$	-	ns	*
$\begin{array}{\|l} \hline \overline{\mathrm{NNIT}} \text { input time } \\ \text { (other than the above) } \end{array}$				tc $\times 10$	-	ns	

* : After the power is stable, L level is kept inputting to $\overline{\mathrm{INIT}}$ for the duration of approximately $100 \mu \mathrm{~s}$ until the internal power is stabilized.

MB91265 Series

(3) UART Timing

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscyc	SCK0, SCK1	Internal shift clock mode	8 tcycp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tslov	$\begin{aligned} & \text { SCK0, SCK1, } \\ & \text { SOT0, SOT1 } \end{aligned}$		-80	80	ns	
Valid SIN \rightarrow SCK \uparrow	tivsh	$\begin{aligned} & \text { SCK0, SCK1, } \\ & \text { SIN0, SIN1 } \end{aligned}$		100	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsHIX	$\begin{aligned} & \text { SCKO, SCK1, } \\ & \text { SIN0, SIN1 } \end{aligned}$		60	-	ns	
Serial clock "H" pulse width	tshsL	SCK0, SCK1	External shift clock mode	4 tcycp	-	ns	
Serial clock "L" pulse width	tsLSH	SCK0, SCK1		4 tcycp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tslov	$\begin{aligned} & \hline \text { SCKO, SCK1, } \\ & \text { SOTO, SOT1 } \end{aligned}$		-	150	ns	
Valid SIN \rightarrow SCK \uparrow	tivs	$\begin{aligned} & \hline \text { SCK0, SCK1, } \\ & \text { SIN0, SIN1 } \end{aligned}$		60	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	$\begin{aligned} & \text { SCKO, SCK1, } \\ & \text { SINO, SIN1 } \end{aligned}$		60	-	ns	

Notes: - The above ratings are the values for CLK synchronous mode.

- tcycp indicates the peripheral clock cycle time.

MB91265 Series

- Internal shift clock mode

- External shift clock mode

MB91265 Series

(4) Free-run Timer Clock, PWC Input, and Reload Timer Trigger Timing

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
				Min	Max		
Input pulse width	ttiwh ttiwl	CKI, PWIO, TIN0 to TIN2	-	4 tcycp	-	ns	

Note : tcycp indicates the peripheral clock cycle time.

(5) Trigger Input Timing

Note : tcycp indicates the peripheral clock cycle time.

MB91265 Series

6. Electrical Characteristics for the A/D Converter

Parameter		Pin				Unit	
	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$		Value				Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	10	bit	
Total error*1	-	-	-4	-	4	LSB	At $\mathrm{AVRHn}^{* 4}=5.0 \mathrm{~V}$
Linearity error*1	-	-	-3.5	-	3.5	LSB	
Differential linearity error* ${ }^{*}$	-	-	-3	-	3	LSB	
Zero transition voltage*1	Vот	ANO to AN10	AVss - 3.5	AVss +0.5	AVss +4.5	LSB	
Full transition voltage* ${ }^{*}$	Vfst	ANO to AN10	$\begin{gathered} \hline \text { AVRH - } \\ 5.5 \end{gathered}$	$\begin{gathered} \hline \text { AVRH }-1.5 \end{gathered}$	$\begin{gathered} \hline \text { AVRH + } \\ 2.5 \end{gathered}$	LSB	
Conversion time	-	-	$1.2{ }^{* 2}$	-	-	$\mu \mathrm{s}$	
Analog port Input current	Iain	AN0 to AN10	-	-	10	$\mu \mathrm{A}$	
Analog input voltage	Vain	ANO to AN10	AVss	-	AVRH	V	
Reference voltage	-	AVRHn*4	AVss	-	AVcc	V	
Analog power supply current (analog + digital)	IA	AVcc	-	2	-	mA	Per 1 unit
	$\mathrm{IAH}^{* 3}$		-	-	100	$\mu \mathrm{A}$	Per 1 unit
Reference power supply current (between AVRH and AVss)	IR	AVRHn*4	-	1	-	mA	Per 1 unit $\mathrm{AVRHn}^{* 4}=5.0 \mathrm{~V}$, at AV ss $=0 \mathrm{~V}$
	$\mathrm{IRH}^{* 3}$		-	-	100	$\mu \mathrm{A}$	Per 1 unit at STOP
Analog input capacitance	-	-	-	10	-	pF	
Inter-channel disparity	-	ANO to AN10	-	-	4	LSB	

*1 : Measured in the CPU sleep state
*2 : Vcc = AVcc $=5.0 \mathrm{~V}$, machine clock at 33 MHz
*3 : The current when the CPU is in stop mode and the A/D converter is not operating (at $\mathrm{Vcc}=\mathrm{AVcc}=\mathrm{AVRHn}=5.0 \mathrm{~V}$)
*4: AVRHn = AVRH1, AVRH2
Note : The above does not guarantee the inter-unit accuracy.
Set the output impedance of the external circuit $\leq 2 \mathrm{k} \Omega$.

MB91265 Series

Definition of A/D Converter Terms

- Resolution : Analog variation that is recognized by an A/D converter.
- Linearity error : Zero transition point (00 $00000000 \longleftrightarrow 000000$ 0001) and full-scale transition point. Difference between the line connected (11 1111 1110 $\longleftrightarrow 11$ 1111 1111) and actual conversion characteristics.
- Differential linearity error : Deviation of input voltage, that is required for changing output code by 1 LSB, from an ideal value.
- Total error : This error indicates the difference between actual and ideal values, including the zero transition error/full-scale transition error/linearity error.

(Continued)

MB91265 Series

(Continued)

Differential linearity error in digital output $N=\frac{V(N+1) T-V_{N T}}{1 L S B}-1$ [LSB]
$1 \mathrm{LSB}=\frac{\mathrm{V}_{\text {FST }}-\mathrm{V}_{\text {ot }}}{1022}[\mathrm{~V}]$

Vот : A voltage at which digital output transits from 000 н to 001н.
$V_{\text {FSt }}$: A voltage at which digital output transits from 3FEн to 3 FFн .

MB91265 Series

- Example characteristics

Pull-up Resistor vs. Power Supply Voltage

"L" Level Output Voltage vs. Power Supply Voltage

Power Supply Current vs. Power Supply Voltage

Power Supply Current vs. Internal Operation Frequency (MB91266)

MB91265 Series

(Continued)

A/D Conversion Block Per 1 Unit (33 MHz)
Analog Power Supply Current vs.
Power Supply Voltage

Power Supply Current (at stop) vs. Power Supply Voltage

A/D Conversion Block Per 1 Unit (33 MHz) Reference Voltage Supplying Current vs. Power Supply Voltage

MB91265 Series

ORDERING INFORMATION

Part number	Package	Remarks
MB91266PFM-G-XXX	64-pin plastic LQFP (FPT-64P-M09)	
MB91266PFM-G-XXX-E1		Lead-free Package
MB91F267PFM-G		
MB91F267PFM-G-E1		Lead-free Package

MB91265 Series

PACKAGE DIMENSION

64-pin plastic LQFP
(FPT-64P-M09)
Note 1) *: These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness include plating thickness
Note 3) Pins width do not include tie bar cutting remainder.

© 2003 FUJITSU LIMITED F64018S-c-3-5
Dimensions in mm (inches).
Note: The values in parentheses are reference values

MB91265 Series

FUJITSU LIMITED

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

