288M-BIT Low Latency DRAM Separate I/O

Description

The μ PD48288118 is a $16,777,216$ word by 18 bit synchronous double data rate Low Latency RAM fabricated with advanced CMOS technology using one-transistor memory cell.

The μ PD48288118 integrates unique synchronous peripheral circuitry and a burst counter. All input registers controlled by an input clock pair (CK and CK\#) are latched on the positive edge of CK and CK\#.

These products are suitable for application which require synchronous operation, high speed, low voltage, high density and wide bit configuration.

Specification

- Density: 288M bit
- Organization
- Separate I/O: 2M words $\times 18$ bits $\times 8$ banks
- Operating frequency: 400 / 300 / 200 MHz
- Interface: HSTL I/O
- Package: 144 -pin TAPE FBGA
- Package size: 18.5×11
- Leaded and Lead free
- Power supply
- $\quad 2.5 \mathrm{~V}$ VExt
- 1.8 V Vdo
- 1.5 V or $1.8 \mathrm{~V} \operatorname{VdD} \mathrm{Q}$
- Refresh command
- Auto Refresh
- 8192 cycle / 32 ms for each bank
- 64 K cycle / 32 ms for total
- Operating case temperature : $\mathrm{Tc}=0$ to $95^{\circ} \mathrm{C}$

Features

- SRAM-type interface
- Double-data-rate architecture
- PLL circuitry
- Cycle time: $2.5 \mathrm{~ns} @$ trc = 20 ns

$$
3.3 \mathrm{~ns} @ \operatorname{trc}=20 \mathrm{~ns}
$$

$5.0 \mathrm{~ns} @ \operatorname{trc}=20 \mathrm{~ns}$

- Non-multiplexed addresses
- Multiplexing option is available.
- Data mask for WRITE commands
- Differential input clocks (CK and CK\#)
- Differential input data clocks (DK and DK\#)
- Data valid signal (QVLD)
- Programmable burst length: 2 / 4 / 8
- User programmable impedance output ($25 \Omega-60 \Omega$)
- JTAG boundary scan

Ordering Information

Part number	Cycle Time ns	Clock Frequency MHz	Random Cycle ns	Organization (word x bit)	Core Supply Voltage (Vext) V	Core Supply Voltage (Vod) V	Output Supply Voltage (VodQ) V	Package
μ PD48288118FF-E25-DW1	2.5	400	20	$16 \mathrm{M} \times 18 \mathrm{bit}$	$\begin{aligned} & 2.5+0.13 \\ & 2.5-0.12 \end{aligned}$	1.8 ± 0.1	1.8 ± 0.1	144-pin TAPE FBGA (18.5×11)
μ PD48288118FF-E33-DW1	3.3	300	20					
μ PD48288118FF-E50-DW1	5.0	200	20					
μ PD48288118FF-EF25-DW1	2.5	400	20				1.5 ± 0.1	
μ PD48288118FF-EF33-DW1	3.3	300	20					
μ PD48288118FF-EF50-DW1	5.0	200	20					
μ PD48288118FF-E25-DW1-A	2.5	400	20	$16 \mathrm{M} \times 18 \mathrm{bit}$	$\begin{aligned} & 2.5+0.13 \\ & 2.5-0.12 \end{aligned}$	1.8 ± 0.1	1.8 ± 0.1	144-pin TAPE FBGA (18.5×11)
μ PD48288118FF-E33-DW1-A	3.3	300	20					
μ PD48288118FF-E50-DW1-A	5.0	200	20					
μ PD48288118FF-EF25-DW1-A	2.5	400	20				1.5 ± 0.1	
μ PD48288118FF-EF33-DW1-A	3.3	300	20					Lead-free
μ PD48288118FF-EF50-DW1-A	5.0	200	20					

Remark Products with -A at the end of part number are lead-free products.

Pin Configurations

\# indicates active LOW signal.
144-pin TAPE FBGA (18.5×11)
(Top View) [Separate I/O $\times 18$]

	1	2	3	4	5	6	7	8	9	10	11	12
A	Vref	Vss	Vext	Vss					Vss	Vext	TMS	TCK
B	Vod	D4	Q4	VssQ					VssQ	Q0	D0	Vdo
C	$V_{\text {tt }}$	D5	Q5	VdoQ					VdoQ	Q1	D1	$V_{\text {tt }}$
D	$\begin{gathered} \begin{array}{c} \text { Note } 1 \\ \text { (A22) } \end{array} \\ \hline \end{gathered}$	D6	Q6	VssQ					VssQ	QK0\#	QK0	Vss
E	$\begin{gathered} \text { Note } 1 \\ \text { (A21) } \\ \hline \end{gathered}$	D7	Q7	VdoQ					VodQ	Q2	D2	$\begin{gathered} \begin{array}{c} \text { Note } \\ \hline \\ \text { (A20) } \end{array} \\ \hline \end{gathered}$
F	A5	D8	Q8	VssQ					VssQ	Q3	D3	QVLD
G	A8	A6	A7	Vdo					Vdd	A2	A1	A0
H	BA2	A9	Vss	Vss					Vss	Vss	A4	A3
J	$\begin{aligned} & \begin{array}{l} \text { Note } 2 \\ \mathrm{NF} \\ \hline \end{array} . \begin{array}{l} \\ \hline \end{array}{ }^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Note } 2 \\ & \text { NF } \\ & \hline \end{aligned}$	Vdd	Vod					Vdd	Vdd	BA0	CK
K	DK	DK\#	VdD	VdD					Vdo	Vdo	BA1	CK\#
L	REF\#	CS\#	Vss	Vss					Vss	Vss	A14	A13
M	WE\#	A16	A17	Vdd					Vdo	A12	A11	A10
N	A18	D14	Q14	VssQ					VssQ	Q9	D9	A19
P	A15	D15	Q15	VdoQ					VdDQ	Q10	D10	DM
R	Vss	QK1	QK1\#	VssQ					VssQ	Q11	D11	Vss
T	Vtt	D16	Q16	VdoQ					VdoQ	Q12	D12	Vtt
U	Vod	D17	Q17	VssQ					VssQ	Q13	D13	Vod
v	Vref	ZQ	Vext	Vss					Vss	Vext	TDO	TDI

Notes 1. Reserved for future use. This signal is internally connected and has parasitic characteristics of an address input signal. This may optionally be connected to Vss, or left open.
2. No function. This signal is internally connected and has parasitic characteristics of a clock input signal. This may optionally be connected to Vss, or left open.

CK, CK\#	: Input clock	ZQ	: Output impedance matching
CS\#	: Chip select	TMS	: IEEE 1149.1 Test input
WE\#	: WRITE command	TDI	$:$ IEEE 1149.1 Test input
REF\#	: Refresh command	TCK	: IEEE 1149.1 Clock input
A0-A19	: Address inputs	TDO	: IEEE 1149.1 Test output
A20-A22	: Reserved for the future	VREF	$:$ HSTL input reference input
BA0-BA2	: Bank address input	VEXT	: Power Supply
D0-D17	: Data input	VDD	: Power Supply
Q0-Q17	: Data output	VDDQ	: DQ Power Supply
DK, DK\#	: Input data clock	Vss	: Ground
DM	: Input data Mask	VssQ	: DQ Ground
QK0-QK1, QK0\#-QK1\#	: Output data clock	VTT	: Power Supply
QVLD	: Data Valid	NF	: No function

