TELECOMMUNICATION SYSTEM 50 A 10/1000 OVERVOLTAGE PROTECTORS

- 4 kV 10/700, 100 A 5/310 ITU-T K.20/21 rating
- Ion-Implanted Breakdown Region Precise and Stable Voltage Low Voltage Overshoot under Surge

DEVICE	$V_{\text {DRM }}$ V	$\begin{gathered} \hline \mathrm{V}_{\text {(BO) }} \\ \mathrm{V} \end{gathered}$
‘4070	58	70
‘4080	65	80
‘4095	75	95
'4115	90	115
'4125	100	125
'4145	120	145
'4165	135	165
‘4180	145	180
'4200	155	200
‘4220	160	220
‘4240	180	240
'4250	190	250
'4265	200	265
'4290	220	290
‘4300	230	300
‘4350	275	350
‘4395	320	395
‘4400	300	400

- Rated for International Surge Wave Shapes

WAVE SHAPE	STANDARD	ITSP A
$2 / 10 \mu \mathrm{~s}$	GR-1089-CORE	300
$8 / 20 \mu \mathrm{~s}$	IEC 61000-4-5	220
$10 / 160 \mu \mathrm{~s}$	FCC Part 68	120
$10 / 700 \mu \mathrm{~s}$	ITU-T K.20/21	100
$10 / 560 \mu \mathrm{~s}$	FCC Part 68	75
$10 / 1000 \mu \mathrm{~s}$	GR-1089-CORE	50

SMBJ PACKAGE
(TOP VIEW)

MDXXBG
device symbol

Terminals T and R correspond to the alternative line designators of A and B

HOW TO ORDER

DEVICE	PACKAGE	CARRIER	ORDER AS
TISP4xxxM3BJ	BJ (J-Bend DO-214AA/SMB)	Embossed Tape Reeled	TISP4xxxM3BJR
		Bulk Pack	TISP4xxxM3BJ

Insert xxx value corresponding to protection voltages of 070, 080, 095, 115 etcetera.

description

These devices are designed to limit overvoltages on the telephone line. Overvoltages are normally caused by a.c. power system or lightning flash disturbances which are induced or conducted on to the telephone line. A single device provides 2-point protection and is typically used for the protection of 2-wire telecommunication equipment (e.g. between the Ring and Tip wires for telephones and modems). Combinations of devices can be used for multi-point protection (e.g. 3-point protection between Ring, Tip and Ground).

The protector consists of a symmetrical voltage-triggered bidirectional thyristor. Overvoltages are initially clipped by breakdown clamping until the voltage rises to the breakover level, which causes the device to crowbar into a low-voltage on state. This low-voltage on state causes the current resulting from the overvoltage to be safely diverted through the device. The high crowbar holding current prevents d.c. latchup as the diverted current subsides.

The TISP4xxxM3BJ range consists of eighteen voltage variants to meet various maximum system voltage levels (58 V to 320 V). They are guaranteed to voltage limit and withstand the listed international lightning surges in both polarities. These medium (M) current protection devices are in a plastic package SMBJ (JEDEC DO-214AA with J-bend leads) and supplied in embossed tape reel pack. For alternative voltage and holding current values, consult the factory. For higher rated impulse currents in the SMB package, the 100 A 10/1000 TISP4xxxH3BJ series is available.

absolute maximum ratings, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT
	$\mathrm{V}_{\text {DRM }}$	± 58	V
		± 65	
		± 75	
		± 90	
		± 100	
		± 120	
		± 135	
		± 145	
		± 155	
		± 160	
		± 180	
		± 190	
		± 200	
		± 220	
		± 230	
		± 275	
		± 320	
		± 300	
Non-repetitive peak on-state pulse current (see Notes 2, 3 and 4)	$\mathrm{I}_{\text {TSP }}$		A
$2 / 10 \mu \mathrm{~s}$ (GR-1089-CORE, $2 / 10 \mu \mathrm{~s}$ voltage wave shape)		300	
$8 / 20 \mu \mathrm{~s}$ (IEC 61000-4-5, combination wave generator, 1.2/50 voltage, $8 / 20$ current)		220	
10/160 $\mu \mathrm{s}$ (FCC Part 68, 10/160 $\mu \mathrm{s}$ voltage wave shape)		120	
$5 / 200 \mu \mathrm{~s}$ (VDE 0433, 10/700 $\mu \mathrm{s}$ voltage wave shape)		110	
0.2/310 $\mu \mathrm{s}$ (I3124, 0.5/700 $\mu \mathrm{s}$ voltage wave shape)		100	
$5 / 310 \mu \mathrm{~s}$ (ITU-T K.20/21, 10/700 $\mu \mathrm{s}$ voltage wave shape)		100	
$5 / 310 \mu \mathrm{~s}$ (FTZ R12, 10/700 $\mu \mathrm{s}$ voltage wave shape)		100	
10/560 $\mu \mathrm{s}$ (FCC Part 68, 10/560 $\mu \mathrm{s}$ voltage wave shape)		75	
10/1000 $\mu \mathrm{s}$ (GR-1089-CORE, 10/1000 $\mu \mathrm{s}$ voltage wave shape)		50	

