Digital Step Attenuator 75Ω DC-2000 MHz

31 dB, 1dB Step 5 Bit, Parallel Control Interface, Dual Supply Voltage

Product Features

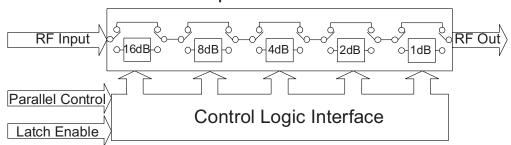
- Dual Supply Voltage: V_{DD}=+3V, V_{SS}=-3V
- Immune to latch up
- Excellent accuracy, 0.1 dB Typ
- · Parallel control interface
- · Fast switching control frequency, 1 MHz typ.
- Low Insertion Loss
- High IP3, +52 dBm
- Very low DC power consumption
- Excellent return loss, 20 dB Typ
- Small size 4.0 x 4.0 mm

Typical Applications

- Base Station Infrastructure
- Portable Wireless
- CATV & DBS
- MMDS & Wireless LAN
- Wireless Local Loop
- UNII & Hiper LAN
- Power amplifier distortion canceling loops

DAT-3175-PN+ DAT-3175-PN

CASE STYLE: DG983-1 PRICE: \$3.55 ea. QTY. (10-24)


+ RoHS compliant in accordance with EU Directive (2002/95/EC)

The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

General Description

The DAT-3175-PN is a 75 Ω RF digital step attenuator that offers an attenuation range up to 31 dB in 1.0 dB steps. The control is a 5-bit parallel interface, operating on dual supply voltage: V_{DD} =+3V, V_{SS} =-3V. The DAT-3175-PN is produced using a unique CMOS process on silicon, offering the performance of GaAs, with the advantages of conventional CMOS devices.

Simplified Schematic

For detailed performance specs & shopping online see web site

ISO 9001 ISO 14001 AS 9100 CERTIFIED
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine
Provides ACTUAL Data Instantly at minicipouits. IF/RF MICROWAVE COMPONENTS

RFV F

RF Electrical Specifications, DC-2000 MHz, T_{AMB}=25°C, V_{DD}=+3V, V_{SS}=-3V

Parameter	Freq. Range (GHz)	Min.	Тур.	Max.	Units
Accuracy @ 1 dB Attenuation Setting	DC-1.2	_	0.03	0.24	dB
Accuracy & I db Attendation Setting	1.2-2.0	_	0.1	0.25	dB
Accuracy @ 2 dB Attenuation Setting	DC-1.2	_	0.07	0.28	dB
Accuracy @ 2 db Attendation Setting	1.2-2.0	_	0.15	0.3	dB
Accuracy @ 4 dB Attenuation Setting	DC-1.2	_	0.05	0.36	dB
Accuracy & 4 db Attendation Setting	1.2-2.0	_	0.15	0.4	dB
Acquirect @ 9 dB Attenuation Setting	DC-1.2	_	0.1	0.52	dB
Accuracy @ 8 dB Attenuation Setting	1.2-2.0	_	0.24	0.6	dB
Accuracy @ 16 dB Attenuation Setting	DC-1.2		0.23	0.84	dB
Accuracy @ 16 db Attendation Setting	1.2-2.0		0.8	1.0	dB
	DC-1.2	_	1.2	1.8	dB
Insertion Loss ^(note1) @ all attenuator set to 0dB	1.2-2.0	_	1.6	2.1	dB
Input IP3 ^(note 2) (At Min. and Max. Attenuation)	DC-2.0	_	+52	_	dBm
Input Power @ 0.2dB Compression ^(note 2) (At Min. and Max. Attenuation)	DC-2.0	_	+24	_	dBm
VSWR	DC-1.2	_	1.6	2.0	_
VOVVN	1.2-2.0	_	1.7	2.0	_

Notes:

DC Electrical Specifications

Parameter	Min.	Тур.	Max.	Units
V _{DD} , Supply Voltage	2.7	3	3.3	V
Vss, Supply Voltage	-3.3	-3	-2.7	V
IDD (Iss), Supply Current	_	_	100	μΑ
Control Input Low	_	_	0.3xV _{DD}	V
Control Input High	0.7xVDD	_	_	V
Control Current	_	_	1	μΑ