Symbol	Type	Description
CK, CK\#	Input	Clock inputs: CK and CK\# are differential clock inputs. This input clock pair registers address and control inputs on the rising edge of CK. CK\# is ideally 180 degrees out of phase with CK.
CS\#	Input	Chip select CS\# enables the commands when CS\# is LOW and disables them when CS\# is HIGH. When the command is disabled, new commands are ignored, but internal operations continue.
WE\#, REF\#	Input	WRITE command pin, Refresh command pin: WE\#, REF\# are sampled at the positive edge of CK, WE\#, and REF\# define (together with CS\#) the command to be executed.
A0-A19	Input	Address inputs: A0-A19 define the row and column addresses for READ and WRITE operations. During a MODE REGISTER SET, the address inputs define the register settings. They are sampled at the rising edge of CK.
A20-A22	Input	Reserved for future use: These signals should be tied to Vss or leave open.
BA0-BA2	Input	Bank address inputs; Select to which internal bank a command is being applied.
D0-D17	Input	Data input: The D signals form the 18-bit input data bus. During WRITE commands, the data is referenced to both edges of DK.
Q0-Q17	Output	Data output: The Q signals form the 18-bit output data bus. During READ commands, the data is referenced to both edges of QK.
QKx, QKx\#	Output	Output data clocks: QKx and QKx\# are opposite polarity, output data clocks. They are always free running and edgealigned with data output from the μ PD48288118. QKx\# is ideally 180 degrees out of phase with QKx. QK0 and QK0\# are aligned with Q0-Q8. QK1 and QK1\# are aligned with Q9-Q17.
DK, DK\#	Input	Input data clock; DK and DK\# are the differential input data clocks. All input data is referenced to both edges of DK. DK\# is ideally 180 degrees out of phase with DK. D0-D17 are referenced to DK and DK\#.
DM	Input	Input data mask; The DM signal is the input mask signal for WRITE data. Input data is masked when DM is sampled HIGH along with the WRITE input data. DM is sampled on both edges of DK. The signal should be Vss if not used.
QVLD	Output	Data valid; The QVLD indicates valid output data. QVLD is edge-aligned with QKx and QKx\#.

Symbol	Type	Description
ZQ	Input /Output	External impedance [25 $\Omega-60 \Omega$]; This signal is used to tune the device outputs to the system data bus impedance. Q output impedance is set to $0.2 \times R Q$, where $R Q$ is a resistor from this signal to Vss. Connecting ZQ to Vss invokes the minimum impedance mode. Connecting ZQ to VodQ invokes the maximum impedance mode. Refer to Figure 2-5. Mode Register Bit Map to activate this function.
TMS , TDI	Input	JTAG function pins: IEEE 1149.1 test inputs: These balls may be left as no connects if the JTAG function is not used in the circuit
TCK	Input	JTAG function pin; IEEE 1149.1 clock input: This ball must be tied to Vss if the JTAG function is not used in the circuit.
TDO	Output	JTAG function pin; IEEE 1149.1 test output: JTAG output. This ball may be left as no connect if JTAG function is not used.
V ${ }_{\text {ReF }}$	Input	Input reference voltage; Nominally $V_{D D Q} / 2$. Provides a reference voltage for the input buffers.
Vext	Supply	Power supply; 2.5 V nominal. See Recommended DC Operating Conditions for range.
Vdd	Supply	Power supply; 1.8 V nominal. See Recommended DC Operating Conditions for range.
VodQ	Supply	DQ power supply; Nominally, 1.5 V or 1.8 V . Isolated on the device for improved noise immunity. See Recommended DC Operating Conditions for range.
Vss	Supply	Ground
VssQ	Supply	DQ ground; Isolated on the device for improved noise immunity.
$V_{T T}$	Supply	Power supply; Isolated termination supply. Nominally, VdDQ/2. See Recommended DC Operating Conditions for range.
NF		No function; These balls may be connected to Vss.

Block Diagram

16M x 18

Notes 1. When the BL=8 setting is used, A18 and A19 are "Don't care".
2. When the BL=4 setting is used, A 19 is "Don't care".

Contents

1. Electrical Specifications 8
2. Operation 16
2.1 Command Operation 16
2.2 Description of Commands 16
2.3 Initialization 17
2.4 Power-On Sequence 18
2.5 Programmable Impedance Output Buffer 18
2.6 PLL Reset 18
2.7 Clock Input 18
2.8 Mode Register Set Command (MRS) 20
2.9 Read \& Write configuration (Non Multiplexed Address Mode) 21
2.10 Write Operation (WRITE) 22
2.11 Read Operation (READ) 25
2.12 Refresh Operation: AUTO REFRESH Command (AREF) 30
2.13 On-Die Termination. 31
2.14 Operation with Multiplexed Address 33
2.15 Address Mapping in Multiplexed Mode 35
2.16 Read\& Write configuration in Multiplexed Address Mode 36
2.17 Refresh Command in Multiplexed Address Mode 36
3. JTAG Specification 38
4. Package Drawing 45
5. Recommended Soldering Condition 46
6. Revision History 47

1. Electrical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Rating	Unit	Note
Supply voltage	$\mathrm{V}_{\text {EXT }}$		-0.3 to +2.8	V	
Supply voltage	V VD		-0.3 to +2.1	V	
Output supply voltage,					
Input voltage, Input / Output voltage					

Note 1. The $\mu \mathrm{PD} 48288118 \mathrm{FF}-\mathrm{E}$ support $1.8 \mathrm{~V} \operatorname{VDDQ}$ nominal.
The $\mu \mathrm{PD} 48288118 \mathrm{FF}-\mathrm{EF}$ support 1.5 V Vod nominal.

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended DC Operating Conditions

$0^{\circ} \mathrm{C} \leq \mathrm{Tc} \leq 95^{\circ} \mathrm{C}$; $1.7 \mathrm{~V} \leq \mathrm{VDD} \leq 1.9 \mathrm{~V}$, unless otherwise noted

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Supply voltage	Vext		2.38	2.5	2.63	V	1
Supply voltage	VDD		1.7	1.8	1.9	V	1
Output supply voltage	VddQ		1.7	1.8	1.9	V	1, 2, 3
			1.4	1.5	1.6	V	1, 3
Reference Voltage	$V_{\text {Ref }}$		$0.49 \times \mathrm{VdoQ}$	$0.5 \times \mathrm{VdDQ}$	$0.51 \times \mathrm{VDDQ}$	V	1, 4, 5
Termination voltage	$V_{\text {TT }}$		$0.95 \times \mathrm{V}_{\text {Ref }}$	$V_{\text {Ref }}$	$1.05 \times V_{\text {ReF }}$	V	1,6
Input HIGH voltage	$\mathrm{V}_{\mathrm{IH}}(\mathrm{DC})$		$\mathrm{V}_{\text {ref }}+0.1$			V	1
Input LOW voltage	VIL (DC)				$V_{\text {ref }}-0.1$	V	1

Notes 1. All voltage referenced to $\mathrm{Vss}(\mathrm{GND})$.
2. During normal operation, $V_{D D Q}$ must not exceed VDD.
3. The $\mu \mathrm{PD} 48288118 \mathrm{FF}$-E support 1.8 V VdDQ nominal. The $\mu \mathrm{PD} 48288118 \mathrm{FF}-\mathrm{EF}$ support 1.5 V VdoQ nominal.
4. Typically the value of $V_{\text {Ref }}$ is expect to be $0.5 \times V_{\text {dDQ }}$ of the transmitting device. Vref is expected to track variations in VdDQ.
5. Peak-to-peak AC noise on Vref must not exceed $\pm 2 \% V_{\text {ref }}(\mathrm{DC})$.
6. $V_{T T}$ is expected to be set equal to $V_{\text {REF }}$ and must track variations in the $D C$ level of $V_{\text {REF }}$.

DC Characteristics

$0^{\circ} \mathrm{C} \leq \mathrm{Tc} \leq 95^{\circ} \mathrm{C}$; $1.7 \mathrm{~V} \leq \mathrm{VDD} \leq 1.9 \mathrm{~V}$, unless otherwise noted

Parameter	Symbol	Test condition	MIN.	MAX.	Unit	Note
Input leakage current	ILI		-5	+5	$\mu \mathrm{~A}$	1,2
Output leakage current	ILO		-5	+5	$\mu \mathrm{~A}$	1,2
Reference voltage current	IREF		-5	+5	$\mu \mathrm{~A}$	1,2
Output high current	IOH	$\mathrm{VoH}=\mathrm{VDDQ} / 2$	$(\mathrm{VDDQ} / 2) /(1.15 \times \mathrm{RQ} / 5)$	$(\mathrm{VDDQ} / 2) /(0.85 \times \mathrm{RQ} / 5)$	mA	3,4
Output low current	loL	$\mathrm{VoL}=\mathrm{VDDQ} / 2$	$(\mathrm{VDDQ} / 2) /(1.15 \times \mathrm{RQ} / 5)$	$(\mathrm{VDDQ} / 2) /(0.85 \times \mathrm{RQ} / 5)$	mA	3,4

Notes 1. Outputs are impedance-controlled. | Іон | = (VdDQ/2)/(RQ/5) for values of $125 \Omega \leq R Q \leq 300 \Omega$.
2. Outputs are impedance-controlled. lol = (VdDQ/2)/(RQ/5) for values of $125 \Omega \leq R Q \leq 300 \Omega$.
3. Іон and lol are defined as absolute values and are measured at $V_{D D Q} / 2$. Іон flows from the device, loL flows into the device.
4. If MRS bit $A 8$ is 0 , use $R Q=250 \Omega$ in the equation in lieu of presence of an external impedance matched resistor.