NOTES: 1. See Applications Information and Figure 10 for voltage values at lower temperatures.
2. Initially the TISP4xxxM3BJ must be in thermal equilibrium with $T_{J}=25^{\circ} \mathrm{C}$.
3. The surge may be repeated after the TISP4xxxM3BJ returns to its initial conditions.
4. See Applications Information and Figure 11 for current ratings at other temperatures.

PRODUCT INFORMATION

absolute maximum ratings, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted) (continued)

RATING	SYMBOL	VALUE	UNIT
Non-repetitive peak on-state current (see Notes 2, 3 and 5) $20 \mathrm{~ms}(50 \mathrm{~Hz})$ full sine wave $16.7 \mathrm{~ms}(60 \mathrm{~Hz})$ full sine wave 1000 s $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ a.c.	$\mathrm{I}_{\text {TSM }}$	$\begin{aligned} & 30 \\ & 32 \\ & 2.1 \end{aligned}$	A
Initial rate of rise of on-state current, Exponential current ramp, Maximum ramp value < 100 A	$\mathrm{di}_{T} / \mathrm{dt}$	300	A/ $\mu \mathrm{s}$
Junction temperature	T_{J}	-40 to +150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES: 2. Initially the TISP4xxxM3BJ must be in thermal equilibrium with $T_{J}=25^{\circ} \mathrm{C}$.
3. The surge may be repeated after the TISP4xxxM3BJ returns to its initial conditions.
5. EIA/JESD51-2 environment and EIA/JESD51-3 PCB with standard footprint dimensions connected with 5 A rated printed wiring track widths. See Figure 8 for the current ratings at other durations. Derate current values at $-0.61 \% /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $25^{\circ} \mathrm{C}$

electrical characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

electrical characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted) (continued)

NOTE 6: To avoid possible voltage clipping, the ' 4125 is tested with $\mathrm{V}_{\mathrm{D}}=-98 \mathrm{~V}$.

thermal characteristics

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{R}_{\theta \mathrm{JA}}$ Junction to free air thermal resistance	$\begin{aligned} & \text { EIA/JESD51-3 PCB, } \mathrm{I}_{\mathrm{T}}=\mathrm{I}_{\mathrm{TSM}(1000)}, \\ & \left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \text { (see Note } 7\right) \end{aligned}$			115	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	$265 \mathrm{~mm} \times 210 \mathrm{~mm}$ populated line card, 4-layer PCB, $\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{\mathrm{TSM}(1000)}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		52		

NOTE 7: EIA/JESD51-2 environment and PCB has standard footprint dimensions connected with 5 A rated printed wiring track widths.

PRODUCTINFORMATION

PARAMETER MEASUREMENT INFORMATION

Figure 1. VOLTAGE-CURRENT CHARACTERISTIC FOR T AND R TERMINALS
ALL MEASUREMENTS ARE REFERENCED TO THE R TERMINAL

Figure 2.

ON-STATE CURRENT
vs
ON-STATE VOLTAGE

Figure 4.

NORMALISED BREAKOVER VOLTAGE
vS

Figure 3.

NORMALISED HOLDING CURRENT vs

Figure 5.

TYPICAL CHARACTERISTICS

Figure 6.

DIFFERENTIAL OFF-STATE CAPACITANCE vs
RATED REPETITIVE PEAK OFF-STATE VOLTAGE

Figure 7.

RATING AND THERMAL INFORMATION

Figure 8.
$\mathrm{V}_{\text {DRM }}$ DERATING FACTOR
vs
MINIMUM AMBIENT TEMPERATURE

Figure 10

THERMAL IMPEDANCE

POWER DURATION

Figure 9.

Figure 11.

APPLICATIONS INFORMATION

deployment

These devices are two terminal overvoltage protectors. They may be used either singly to limit the voltage between two conductors (Figure 12) or in multiples to limit the voltage at several points in a circuit (Figure 13).

Figure 12. TWO POINT PROTECTION

Figure 13. MULTI-POINT PROTECTION

In Figure 12, protector Th1 limits the maximum voltage between the two conductors to $\pm \mathrm{V}_{(\mathrm{BO})}$. This configuration is normally used to protect circuits without a ground reference, such as modems. In Figure 13, protectors Th2 and Th3 limit the maximum voltage between each conductor and ground to the $\pm \mathrm{V}_{(\mathrm{BO})}$ of the individual protector. Protector Th1 limits the maximum voltage between the two conductors to its $\pm \mathrm{V}_{(\mathrm{BO})}$ value. If the equipment being protected has all its vulnerable components connected between the conductors and ground, then protector Th1 is not required.

impulse testing

To verify the withstand capability and safety of the equipment, standards require that the equipment is tested with various impulse wave forms. The table below shows some common values.