Switching Specifications

Parameter	Min.	Тур.	Max.	Units
Switching Speed, 50% Control to 0.5dB of Attenuation Value	_	1.0	_	μSec
Switching Control Frequency	ı	1.0	_	MHz

Absolute Maximum Ratings

Parameter	Ratings
Operating Temperature	-40°C to 85°C
Storage Temperature	-55°C to 100°C
V _{DD}	-0.3V Min., 4V Max.
Vss	-4V Min., 0.3V Max.
Voltage on any input	-0.3V Min., VDD+0.3V Max.
ESD, HBM	500V
ESD, MM	100V
Input Power	+24dBm

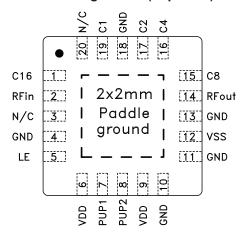
Permanent damage may occur if any of these limits are exceeded.

For detailed performance specs & shopping online see web site

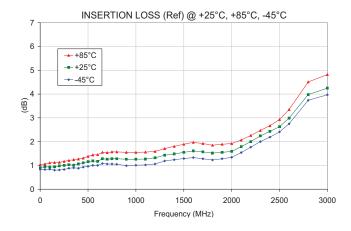
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine Provides ACTUAL Data Instantly at minicipcuits.com IF/RF MICROWAVE COMPONENTS

^{1.} I. Loss values are de-embedded from test board Loss (test board's Insertion Loss: 0.10dB @100MHz, 0.40dB @1200MHz, 0.55dB @2000MHz, 0.75dB @4000MHz)

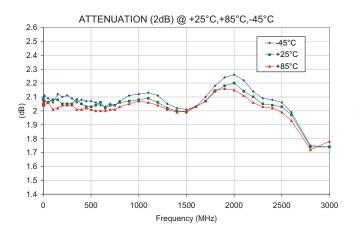
^{2.} Input IP3 and 1dB compression degrades below 1 MHz

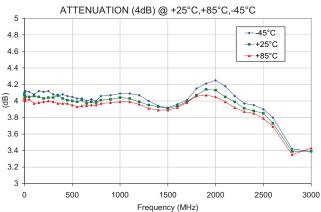

Pin Description

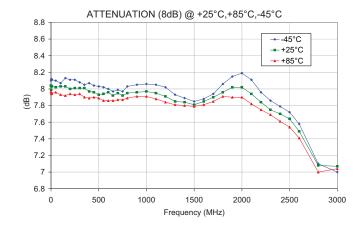
Function	Pin Number	Description
C16	1	Control for Attenuation bit, 16dB (Note 3)
RF in	2	RF in port (Note 1)
N/C	3	Not connected (Note 4)
GND	4	Ground connection
LE	5	Latch Enable Input (Note 2)
V_{DD}	6	Positive Supply Voltage
PUP1	7	Power-up selection
PUP2	8	Power-up selection
V_{DD}	9	Positive Supply Voltage
GND	10	Ground connection
GND	11	Ground connection
V _{SS}	12	Negative Supply Voltage
GND	13	Ground connection
RF out	14	RF out port (Note 1)
C8	15	Control for attenuation bit, 8 dB
C4	16	Control for attenuation bit, 4 dB
C2	17	Control for attenuation bit, 2 dB
GND	18	Ground Connection
C1	19	Control for attenuation bit, 1 dB
N/C	20	Not connected (Note 4)
GND	Paddle	Paddle ground (Note 5)

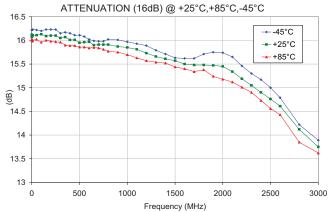

Notes:

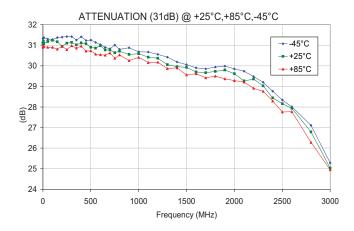
- 1. Both RF ports must be held at 0VDC or DC blocked with an external series capacitor.
- 2. Latch Enable (LE) has an internal 100K Ω resistor to V_{DD} .
- 3. Place a $10K\Omega$ resistor in series, as close to pin as possible to avoid freq. resonance.
- 4. Place a shunt $10K\Omega$ resistor to GND.
- 5. The exposed solder pad on the bottom of the package (See Pin configuration) must be grounded for proper device operation.