Capacitance ($\mathrm{TA}=\mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$)

Parameter	Symbol	Test conditions	MIN.	MAX.	Unit
Address / Control Input capacitance	C_{IN}	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	1.5	2.5	pF
I/O, Output, Other capacitance (D, Q, DM, QK, QVLD)	$\mathrm{C}_{\mathrm{l} / \mathrm{O}}$	$\mathrm{V}_{/ / \mathrm{O}}=0 \mathrm{~V}$	3.5	5.0	
Clock Input capacitance					
JTAG pins	$\mathrm{C}_{\mathrm{clk}}$	$\mathrm{V}_{\mathrm{clk}}=0 \mathrm{~V}$	2.0	3.0	pF

Remark These parameters are periodically sampled and not 100% tested. Capacitance is not tested on ZQ pin.

Recommended AC Operating Conditions

$0^{\circ} \mathrm{C} \leq \mathrm{Tc} \leq 95^{\circ} \mathrm{C} ; 1.7 \mathrm{~V} \leq \mathrm{VDD} \leq 1.9 \mathrm{~V}$, unless otherwise noted

Parameter	Symbol	Conditions	MIN.	MAX.	Unit	Note
Input HIGH voltage	$\mathrm{V}_{\mathrm{IH}(\mathrm{AC})}$		$\mathrm{V}_{\text {REF }}+0.2$		V	1
Input LOW voltage	$\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}$			$\mathrm{V}_{\text {REF }}-0.2$	V	1

Note 1. Overshoot: $\mathrm{V}_{\mathrm{IH}}(\mathrm{AC}) \leq \mathrm{V}_{\mathrm{DD}} \mathrm{Q}+0.7 \mathrm{~V}$ for $\mathrm{t} \leq \mathrm{tck} / 2$
Undershoot: VIL (AC) $\geq-0.5 \mathrm{~V}$ for $\mathrm{t} \leq \mathrm{tck} / 2$
Control input signals may not have pulse widths less than tскн (MIN.) or operate at cycle rates less than tck (MIN.).

DC Characteristics

Idd / Isb Operating Conditions

Parameter	Symbol	Test condition		MAX.			Unit
				$\begin{aligned} & \text {-E25, } \\ & \text {-EF25 } \end{aligned}$	$\begin{aligned} & \text {-E33, } \\ & \text {-EF33 } \end{aligned}$	$\begin{aligned} & \text {-E50, } \\ & \text {-EF50 } \end{aligned}$	
Standby current	IsB1	tck = Idle	Vdd	48	48	48	mA
		All banks idle, no inputs toggling	Vext	26	26	26	
Active standby current	IsB2	CS\# = HIGH, No commands, half bank / address / data change once every four clock cycles	VDD	288	233	189	mA
			Vext	26	26	26	
Operating current	ldD1	$B L=2$, sequential bank access, bank transitions once every trc, half address transitions once every $t_{\text {Rc, }}$, read followed by write sequence, continuous data during WRITE commands.	VDD	365	325	265	mA
			Vext	41	36	36	
Operating current	IDD2	$B L=4$, sequential bank access, bank transitions once every trc, half address transitions once every $t_{\text {Rc, }}$, read followed by write sequence, continuous data during WRITE commands.	VDD	360	340	270	mA
			Vext	48	42	42	
Operating current	IdD3	$B L=8$, sequential bank access, bank transitions once every trc, half address transitions once every $t_{\text {Rc, }}$ read followed by write sequence, continuous data during WRITE commands.	VDD	400	360	-	mA
			Vext	55	48	-	
Burst refresh current	IREF1	Eight bank cyclic refresh, continuous address/data, command bus remains in refresh for all banks	VDD	650	540	400	mA
			Vext	133	111	105	
Disturbed refresh current	IREF2	Single bank refresh, sequential bank access, half address transitions once every trc, continuous data	VDd	310	260	210	mA
			Vext	48	42	42	
Operating burst write current	IdD2W	BL=2, cyclic bank access, half of address bits change every clock cycle, continuous data, measurement is taken during continuous WRITE	VDD	970	820	550	mA
			Vext	100	90	69	
Operating burst write current	IDD4W	$B L=4$, cyclic bank access, half of address bits change every two clocks, continuous data, measurement is taken during continuous WRITE	VDD	690	560	410	mA
			Vext	88	77	63	
Operating burst write current	IDD8w	BL=8, cyclic bank access, half of address bits change every four clocks, continuous data, measurement is taken during continuous WRITE	VDD	600	450	-	mA
			Vext	60	51	-	
Operating burst read current	IdD2R	BL=2, cyclic bank access, half of address bits change every clock cycle, measurement is taken during continuous READ	VDD	970	840	560	mA
			VEXt	100	90	69	
Operating burst read current	IDD4R	$B L=4$, cyclic bank access, half of address bits change every two clocks, measurement is taken during continuous READ	VDD	720	580	420	mA
			Vext	88	77	63	
Operating burst read current	IdD8R	$B L=8$, cyclic bank access, half of address bits change every four clocks, measurement is taken during continuous READ	VDD	550	450	-	mA
			Vext	60	51	-	

Remarks 1. IdD specifications are tested after the device is properly initialized. $0^{\circ} \mathrm{C} \leq \mathrm{Tc} \leq 95^{\circ} \mathrm{C} ; 1.7 \mathrm{~V} \leq \mathrm{VDD} \leq 1.9 \mathrm{~V}$, $2.38 \mathrm{~V} \leq \mathrm{VEXT}^{5} 2.63 \mathrm{~V}, 1.7 \mathrm{~V} \leq \mathrm{VDDQ} \leq 1.9 \mathrm{~V}(-\mathrm{E}), 1.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \mathrm{L} \leq 1.6 \mathrm{~V}(-\mathrm{EF}), \mathrm{V}_{\mathrm{REF}}=\mathrm{V} \mathrm{DD} \mathrm{Q} / 2$
2. $\mathrm{tck}=\mathrm{t} \mathrm{t} K=\mathrm{MIN} ., \mathrm{tRC}=\mathrm{MIN}$.
3. Input slew rate is specified in Recommended DC Operating Conditions and Recommended AC Operating Conditions.
4. IdD parameters are specified with ODT disabled.
5. Continuous data is defined as half the D or Q signals changing between HIGH and LOW every half clock cycles (twice per clock).
6. Continuous address is defined as half the address signals between HIGH and LOW every clock cycles (once per clock).
7. Sequential bank access is defined as the bank address incrementing by one ever trc.
8. Cyclic bank access is defined as the bank address incrementing by one for each command access. For $B L=4$ this is every other clock.
9. CS\# is HIGH unless a READ, WRITE, AREF, or MRS command is registered. CS\# never transitions more than per clock cycle.