STANDARD	PEAK VOLTAGE SETTING V	VOLTAGE WAVE FORM $\mu \mathrm{s}$	PEAK CURRENT VALUE A	CURRENT WAVE FORM $\mu \mathrm{s}$	$\begin{gathered} \text { TISP4xxxM3 } \\ 25{ }^{\circ} \mathrm{C} \text { RATING } \\ \text { A } \end{gathered}$	SERIES RESISTANCE Ω
GR-1089-CORE	2500	2/10	500	2/10	300	11
	1000	10/1000	100	10/1000	50	
FCC Part 68 (March 1998)	1500	10/160	200	10/160	120	2x5.6
	800	10/560	100	10/560	75	3
	1500	9/720 †	37.5	5/320 †	100	0
	1000	9/720 †	25	5/320 †	100	0
13124	1500	0.5/700	37.5	0.2/310	100	0
ITU-T K.20/K. 21	$\begin{aligned} & 1500 \\ & 4000 \end{aligned}$	10/700	$\begin{gathered} \hline 37.5 \\ 100 \end{gathered}$	5/310	100	0

\dagger FCC Part 68 terminology for the waveforms produced by the ITU-T recommendation K. 21 10/700 impulse generator
If the impulse generator current exceeds the protectors current rating then a series resistance can be used to reduce the current to the protectors rated value and so prevent possible failure. The required value of series resistance for a given waveform is given by the following calculations. First, the minimum total circuit impedance is found by dividing the impulse generators peak voltage by the protectors rated current. The impulse generators fictive impedance (generators peak voltage divided by peak short circuit current) is then subtracted from the minimum total circuit impedance to give the required value of series resistance.

For the FCC Part 68 10/560 waveform the following values result. The minimum total circuit impedance is $800 / 75=10.7 \Omega$ and the generators fictive impedance is $800 / 100=8 \Omega$. This gives a minimum series resistance value of $10.7-8=2.7 \Omega$. After allowing for tolerance, a $3 \Omega \pm 10 \%$ resistor would be suitable. The 10/160 waveform needs a standard resistor value of 5.6Ω per conductor. These would be R1a and R1b in

Figure 15 and Figure 16. FCC Part 68 allows the equipment to be non-operational after the 10/160 (conductor to ground) and 10/560 (inter-conductor) impulses. The series resistor value may be reduced to zero to pass FCC Part 68 in a non-operational mode e.g. Figure 14. In some cases the equipment will require verification over a temperature range. By using the rated waveform values from Figure 11, the appropriate series resistor value can be calculated for ambient temperatures in the range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

a.c. power testing

The protector can withstand currents applied for times not exceeding those shown in Figure 8. Currents that exceed these times must be terminated or reduced to avoid protector failure. Fuses, PTC (Positive Temperature Coefficient) resistors and fusible resistors are overcurrent protection devices which can be used to reduce the current flow. Protective fuses may range from a few hundred milliamperes to one ampere. In some cases it may be necessary to add some extra series resistance to prevent the fuse opening during impulse testing. The current versus time characteristic of the overcurrent protector must be below the line shown in Figure 8. In some cases there may be a further time limit imposed by the test standard (e.g. UL 1459 wiring simulator failure).

capacitance

The protector characteristic off-state capacitance values are given for d.c. bias voltage, V_{D}, values of $0,-1 \mathrm{~V}$, -2 V and -50 V . Where possible values are also given for -100 V . Values for other voltages may be calculated by multiplying the $\mathrm{V}_{\mathrm{D}}=0$ capacitance value by the factor given in Figure 6. Up to 10 MHz the capacitance is essentially independent of frequency. Above 10 MHz the effective capacitance is strongly dependent on connection inductance. In many applications, such as Figure 15 and Figure 17, the typical conductor bias voltages will be about -2 V and -50 V . Figure 7 shows the differential (line unbalance) capacitance caused by biasing one protector at -2 V and the other at -50 V .

normal system voltage levels

The protector should not clip or limit the voltages that occur in normal system operation. For unusual conditions, such as ringing without the line connected, some degree of clipping is permissible. Under this condition about 10 V of clipping is normally possible without activating the ring trip circuit.