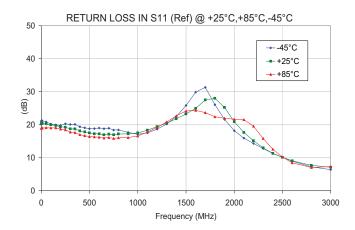

Pin Configuration (Top View)

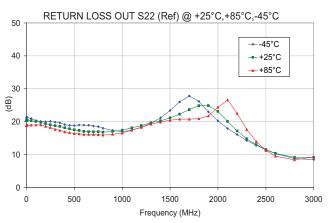


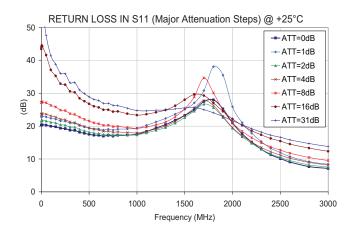

Typical Performance Curves



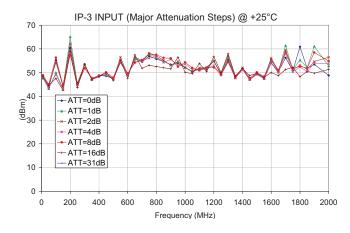


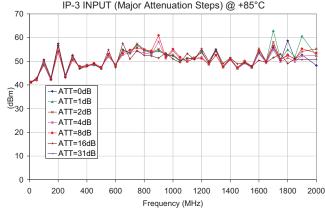


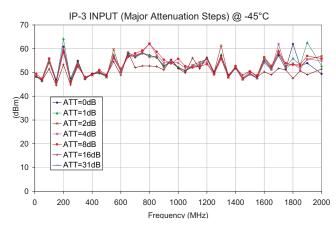

For detailed performance specs

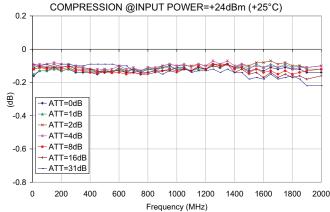

ISO 9001 ISO 14001 AS 9100 CERTIFIED
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine
Provides ACTUAL Data Instantly at minicipality.com IF/RF MICROWAVE COMPONENTS

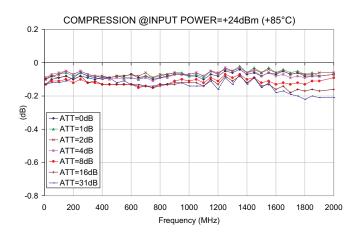
Typical Performance Curves



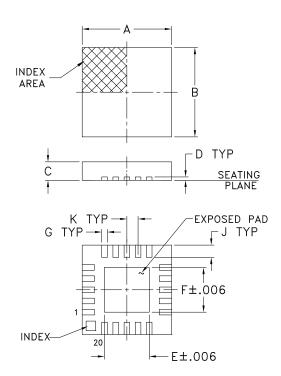

For detailed performance specs

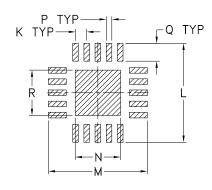

ISO 9001 ISO 14001 AS 9100 CERTIFIED
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine


Provides ACTUAL Data Instantly at minicipality. IF/RF MICROWAVE COMPONENTS


Typical Performance Curves

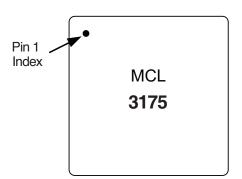





For detailed performance specs & shopping online see web site

P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine Provides ACTUAL Data Instantly at minicipcuits.com IF/RF MICROWAVE COMPONENTS

Outline Drawing (DG983-1)