AC Characteristics

AC Test Conditions

Input waveform

Output waveform

Output load condition

AC Characteristics <Read and Write Cycle>

$\mathrm{VdoQ}=1.8 \mathrm{~V}$

Parameter	Symbol	$\begin{gathered} -\mathrm{E} 25 \\ (400 \mathrm{MHz}) \end{gathered}$		$\begin{gathered} \text {-E33 } \\ (300 \mathrm{MHz}) \end{gathered}$		$\begin{gathered} -E 50 \\ (200 \mathrm{MHz}) \end{gathered}$		Unit	Note
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Clock									
Clock cycle time (CK,CK\#,DK,DK\#)	tck, tok	2.5	5.7	3.3	5.7	5.0	5.7	ns	
Clock frequency (CK,CK\#,DK,DK\#)	tck, tok	175	400	175	300	175	200	MHz	
Random Cycle time	trc	20		20		20		ns	
Clock Jitter: period	tJIT PER	-150	150	-200	200	-250	250	ps	1, 2
Clock Jitter: cycle-to-cycle	tıit cc		300		400		500	ps	
Clock HIGH time (CK,CK\#,DK,DK\#)	tскн, tokn	0.45	0.55	0.45	0.55	0.45	0.55	Cycle	
Clock LOW time (CK,CK\#,DK,DK\#)	tckl, tokl	0.45	0.55	0.45	0.55	0.45	0.55	Cycle	
Clock to input data clock	tckdk	-0.3	0.5	-0.3	1.0	-0.3	1.5	ns	
Mode register set cycle time to any command	tmRSC	6		6		6		Cycle	
PLL Lock time	tck Lock	15		15		15		$\mu \mathrm{s}$	
Clock static to PLL reset	tck Reset	30		30		30		ns	
Output Times									
Output data clock HIGH time	tQKH	0.9	1.1	0.9	1.1	0.9	1.1	tck	
Output data clock LOW time	tokı	0.9	1.1	0.9	1.1	0.9	1.1	tckl	
QK edge to clock edge skew	tckok	-0.25	0.25	-0.3	0.3	-0.5	0.5	ns	
QK edge to output data edge	tякхо, tокх1	-0.2	0.2	-0.25	0.25	-0.3	0.3	ns	3,5
QK edge to any output data	tqkQ	-0.3	0.3	-0.35	0.35	-0.4	0.4	ns	4, 5
QK edge to QVLD	tokvLd	-0.3	0.3	-0.35	0.35	-0.4	0.4	ns	
Setup Times									
Address/command and input	$\mathrm{tas} / \mathrm{tcs}$	0.4		0.5		0.8		ns	
Data-in and data mask to DK	tos	0.25		0.3		0.4		ns	
Hold Times									
Address/command and input	$\mathrm{taH} / \mathrm{tch}$	0.4		0.5		0.8		ns	
Data-in and data mask to DK	toh	0.25		0.3		0.4		ns	

Notes 1. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.
2. Frequency drift is not allowed.
3. tокоо is referenced to Q0-Q8.
takQ1 is referenced to Q9-Q17.
4. takQ takes into account the skew between any QKx and any Q.
5. tякь, tякях are guaranteed by design.

Remark All timing parameters are measured relative to the crossing point of CK/CK\#, DK/DK\# and to the crossing point with Vref of the command, address, and data signals.

AC Characteristics <Read and Write Cycle >

$\mathrm{V}_{\mathrm{DD}} \mathrm{Q}=1.5 \mathrm{~V}$

Parameter	Symbol	$\begin{gathered} -\mathrm{EF} 25 \\ (400 \mathrm{MHz}) \end{gathered}$		$\begin{gathered} -E F 33 \\ (300 \mathrm{MHz}) \end{gathered}$		$\begin{gathered} -E F 50 \\ (200 \mathrm{MHz}) \end{gathered}$		Unit	Note
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Clock									
Clock cycle time (CK,CK\#,DK,DK\#)	tck, tok	2.5	5.7	3.3	5.7	5.0	5.7	ns	
Clock frequency (CK,CK\#,DK,DK\#)	tck, tok	175	400	175	300	175	200	MHz	
Random Cycle time	$t_{\text {RC }}$	20		20		20		ns	
Clock Jitter: period	tJIt PER	-150	150	-200	200	-250	250	ps	1, 2
Clock Jitter: cycle-to-cycle	tıit cc		300		400		500	ps	
Clock HIGH time (CK,CK\#,DK,DK\#)	tскн, tokn	0.45	0.55	0.45	0.55	0.45	0.55	Cycle	
Clock LOW time (CK,CK\#,DK,DK\#)	tckl, tokl	0.45	0.55	0.45	0.55	0.45	0.55	Cycle	
Clock to input data clock	tckDk	-0.3	0.5	-0.3	1.0	-0.3	1.5	ns	
Mode register set cycle time to any command	tmrsc	6		6		6		Cycle	
PLL Lock time	tck Lock	15		15		15		$\mu \mathrm{s}$	
Clock static to PLL reset	tck Reset	30		30		30		ns	
Output Times									
Output data clock HIGH time	takн	0.9	1.1	0.9	1.1	0.9	1.1	tckh	
Output data clock LOW time	tokL	0.9	1.1	0.9	1.1	0.9	1.1	tckl	
QK edge to clock edge skew	tckok	-0.25	0.25	-0.3	0.3	-0.5	0.5	ns	
QK edge to output data edge	tokqo, takQ1	-0.2	0.2	-0.25	0.25	-0.3	0.3	ns	3, 5
QK edge to any output data	tokQ	-0.3	0.3	-0.35	0.35	-0.4	0.4	ns	4, 5
QK edge to QVLD	tqkvLd	-0.3	0.3	-0.35	0.35	-0.4	0.4	ns	
Setup Times									
Address/command and input	tas/tcs	0.4		0.5		0.8		ns	
Data-in and data mask to DK	tos	0.25		0.3		0.4		ns	
Hold Times									
Address/command and input	$\mathrm{taH} / \mathrm{tch}$	0.4		0.5		0.8		ns	
Data-in and data mask to DK	toh	0.25		0.3		0.4		ns	

Notes 1. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.
2. Frequency drift is not allowed.
3. toкоo is referenced to Q0-Q8
tQкQ1 is referenced to Q9-Q17.
4. taка takes into account the skew between any QKx and any Q.
5. tакя, tакях are guaranteed by design.

Remark All timing parameters are measured relative to the crossing point of CK/CK\#, DK/DK\# and to the crossing point with VREF of the command, address, and data signals.

Figure 1-1. Clock / Input Data Clock Command / Address Timings

Temperature and Thermal Impedance

Temperature Limits

Parameter	Symbol	MIN.	MAX.	Unit	Note
Reliability junction temperature	T_{J}	0	+110	${ }^{\circ} \mathrm{C}$	1
Operating junction temperature	T_{J}	0	+100	${ }^{\circ} \mathrm{C}$	2
Operating case temperature	T.	0	+95	${ }^{\circ} \mathrm{C}$	3

Notes 1. Temperatures greater than $110^{\circ} \mathrm{C}$ may cause permanent damage to the device. This is a stress rating only and functional operation of the device at or above this is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability of the part.
2. Junction temperature depends upon cycle time, loading, ambient temperature, and airflow.
3. MAX operating case temperature; Tc is measured in the center of the package. Device functionality is not guaranteed if the device exceeds maximum Tc during operation.

Thermal Impedance

Substrate	Ball	$\theta \mathrm{ja}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$			$\begin{gathered} \theta \mathrm{jb} \\ \left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{gathered}$	$\theta j c$ (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
		Air Flow $=0 \mathrm{~m} / \mathrm{s}$	Air Flow $=1 \mathrm{~m} / \mathrm{s}$	Air Flow $=2 \mathrm{~m} / \mathrm{s}$		
4 - Layer	Lead	32.4	26.8	24.6	23.0	1.8
8 - Layer	Lead	26.5	22.3	20.8	16.8	1.8
4 - Layer	Lead free	32.1	26.6	24.4	22.7	1.8
8 - Layer	Lead free	26.3	22.1	20.6	16.6	1.8

2. Operation

2.1 Command Operation

According to the functional signal description, the following command sequences are possible. All input states or sequences not shown are illegal or reserved. All command and address inputs must meet setup and hold times around the rising edge of CK.

Table 2-1. Address Widths at Different Burst Lengths

Burst Length	Configuration
$B L=2$	$A 0-A 19$
$B L=4$	$A 0-A 18$
$B L=8$	$A 0-A 17$

Table 2-2. Command Table

Operation	Code	CS\#	WE\#	REF\#	A0-A19	BA0-BA2	Notes
Device DESELECT / No Operation	DESEL / NOP	H	X	X	X	X	
MRS: Mode Register Set	MRS	L	L	L	OPCODE	X	1
READ	READ	L	H	H	A	BA	2
WRITE	WRITE	L	L	H	A	BA	2
AUTO REFRESH	AREF	L	H	L	X	BA	

Notes 1. Only A0-A17 are used for the MRS command.
2. See Table 2-1.