Figure 10 allows the calculation of the protector $\mathrm{V}_{\text {DRM }}$ value at temperatures below $25^{\circ} \mathrm{C}$. The calculated value should not be less than the maximum normal system voltages. The TISP4265M3BJ, with a $\mathrm{V}_{\mathrm{DRM}}$ of 200 V , can be used for the protection of ring generators producing 100 V rms of ring on a battery voltage of -58 V (Th2 and Th3 in Figure 17). The peak ring voltage will be $58+1.414^{*} 100=199.4 \mathrm{~V}$. However, this is the open circuit voltage and the connection of the line and its equipment will reduce the peak voltage. In the extreme case of an unconnected line, clipping the peak voltage to 190 V should not activate the ring trip. This level of clipping would occur at the temperature when the $\mathrm{V}_{\text {DRM }}$ has reduced to $190 / 200=0.95$ of its $25^{\circ} \mathrm{C}$ value. Figure 10 shows that this condition will occur at an ambient temperature of $-28^{\circ} \mathrm{C}$. In this example, the TISP4265M3BJ will allow normal equipment operation provided that the minimum expected ambient temperature does not fall below $-28^{\circ} \mathrm{C}$.

JESD51 thermal measurement method

To standardise thermal measurements, the EIA (Electronic Industries Alliance) has created the JESD51 standard. Part 2 of the standard (JESD51-2, 1995) describes the test environment. This is a $0.0283 \mathrm{~m}^{3}\left(1 \mathrm{ft}^{3}\right)$ cube which contains the test PCB (Printed Circuit Board) horizontally mounted at the centre. Part 3 of the standard (JESD51-3, 1996) defines two test PCBs for surface mount components; one for packages smaller than 27 mm on a side and the other for packages up to 48 mm . The SMBJ measurements used the smaller $76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm}$ (3.0 " x 4.5 ") PCB. The JESD51-3 PCBs are designed to have low effective thermal conductivity (high thermal resistance) and represent a worse case condition. The PCBs used in the majority of applications will achieve lower values of thermal resistance and so can dissipate higher power levels than indicated by the JESD51 values.

typical circuits

Figure 14. MODEM INTER-WIRE PROTECTION

Figure 15. PROTECTION MODULE

Figure 16. ISDN PROTECTION

Figure 17. LINE CARD RING/TEST PROTECTION

MECHANICAL DATA

SMBJ (DO-214AA)

plastic surface mount diode package
This surface mount package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

MDXXBHA

PRODUCT INFORMATION

MECHANICAL DATA

recommended printed wiring footprint.

SMB Pad Size

ALL LINEAR DIMENSIONS IN MILLIMETERS

device symbolization code

Devices will be coded as below As the device parameters are symmetrical, terminal 1 is not identified.

DEVICE	SYMBOLIZATION CODE
TISP4070M3BJ	4070 M 3
TISP4080M3BJ	4080 M 3
TISP4095M3BJ	4095 M 3
TISP4115M3BJ	4115 M 3
TISP4125M3BJ	4125 M 3
TISP4145M3BJ	4145 M 3
TISP4165M3BJ	4165 M 3
TISP4180M3BJ	4180 M 3
TISP4200M3BJ	4200 M 3
TISP4220M3BJ	4220 M 3
TISP4240M3BJ	4240 M 3
TISP4250M3BJ	4250 M 3
TISP4265M3BJ	4265 M 3
TISP4290M3BJ	4290 M 3
TISP4300M3BJ	4300 M 3
TISP4350M3BJ	4350 M 3
TISP4395M3BJ	4395 M 3
TISP4400M3BJ	4400 M 3

carrier information

Devices are shipped in one of the carriers below. Unless a specific method of shipment is specified by the customer, devices will be shipped in the most practical carrier. For production quantities the carrier will be embossed tape reel pack. Evaluation quantities may be shipped in bulk pack or embossed tape.

CARRIER	ORDER \#
Embossed Tape Reel Pack	TISP4xxxM3BJR
Bulk Pack	TISP4xxxM3BJ

tape dimensions

NOTES: A. The clearance between the component and the cavity must be within $0,05 \mathrm{~mm}$ MIN. to $0,65 \mathrm{~mm}$ MAX. so that the component cannot rotate more than 20° within the determined cavity.
B. Taped devices are supplied on a reel of the following dimensions:-

Reel diameter:	$330 \pm 3,0 \mathrm{~mm}$
Reel hub diameter	75 mm MIN.
Reel axial hole:	$13,0 \pm 0,5 \mathrm{~mm}$

C. 3000 devices are on a reel.

PRODUCT INFORMATION

IMPORTANT NOTICE

Power Innovations Limited (PI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to verify, before placing orders, that the information being relied on is current.

PI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with PI's standard warranty. Testing and other quality control techniques are utilized to the extent PI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

PI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor is any license, either express or implied, granted under any patent right, copyright, design right, or other intellectual property right of PI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

PI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORISED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS.

Copyright © 2000, Power Innovations Limited