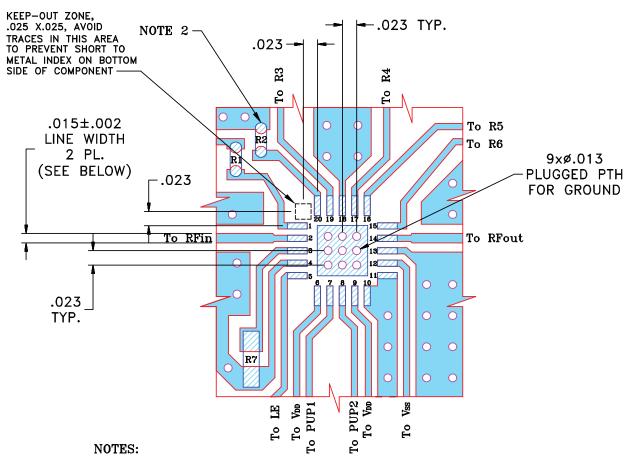


PCB Land Pattern

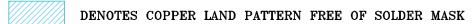
Suggested Layout, Tolerance to be within ±.002

Device Marking

Outline Dimensions (inch)

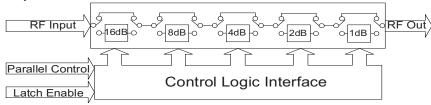

А	В	С	D	E	F	G	Н	J	К	L	М	N	Р	Q	R	WT. GRAMS
.157	.157	.035	.008	.081	.081	.010	_	.022	.020	.177	.177	.081	.010	.032	.081	.04

For detailed performance specs & shopping online see web site


Suggested Layout for PCB Design (PL-192)

The suggested Layout shows only the footprint area of the DAT, and the components located near this area (i.e.: R1, R2, R7). For the complete Layout, see photo and schematic diagram on page 11 of 12.

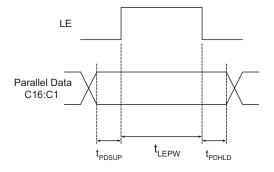
- 1. TRACE WIDTH IS SHOWN FOR FR4 WITH DIELECTRIC THICKNESS. .025" $\pm .002$ ". COPPER: 1/2 OZ. EACH SIDE. FOR OTHER MATERIALS TRACE WIDTH MAY NEED TO BE MODIFIED.
- 2. 0603, 0402 SIZES CHIP FOOT PRINTS SHOWN FOR REFERENCE, VALUES OF RESISTORS WILL VARY BASED ON APPLICATION.
- 3. BOTTOM SIDE OF THE PCB IS CONTINUOUS GROUND PLANE.



For detailed performance specs

Simplified Schematic

The DAT-3175-PN parallel interface consists of 5 control bits that select the desired attenuation state, as shown in Table 1: Truth Table


Table 1. Truth Table								
Attenuation State	C16	C8	C4	C2	C1			
Reference	0	0	0	0	0			
1 (dB)	0	0	0	0	1			
2 (dB)	0	0	0	1	0			
4 (dB)	0	0	1	0	0			
8 (dB)	1	0	0	0	0			
16 (dB)	1	0	0	0	0			
31 (dB)	1	1	1	1	1			
Note: Not all 32	possible combi	nations of C1 -	C16 are shown	in table				

The parallel interface timing requirements are defined by **Figure 1** (Parallel Interface Timing Diagram) and **Table 2** (Parallel Interface AC Characteristics), and switching speed.

For latched parallel programming the Latch Enable (LE) should be held LOW while changing attenuation state control values, then pulse LE HIGH to LOW (per Figure 1) to latch new attenuation state into device.

For direct parallel programming, the Latch Enable (LE) line should be pulled HIGH. Changing attenuation state control values will change device state to new attenuation. Direct mode is ideal for manual control of the device (using hardwire, switches, or jumpers).

Figure 1: Parallel Interface Timing Diagram

Table 2. Parallel Interface AC Characteristics								
Symbol	Symbol Parameter		Max.	Units				
t _{LEPW}	LE minimum pulse width	10		ns				
t _{PDSUP}	Data set-up time before clock rising edge of LE	10		ns				
t _{PDHLD}	Data hold time after clock falling edge of LE	10		ns				

Mini-Circuits

For detailed performance specs & shopping online see web site

Digital Step Attenuator

Pin 20 must always be low to prevent the attenuator from entering an unknown state.

Power-up Control Settings

The DAT-3175-PN always assumes a specifiable attenuation setting on power-up, allowing a known attenuation state to be established before an initial parallel control word is provided.