Remark $\mathrm{X}=$ "Don't Care", $\mathrm{H}=$ logic HIGH, $\mathrm{L}=$ logic LOW, $\mathrm{A}=$ valid address, $\mathrm{BA}=$ valid bank address

2.2 Description of Commands

DESEL / NOP ${ }^{\text {Note1 }}$

The NOP command is used to perform a no operation to the μ PD48288118, which essentially deselects the chip. Use the NOP command to prevent unwanted commands from being registered during idle or wait states. Operations already in progress are not affected. Output values depend on command history.

MRS

The mode register is set via the address inputs A0-A17. See Figure 2-5. Mode Register Bit Map for further information. The MRS command can only be issued when all banks are idle and no bursts are in progress.

READ

The READ command is used to initiate a burst read access to a bank. The value on the BAO-BA2 inputs selects the bank, and the address provided on inputs A0-A19 selects the data location within the bank.

WRITE

The WRITE command is used to initiate a burst write access to a bank. The value on the BA0-BA2 inputs selects the bank, and the address provided on inputs A0-A19 selects the data location within the bank. Input data appearing on the D is written to the memory array subject to the DM input logic level appearing coincident with the data. If the DM signal is registered LOW, the corresponding data will be written to memory. If the DM signal is registered HIGH, the corresponding data inputs will be ignored (i.e., this part of the data word will not be written).

AREF

The AREF is used during normal operation of the $\mu \mathrm{PD} 48288118$ to refresh the memory content of a bank. The command is non-persistent, so it must be issued each time a refresh is required. The value on the BA0-BA2 inputs selects the bank. The refresh address is generated by an internal refresh controller, effectively making each address bit a "Don't Care" during the AREF command. The μ PD48288118 requires 64 K cycles at an average periodic interval of 0.49 $\mu \mathrm{s}{ }^{\text {Note2 }}$ (MAX.). To improve efficiency, eight AREF commands (one for each bank) can be posted to μ PD48288118 at periodic intervals of $3.9 \mu \mathrm{~s}^{\text {Note3 }}$.

Within a period of 32 ms , the entire memory must be refreshed. The delay between the AREF command and a subsequent command to same bank must be at least trc as continuous refresh. Other refresh strategies, such as burst refresh, are also possible.

Notes 1. When the chip is deselected, internal NOP commands are generated and no commands are accepted.
2. Actual refresh is $32 \mathrm{~ms} / 8 \mathrm{k} / 8=0.488 \mu \mathrm{~s}$.
3. Actual refresh is $32 \mathrm{~ms} / 8 \mathrm{k}=3.90 \mu \mathrm{~s}$.

2.3 Initialization

The μ PD48288118 must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operations or permanent damage to the device. The following sequence is used for Power-Up:

1. Apply power (VExt, $\mathrm{V}_{\mathrm{dd}}, \mathrm{V}_{\mathrm{DDQ}}, \mathrm{V}_{\mathrm{REF}}, \mathrm{V}_{\mathrm{Tt}}$) and start clock as soon as the supply voltages are stable. Apply V_{dD} and VExt before or at the same time as VdDQ. Apply VddQ before or at the same time as Vref and Vtt. Although there is no timing relation between VExt and Vdd, the chip starts the power-up sequence only after both voltages are at their nominal levels. $V_{D D Q}$ supply must not be applied before $V_{D D}$ supply. CK/CK\# must meet $V_{I D(D C)}$ prior to being applied. Maintain all remaining balls in NOP conditions.

Note No rule of apply power sequence is the design target.
2. Maintain stable conditions for $200 \mu \mathrm{~s}$ (MIN.).
3. Issue three or more back-to-back and clock consecutive MRS commands: two dummies plus one valid MRS. It is recommended that the dummy MRS commands are the same value as the desired MRS.
4. tmrsc after valid MRS, an AUTO REFRESH command to all 8 banks must be issued and wait for $15 \mu \mathrm{~s}$ with CK/CK\# toggling in order to lock the PLL prior to normal operation.
5. After trc, the chip is ready for normal operation.

2.4 Power-On Sequence

Figure 2-1. Power-Up Sequence

Notes 1. Recommended all address pins held LOW during dummy MRS commands.
2. A10-A17 must be LOW.
$\begin{aligned} \text { Remark } & \text { MRS: MRS command } \\ & \text { RFp: REFRESH bank } p \\ & \text { AC : Any Command }\end{aligned}$

2.5 Programmable Impedance Output Buffer

The μ PD48288118 is equipped with programmable impedance output buffers. This allows a user to match the driver impedance to the system. To adjust the impedance, an external precision resistor (RQ) is connected between the ZQ ball and Vss. The value of the resistor must be five times the desired impedance. For example, a 300Ω resistor is required for an output impedance of 60Ω. To ensure that output impedance is one fifth the value of $R Q$ (within 15 percent), the range of $R Q$ is 125Ω to 300Ω. Output impedance updates may be required because, over time, variations may occur in supply voltage and temperature. The device samples the value of RQ. An impedance update is transparent to the system and does not affect device operation. All data sheet timing and current specifications are met during an update.

2.6 PLL Reset

The μ PD48288118 utilizes internal Phase-locked loops for maximum output, data valid windows. It can be placed into a stopped-clock state to minimize power with a modest restart time of $15 \mu \mathrm{~s}$. The clock (CK/CK\#) must be toggled for $15 \mu \mathrm{~s}$ in order to stabilize PLL circuits for next READ operation.

2.7 Clock Input

Table 2-3. Clock Input Operation Conditions

Parameter	Symbol	Conditions	MIN.	MAX.	Unit	Note
Clock Input Voltage Level	$\operatorname{VIN}(\mathrm{DC})$	CK and CK\#	-0.3	$V_{D D Q}+0.3$	V	
Clock Input Differential Voltage Level	$\mathrm{V}_{\mathrm{ID}(\mathrm{DC})}$	CK and CK\#	0.2	$V_{D D Q}+0.6$	V	8
Clock Input Differential Voltage Level	$\mathrm{V}_{\mathrm{ID}(\mathrm{AC})}$	CK and CK\#	0.4	$V_{D D Q}+0.6$	V	8
Clock Input Crossing Point Voltage Level	$\mathrm{V}_{\mathrm{IX}(\mathrm{AC})}$	CK and CK\#	$V_{D D Q} / 2-0.15$	$V_{D D Q} / 2+0.15$	V	9

Figure 2-2. Clock Input

Notes 1. DK and DK\# have the same requirements as CK and CK\#.
2. All voltages referenced to Vss.
3. Tests for AC timing, IDD and electrical AC and DC characteristics may be conducted at normal reference/supply voltage levels; but the related specifications and device operations are tested for the full voltage range specified.
4. AC timing and IDD tests may use a VIL to V_{I} swing of up to 1.5 V in the test environment, but input timing is still referenced to VREF (or the crossing point for CK/CK\#), and parameters specifications are tested for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals used to test the device is $2 \mathrm{~V} / \mathrm{ns}$ in the range between $\mathrm{V}_{\mathrm{IL}(\mathrm{AC})}$ and $\mathrm{V}_{1 \mathrm{H}(\mathrm{AC})}$.
5. The AC and DC input level specifications are as defined in the HSTL Standard (i.e. the receiver will effectively switch as a result of the signal crossing the AC input level, and will remain in that state as long as the signal does not ring back above[below] the DC input LOW[HIGH] level).
6. The CK/CK\# input reference level (for timing referenced to CK/CK\#) is the point at which CK and CK\# cross. The input reference level for signal other than CK/CK\# is Vref.
7. CK and $\mathrm{CK} \#$ input slew rate must be $>=2 \mathrm{~V} / \mathrm{ns}$ ($>=4 \mathrm{~V} / \mathrm{ns}$ if measured differentially).
8. Vio is the magnitude of the difference between the input level on CK and input level on CK\#.
9. The value of $V_{I X}$ is expected to equal $V_{D D Q} / 2$ of the transmitting device and must track variations in the DC level of the same.
10. CK and CK\# must cross within the region.
11. CK and CK\# must meet at least $\operatorname{VID(DC)}$ (MIN.) when static and centered around $\operatorname{VdDQ} / 2$.
12. Minimum peak-to-peak swing.

2.8 Mode Register Set Command (MRS)

The mode register stores the data for controlling the operating modes of the memory. It programs the μ PD48288118 configuration, burst length, and I/O options. During a MRS command, the address inputs A0-A17 are sampled and stored in the mode register. tmrsc must be met before any command can be issued to the μ PD48288118. The mode register may be set at any time during device operation. However, any pending operations are not guaranteed to successfully complete.

Since MRS is used for internal test mode entry, the designated bit at Figure 2-5. Mode Register Bit Map and Figure 2-27. Mode Register Set Command in Multiplexed Address Mode should be set.

Figure 2-3. Mode Register Set Timing

Remark MRS : MRS command AC : any command

Figure 2-4. Mode Register Set

V//d Don't care

Remark COD: code to be loaded into the register.

Figure 2-5. Mode Register Bit Map

Notes 1. Bits A10-A17 must be set to all '0'. A18-An are "Don't Care".
2. $B L=8$ is not available for configuration 1 .
3. $\pm 30 \%$ temperature variation.
4. Within 15%.

2.9 Read \& Write configuration (Non Multiplexed Address Mode)

Table 2-4 shows, for different operating frequencies, the different μ PD48288118 configurations that can be programmed into the mode register. The READ and WRITE latency (trL and twL) values along with the row cycle times (trc) are shown in clock cycles as well as in nanoseconds. The shaded areas correspond to configurations that are not allowed.

Table 2-4. Configuration Table

Frequency	Symbol	Configuration			Unit
		$1^{\text {Note }}$	2	3	
	trc	4	6	8	Cycles
	tRL	4	6	8	Cycles
	twL	5	7	9	Cycles
400 MHz	trc			20.0	ns
	tRL			20.0	ns
	twL			22.5	ns
300 MHz	trc		20.0	26.7	ns
	tRL		20.0	26.7	ns
	twL		23.3	30.0	ns
200MHz	trc	20.0	30.0	40.0	ns
	$t_{\text {RL }}$	20.0	30.0	40.0	ns
	twL	25.0	35.0	45.0	ns

Note BL=8 is not available for configuration 1.

2.10 Write Operation (WRITE)

Write accesses are initiated with a WRITE command, as shown in Figure 2-6. Row and bank addresses are provided together with the WRITE command. During WRITE commands, data will be registered at both edges of DK according to the programmed burst length (BL). A WRITE latency (WL) one cycle longer than the programmed READ latency (RL + 1) is present, with the first valid data registered at the first rising DK edge WL cycles after the WRITE command.

Any WRITE burst may be followed by a subsequent READ command. Figure 2-10. WRITE Followed By READ: BL=2, RL=4, WL=5, Configuration 1 and Figure 2-11. WRITE Followed By READ: BL=4, RL=4, WL=5, Configuration 1 illustrate the timing requirements for a WRITE followed by a READ for bursts of two and four, respectively.
Setup and hold times for incoming input data relative to the DK edges are specified as tos and toh. The input data is masked if the corresponding DM signal is HIGH. The setup and hold times for data mask are also tos and tor.

Figure 2-6. WRITE Command

Remark A : Address
BA : Bank address

Figure 2-7. Basic WRITE Burst / DM Timing

Figure 2-8. WRITE Burst Basic Sequence: $B L=2, R L=4, W L=5$, Configuration 1

Figure 2-9. WRITE Burst Basic Sequence: BL=4, RL=4, WL=5, Configuration 1

Remarks 1. WR : WRITE command
A/BAp : Address A of bank p
WL : WRITE latency
Dpq : Data q to bank p
2. Any free bank may be used in any given CMD. The sequence shown is only one example of a bank sequence.

Figure 2-10. WRITE Followed By READ: BL=2, RL=4, WL=5, Configuration 1

Z/Z Don't care Undefined

Figure 2-11. WRITE Followed By READ: BL=4, RL=4, WL=5, Configuration 1

Remark WR : WRITE command
RD : READ command
A/BAp : Address A of bank p
WL : WRITE latency
RL : READ latency
Dpq : Data q to bank p
Qpq : Data q from bank p

2.11 Read Operation (READ)

Read accesses are initiated with a READ command, as shown in Figure 2-12. Row and bank addresses are provided with the READ command.

During READ bursts, the memory device drives the read data edge-aligned with the QK signal. After a programmable READ latency, data is available at the outputs. The data valid signal indicates that valid data will be present in the next half clock cycle.

The skew between QK and the crossing point of CK is specified as tскок. toкяo is the skew between QKO and the last valid data edge considered the data generated at the Q0-Q17 in x 36 and Q0-Q8 in x 18 data signals. takQ1 is the skew between QK1 and the last valid data edge considered the data generated at the Q18-Q35 in x36 and Q9-Q17 in x18 data signals. taкQx is derived at each QKx clock edge and is not cumulative over time. taкQ is the maximum of tqкоо and takq1.

After completion of a burst, assuming no other commands have been initiated, Q will go High-Z. Back-to-back READ commands are possible, producing a continuous flow of output data.

Minimum READ data valid window can be expressed as MIN.(tякн, tякь) $-2 \times$ MAX.(tякяx).
Any READ burst may be followed by a subsequent WRITE command. Figure 2-16. READ followed by WRITE, BL=2, RL=4, WL=5, Configuration 1 and Figure 2-17. READ followed by WRITE, BL=4, RL=4, WL=5, Configuration 1 illustrate the timing requirements for a READ followed by a WRITE.

Figure 2-12. READ Command

Figure 2-13. Basic READ Burst Timing

Undefined

Note 1. Minimum READ data valid window can be expressed as MIN.(tякн, tякц) $-2 \times$ MAX.(taках). tскн and tckl are recommended to have 50% / 50% duty.

Remarks 1. takqo is referenced to Q0-Q8.
takQ1 is referenced to Q9-Q17.
2. t tкко takes into account the skew between any $Q K x$ and any Q.
3. tскак is specified as CK rising edge to QK rising edge.

Figure 2-14. READ Burst Basic Sequence: $B L=2, R L=4$, Configuration 1

Figure 2-15. READ Burst Basic Sequence: BL=4, RL=4, Configuration 1

V/A Don't care Undefined

Remark RD : READ command
A/BAp: Address A of bank p
RL : READ latency
Qpq : Data q from bank p

Figure 2-16. READ followed by WRITE, BL=2, RL=4, WL=5, Configuration 1

Don't care Undefined

Figure 2-17. READ followed by WRITE, BL=4, RL=4, WL=5, Configuration 1

Remark WR : WRITE command
RD : READ command
A/BAp : Address A of bank p
WL : WRITE latency
RL : READ latency
Dpq : Data q to bank p
Qpq : Data q from bank p

Figure 2-18. READ/WRITE Interleave: $B L=4, t_{R C}=6, W L=7$, Configuration 2

V// D Don't care Undefined

Figure 2-19. READ/WRITE Interleave: $\mathrm{BL}=4, \mathrm{trc}=8, \mathrm{WL}=9$, Configuration 3

Remark WR : WRITE command
RD : READ command
A/BAp: Address A of bank p
WL : WRITE latency
RL : READ latency
Dpq : Data q to bank p
Qpq : Data q from bank p

2.12 Refresh Operation: AUTO REFRESH Command (AREF)

AREF is used to perform a REFRESH cycle on one row in a specific bank. The row addresses are generated by an internal refresh counter; external address balls are "Don't Care." The delay between the AREF command and a subsequent command to the same bank must be at least trc.

Within a period of 32 ms (tref), the entire memory must be refreshed. Figure 2-21. illustrates an example of a continuous refresh sequence. Other refresh strategies, such as burst refresh, are also possible.

Figure 2-20. AUTO REFRESH Command

Don't care

Remark BA: Bank address

Figure 2-21. AUTO REFRESH Cycle

Remarks 1. ACx: Any command on bank x
ARFx: Auto refresh bank x
ACy: Any command on different bank.
2. trC $^{\text {is configuration-dependent. Refer to Table 2-4. Configuration Table. }}$

2.13 On-Die Termination

On-die termination (ODT) is enabled by setting A9 to " 1 " during an MRS command. With ODT on, all the DQs and DM are terminated to $V_{T T}$ with a resistance $\mathrm{R}_{\mathrm{T} T \text {. The command, address, and clock signals are not terminated. Figure 2-22. }}^{\text {2 }}$ below shows the equivalent circuit of a Q receiver with ODT. ODTs are dynamically switched off during READ commands and are designed to be off prior to the μ PD48288118 driving the bus. Similarly, ODTs are designed to switch on after the $\mu \mathrm{PD} 48288118$ has issued the last piece of data. ODT at the D inputs and DM are always on.