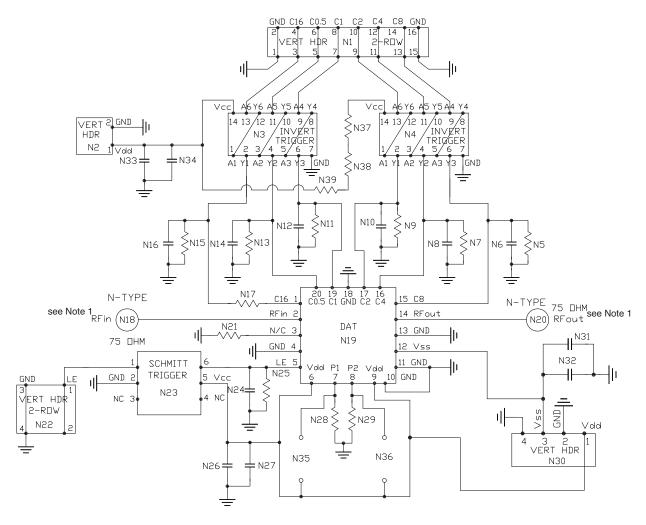

When the attenuator powers up with LE=0, the control bits are automatically set to one of four possible values. These four values are selected by the two power-up control bits, PUP1 and PUP2, as shown in Table 3: (Power-Up Truth Table, Parallel Mode)

Table 3. Power-Up Truth Table, Parallel Mode							
PUP1 PUP2		LE					
0	0	0					
0	1	0					
1	0	0					
1	1	0					
X (Note 1)	X (Note 1)	1					
	PUP1 0 0 1	PUP1 PUP2 0 0 0 1 1 0 1 1					

Note: PUP1 and PUP2 Connection may be 0, 1, GROUND, or not connect, without effect on attenuation state.

Power-Up with LE=1 provides normal parallel operation with C1-C16, and PUP1 and PUP2 are not active.

TB-341 Evaluation Board Schematic Diagram

Note 1: Both RF ports must be held at 0VDC or DC blocked with an external series capacitor.

Bill of Materials					
N5, N7, N9, N11, N13, N15, N21 & N25	Resistor 0603 10 KOhm +/- 1%				
N28 & N29	Resistor 0603 475 Ohm +/- 1%				
N37-N39	Resistor 0603 0 Ohm				
N17	Resistor 0402 10 KOhm +/- 1%				
N6, N8, N10, N12, N14, N16, N24, N26, N31 & N33	NPO Capacitor 0603 100pF +/- 5%				
N27, N32 & N34	Tantalum Capacitor 0805 100nF +/- 10%				
N3 & N4	Hex Invert Schmitt Trigger MSL1				
N23	Dual Schmitt Trigger Buffer SC-70 MSL1				

TB-341

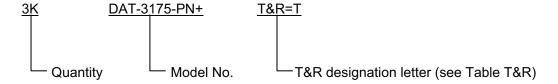
Mini-Circuits

For detailed performance specs & shopping online see web site

ISO 9001 ISO 14001 AS 9100 CERTIFIED
P.O. Box 350166, Brooklyn, New York 11235-0003 (718) 934-4500 Fax (718) 332-4661 The Design Engineers Search Engine
Provides ACTUAL Data Instantly at minicipcuits.com IF/RF MICROWAVE COMPONENTS

Tape and Reel Packaging Information

Table T&R


TR No.	No. of Devices	Designation Letter	Reel Size	Tape Width	Pitch	Unit Orientation
	3000	Т	13 inch	12 mm 8 mi		Tape
F87	multiples of 10, less than full reel of 3K	PR	13 inch		8 mm	Direction of Feed -
	multiples of 10, on tape only	E	not applicable			

Ordering Information

Model No.	Description	Packaging Designation Letter (See Table T&R)	Quantity Min. No. of Units	Price \$ Ea.
DAT-3175-PN (+)	Parallel Interface, Dual Voltage (Negative and Positive)	E	10	\$3.55
TB-341	Test Board Only	Not Applicable	1	\$79.95

How to Order

Example: 3000 pieces of DAT-3175-PN+

For detailed performance specs