Table 2-5. On-Die Termination DC Parameters

Description	Symbol	MIN.	MAX.	Units	Note
Termination voltage	V_{TT}	$0.95 \times \mathrm{V}_{\text {REF }}$	$1.05 \times \mathrm{V}_{\mathrm{REF}}$	V	1,2
On-Die termination	R_{TT}	125	185	Ω	3

Notes 1. All voltages referenced to Vss (GND).
2. $V_{t t}$ is expected to be set equal to $V_{\text {ref }}$ and must track variations in the $D C$ level of $V_{\text {ref. }}$
3. The Rtt value is measured at $95^{\circ} \mathrm{C} \mathrm{Tc}$.

Figure 2-22. On- Die Termination-Equivalent Circuit

Figure 2-23. READ Burst with ODT: BL=2, Configuration 1

V/A Don't care Undefined

Remark RD : READ command
A/BAp: Address A of bank p
RL : READ latency
Qpq : Data q from bank p

Figure 2-24. READ NOP READ with ODT: BL=2, Configuration 1

Figure 2-25. READ NOP NOP READ with ODT: BL=2, Configuration 1

Remark RD : READ command
A/BAp: Address A of bank p
RL : READ latency
Qpq : Data q from bank p

2.14 Operation with Multiplexed Address

In multiplexed address mode, the address can be provided to the μ PD48288118 in two parts that are latched into the memory with two consecutive rising clock edges. This provides the advantage that a maximum of 11 address balls are required to control the μ PD48288118, reducing the number of balls on the controller side. The data bus efficiency in continuous burst mode is not affected for $B L=4$ and $B L=8$ since at least two clocks are required to read the data out of the memory. The bank addresses are delivered to the μ PD48288118 at the same time as the WRITE command and the first address part, Ax.

This option is available by setting bit A5 to " 1 " in the mode register. Once this bit is set, the READ, WRITE, and MRS commands follow the format described in Figure 2-26. See Figure 2-28. Power-Up Sequence in Multiplexed Address Mode for the power-up sequence.

Figure 2-26. Command Description in Multiplexed

Remarks 1. Ax, Ay : Address
BA : Bank Address
2. The minimum setup and hold times of the two address parts are defined tas and tar.

Figure 2-27. Mode Register Set Command in Multiplexed Address Mode

Notes 1. Bits A10-A17 must be set to all ' 0 '.
2. $B L=8$ is not available for configuration 1 .
3. $\pm 30 \%$ temperature variation.
4. Within 15%.

Remark The address A0, A3, A4, A5, A8, and A9 must be set as follows in order to activate the mode register in the multiplexed address mode.

Figure 2-28. Power-Up Sequence in Multiplexed Address Mode

Notes 1. Recommended all address pins held LOW during dummy MRS command.
2. A10-A17 must be LOW.
3. Address A5 must be set HIGH (muxed address mode setting when μ PD48288118 is in normal mode of operation).
4. Address A5 must be set HIGH (muxed address mode setting when μ PD48288118 is already in muxed address mode).

Remark MRS: MRS command
RFp : REFRESH Bank p
AC : any command

2.15 Address Mapping in Multiplexed Mode

The address mapping is described in Table 2-6 as a function of data width and burst length.

Table 2-6. Address Mapping in Multiplexed Address Mode

Data Width		Ball	Address										
			A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
x18	BL=2	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
		Ay	X	A1	A2	X	A6	A7	A19	A11	A12	A16	A15
	$B L=4$	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
		Ay	X	A1	A2	X	A6	A7	X	A11	A12	A16	A15
	$B L=8$	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	X
		Ay	X	A1	A2	X	A6	A7	X	A11	A12	A16	A15

Remark X means "Don't care".

2.16 Read \& Write configuration in Multiplexed Address Mode

In multiplexed address mode, the READ and WRITE latencies are increased by one clock cycle. The μ PD48288118 cycle time remains the same, as described in Table 2-7.

Table 2-7. Configuration in Multiplexed Address Mode

Frequency	Symbol	Configuration			Unit
		$1^{\text {Note }}$	2	3	
	trc	4	6	8	Cycles
	tRL	5	7	9	Cycles
	twi	6	8	10	Cycles
400 MHz	trc			20.0	ns
	trL			22.5	ns
	twi			25.0	ns
300 MHz	trc		20.0	26.7	ns
	tRL		23.3	30.0	ns
	twL		26.7	33.3	ns
200 MHz	trc	20.0	30.0	40.0	ns
	$t_{\text {RL }}$	25.0	35.0	45.0	ns
	twL	30.0	40.0	50.0	ns

Note $\mathrm{BL}=8$ is not available for configuration 1.

2.17 Refresh Command in Multiplexed Address Mode

Similar to other commands, the refresh command is executed on the next rising clock edge when in the multiplexed address mode. However, since only bank address is required for AREF, the next command can be applied on the following clock. The operation of the AREF command and any other command is represented in Figure 2-29.

Figure 2-29. Burst REFRESH Operation

Figure 2-30. WRITE Burst Basic Sequence: BL=4, with Multiplexed Addresses, Configuration 1

Figure 2-31. READ Burst Basic Sequence: BL=4, with Multiplexed Addresses, Configuration 1, RL=5

Remark WR : WRITE command
RD : READ command
Ax/BAp : Address Ax of bank p
Ay : Address Ay of bank p
Dpq : Data q to bank p
Qpq : Data q from bank p
WL : WRITE latency
RL : READ latency

3. JTAG Specification

These products support a limited set of JTAG functions as in IEEE standard 1149.1.

Table 3-1. Test Access Port (TAP) Pins

Pin name	Pin assignments	\quad Description
TCK	12 A	Test Clock Input. All input are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.
TMS	11 A	Test Mode Select. This is the command input for the TAP controller state machine.
TDI	12 V	Test Data Input. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP controller state machine and the instruction that is currently loaded in the TAP instruction.
TDO	11 V	Test Data Output. This is the output side of the serial registers placed between TDI and TDO. Output changes in response to the falling edge of TCK.

Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held HIGH for five rising edges of TCK. The TAP controller state is also reset on the POWER-UP.

Table 3-2. JTAG DC Characteristics ($0^{\circ} \mathrm{C} \leq \mathrm{Tc} \leq 95^{\circ} \mathrm{C}, 1.7 \mathrm{~V} \leq \mathrm{VDD} \leq 1.9 \mathrm{~V}$, unless otherwise noted)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit	
JTAG Input leakage current	ILI	$0 \mathrm{~V} \leq \mathrm{V}^{\prime \prime} \leq \mathrm{V}_{\text {DD }}$	-5.0	+5.0	$\mu \mathrm{A}$	
JTAG I/O leakage current	ILO	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{DD}} \mathrm{Q},$ Outputs disabled	-5.0	+5.0	$\mu \mathrm{A}$	
JTAG input HIGH voltage	VIH		$V_{\text {REF }}+0.15$	$V_{\text {do }}+0.3$	V	
JTAG input LOW voltage	VIL		Vsse - 0.3	$V_{\text {Ref }}-0.15$	V	
JTAG output HIGH voltage	Voh1	\mid Іонс $\mid=100 \mu \mathrm{~A}$	VDDQ - 0.2		V	
	Voh2	\| ІОНт	= 2 mA	VDDQ - 0.4		V
JTAG output LOW voltage	Vol1	Iolc $=100 \mu \mathrm{~A}$		0.2	V	
	Vol2	$\mathrm{IOLT}=2 \mathrm{~mA}$		0.4	V	

Note 1. All voltages referenced to Vss (GND).
2. Overshoot: $\mathrm{V}_{\mathrm{H}}(\mathrm{AC}) \leq \mathrm{VDD}_{\mathrm{DD}}+0.7 \mathrm{~V}$ for $\mathrm{t} \leq \mathrm{tck} / 2$.

Undershoot: VIL (AC) $\geq-0.5 \mathrm{~V}$ for $\mathrm{t} \leq \mathrm{tck} / 2$.
During normal operation, VDDQ must not exceed VDD.

JTAG AC Test Conditions

Input waveform (Rise / Fall time $\leq 0.3 \mathrm{~ns}$)

Output waveform

Output load condition

Table 3-3. JTAG AC Characteristics $\left(0^{\circ} \mathrm{C} \leq \mathrm{Tc} \leq 95^{\circ} \mathrm{C}\right)$

Note 1. tcss and tchs refer to the setup and hold time requirements of latching data from the boundary scan register.

JTAG Timing Diagram

Table 3-4. Scan Register Definition (1)

Register name	Description
Instruction register	The 8 bit instruction registers hold the instructions that are executed by the TAP controller. The register can be loaded when it is placed between the TDI and TDO pins. The instruction register is automatically preloaded with the IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.
Bypass register	The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs TAP to another device in the scan chain with as little delay as possible. The bypass register is set LOW (Vss) when the bypass instruction is executed.
ID register	The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when the controller is put in capture-DR state with the IDCODE command loaded in the instruction register. The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR state.
Boundary register	The boundary register, under the control of the TAP controller, is loaded with the contents of the $R A M s ~ I / O ~ r i n g ~ w h e n ~ t h e ~ c o n t r o l l e r ~ i s ~ i n ~ c a p t u r e-D R ~ s t a t e ~ a n d ~ t h e n ~ i s ~ p l a c e d ~ b e t w e e n ~ t h e ~ T D I ~ a n d ~$
TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to	
activate the boundary register.	
The Scan Exit Order tables describe which device bump connects to each boundary register	
location. The first column defines the bit's position in the boundary register. The second column is	
the name of the input or I/O at the bump and the third column is the bump number.	

Table 3-5. Scan Register Definition (2)

Register name	Bit size	Unit
Instruction register	8	bit
Bypass register	1	bit
ID register	32	bit
Boundary register	113	bit

Table 3-6. ID Register Definition

Part number	Organization	ID [31:28] vendor revision no.	ID [27:12] part no.	ID [11:1] vendor ID no.	ID [0] fix bit
μ PD48288118	$16 \mathrm{M} \times 18$	0001	0001100010100111	00000010000	1

Table 3-7. SCAN Exit Order

Bit no.	Signal name	Bump ID	Bit no.	Signal name	Bump ID
1	DK	K1	39	D11	R11
2	DK\#	K2	40	D11	R11
3	CS\#	L2	41	D10	P11
4	REF\#	L1	42	D10	P11
5	WE\#	M1	43	Q10	P10
6	A17	M3	44	Q10	P10
7	A16	M2	45	D9	N11
8	A18	N1	46	D9	N11
9	A15	P1	47	Q9	N10
10	Q14	N3	48	Q9	N10
11	Q14	N3	49	DM	P12
12	D14	N2	50	A19	N12
13	D14	N2	51	A11	M11
14	Q15	P3	52	A12	M10
15	Q15	P3	53	A10	M12
16	D15	P2	54	A13	L12
17	D15	P2	55	A14	L11
18	QK1	R2	56	BA1	K11
19	QK1\#	R3	57	CK\#	K12
20	D16	T2	58	CK	J12
21	D16	T2	59	BAO	J11
22	Q16	T3	60	A4	H11
23	Q16	T3	61	A3	H12
24	D17	U2	62	A0	G12
25	D17	U2	63	A2	G10
26	Q17	U3	64	A1	G11
27	Q17	U3	65	(A20)	E12
28	ZQ	V2	66	QVLD	F12
29	Q13	U10	67	Q3	F10
30	Q13	U10	68	Q3	F10
31	D13	U11	69	D3	F11
32	D13	U11	70	D3	F11
33	Q12	T10	71	Q2	E10
34	Q12	T10	72	Q2	E10
35	D12	T11	73	D2	E11
36	D12	T11	74	D2	E11
37	Q11	R10	75	QKO	D11
38	Q11	R10	76	QK0\#	D10

Bit no.	Signal name	Bump ID
77	D1	C11
78	D1	C11
79	Q1	C10
80	Q1	C10
81	D0	B11
82	D0	B11
83	Q0	B10
84	Q0	B10
85	Q4	B3
86	Q4	B3
87	D4	B2
88	D4	B2
89	Q5	C3
90	Q5	C3
91	D5	C2
92	D5	C2
93	Q6	D3
94	Q6	D3
95	D6	D2
96	D6	D2
97	D7	E2
98	D7	E2
99	Q7	E3
100	Q7	E3
101	D8	F2
102	D8	F2
103	Q8	F3
104	Q8	F3
105	(A21)	E1
106	A5	F1
107	A6	G2
108	A7	G3
109	A8	G1
110	BA2	H1
111	A9	H2
112	NF	J2
113	NF	J1

Note Any unused balls that are in the order will read as a logic " 0 ".

JTAG Instructions

Many different instructions $\left(2^{8}\right)$ are possible with the 8 -bit instruction register. All used combinations are listed in Table 3-8, Instruction Codes. These six instructions are described in detail below. The remaining instructions are reserved and should not be used.

The TAP controller used in this RAM is fully compliant to the 1149.1 convention. Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO balls. To execute the instruction once it is shifted in, the TAP controller needs to be moved into the Update-IR state.

Table 3-8

Instructions	Instruction Code [7:0]	Description
EXTEST	00000000	The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-scan register cells at output pins are used to apply test vectors, while those at input pins capture test results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST, the output drive is turned on and the PRELOAD data is driven onto the output pins.
IDCODE	00100001	The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the test-logic-reset state.
SAMPLE / PRELOAD	00000101	SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-DR state loads the data in the RAMs input and Q pins into the boundary scan register. Because the RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample metastable input will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus hold time (tcs plus tch). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins.
CLAMP	00000111	When the CLAMP instruction is loaded into the instruction register, the data driven by the output balls are determined from the values held in the boundary scan register. Selects the bypass register to be connected between TDI and TDO. Data driven by output balls are determined from values held in the boundary scan register.
High-Z	00000011	The High-z instruction causes the boundary scan register to be connected between the TDI and TDO. This places all RAMs outputs into a High-Z state. Selects the bypass register to be connected between TDI and TDO. All outputs are forced into high impedance state.
BYPASS	11111111	When the BYPASS instruction is loaded in the instruction register, the bypass register is placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
Reserved for Future Use	-	The remaining instructions are not implemented but are reserved for future use. Do not use these instructions.

TAP Controller State Diagram

4. Package Drawing

144-PIN TAPE FBGA ($\mu \mathrm{BGA}$) (18.5x11)

	(UNIT:mm)
ITEM	DIMENSIONS
D	18.50 ± 0.10
D 1	17.90
D 2	14.52
E	11.00 ± 0.10
E 1	10.70
E 2	2.184
w	0.20
A	1.07 ± 0.10
A 1	0.39 ± 0.05
A2	0.68
A3	0.08 MAX.
eD	1.00
eE	0.80
SD	0.50
SE	2.00
b	0.51 ± 0.05
x	0.15
y	0.10
$y 1$	0.20
ZD	0.75
ZE	1.10
	P144FF-80-DW1

© NEC Electronics Corporation 2008

5. Recommended Soldering Condition

Please consult with our sales offices for soldering conditions of these products.

Types of Surface Mount Devices
μ PD48288118FF-DW1 : 144-pin TAPE FBGA (18.5×11)
μ PD48288118FF-DW1-A : 144-pin TAPE FBGA (18.5×11)

6. Revision History

Edition/ Date	Page		Type of revision	Location	Description (Previous edition \rightarrow This edition)
	This edition	Previous edition			
3rd edition/	Throughout	Throughout	Modification		Preliminary Data Sheet \rightarrow Data Sheet
Nov. 2008	p45	p45	Modification	4. Package Drawing	Preliminary information \rightarrow Formal information
4th edition/ Jan. 2009	Throughout	Throughout	Modification		Modified terms.

[MEMO]

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
(3) PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.
The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

- The information in this document is current as of January, 2009. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.
(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

