

Designers Data Sheet

MINIATURE INTEGRAL DIODE ASSEMBLIES

... passivated, diffused-silicon dice interconnected and transfer molded into voidless hybrid rectifier circuit assemblies.

- Large Inrush Surge Capability 45 A (For 1.0 Cycle)
- Efficient Thermal Management Provides Maximum Power Handling

Designers Data for "Worst Case" Conditions

The Designers - Data Sheet permits the design of most circuits entirely from the information presented. Limit curves is representing boundaries on device characteristics are given to facilitate "worst case" design

MAXIMUM RATINGS											
Rating (Per Legi	Symbol	A1	A2	А3	A4	A5	Α6	A7	А8	A9	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	25	50	100	200	300	400	600	800	1000	Volts
DC Output Voltage Resistive Load Capacitative Load Sine Wave RMS Input Voltage	Vdc Vdc ^V RTRMS)	25	50	100	200	300	400	600	500 800 560	1000	Volts Volts
Average Rectified Forward Current (single phase bridge resistive load 60 Hz, see Figure 6, TA = 50°C	10			I		— 1.	5 —	I			Amp
Non-Repetitive Peak Surge Current, (see Figure 2) rated load T _J = 175 ^O C	¹ FSM	-			- 45	for 1	cycl	e			Amı
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-	_		— -5	5 to	+ 1 75	· —		-	°C

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Maximum Instantaneous Forward Voltage Orop (Per Leg) (i.g. = 2.4 Amp. Ty = 25°C) Figure 1	٧F	1.2	Volts
Maximum Reverse Current (Rated dc Voltage across ac terminals, T _J = 25°C)	I _R	20	μΑ

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Effective Bridge Thermal Resistance, Junction to Ambient (Full-Wave Bridge Operation, Typical Printed Circuit Board Mounting)	$R_{\partial JA}$	50	°C/W

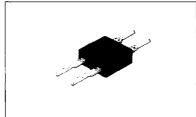
MECHANICAL CHARACTERISTICS

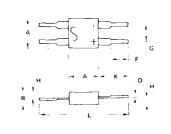
CASE: Transfer-moided plastic encapsulation. POLARITY. Terminal-designation embossed

on case +DC output

-DC output

~AC input


MOUNTING POSITION: Any WEIGHT: 1 0 gram (approx) TERMINALS: Readily solderable connections, corrosion resistant


MDA920A1 thru **MDA920A9**

SINGLE-PHASE **FULL-WAVE BRIDGE**

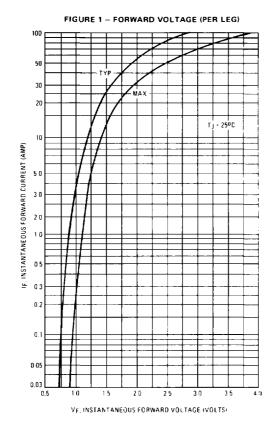
1.5 AMPERES 25-1000 VOLTS

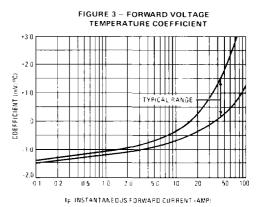
NÚTES I LEAD DIM 'D' TO BE MEASURED WITHIN F' 2 LEADS FORMED TO FIT INTO HOLE 0.94 mm (0.037) MIN

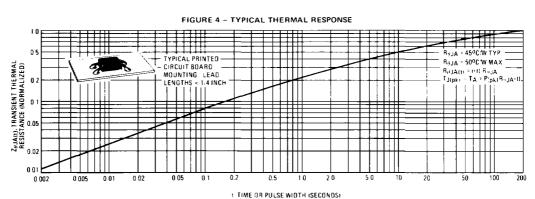
	MILLIN	AETERS	INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	610	6.73	0.240	0.265		
В	2 29	279	0.090	0110		
D	0.51	0 94	0 020	0.037		
F	3 56	6 35	0.140	0 250		
G	3 68	3 94	0 145	0 155		
H	1 62	1 27	0 040	0.050		
K	6 60	10.16	0.260	0.400		
ι	19 30	27 05	0.760	1 065		

CASE 109-03

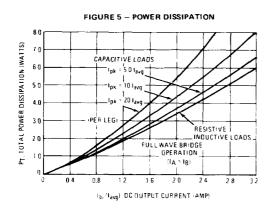
MDA920A1 thru MDA920A9




FIGURE 2 - MAXIMUM SURGE CAPABILITY


SURGE CONDITIONS APPLIED AT RATED LOAD CONDITIONS IT, > 1759C)

VRRM APPLIED AFTER SURGE


VRRM APPLIED AFTER SURGE

NUMBER OF CYCLES AT 50 Hz

MDA920A1 thru MDA920A9

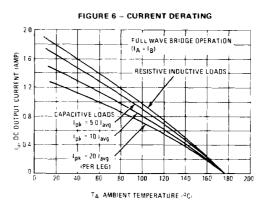
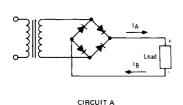
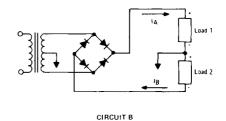




FIGURE 7 - BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS

APPLICATION NOTE

The Data of Figure 4 applies for typical wire terminal or printed circuit board mounting conditions in still air. Under these or similar conditions, the thermal resistance between the diode junctions and the leads at the edge of the case is a small fraction of the thermal resistance from junction to ambient. Consequently, the lead temperature is very close to the junction temperature. Therefore, it is recommended that the lead temperature be measured when the diodes are operating in prototype equipment, in order to determine if operation is within the diode temperature ratings. The lead having the highest thermal resistance to the ambient will yield readings closest to the junction temperature. By measuring temperature as outlined, variations of junction to ambient thermal resistance, caused by the amount of surface area of the terminals or printed circuit board and the degree of air convection, as well as proximity of other heat sources cease to be important design considerations.

Bridge rectifiers are used in two basic circuit configurations as shown by circuits A and B of Figure 7. The current derating data of Figure 6 applies to the standard bridge circuit (A), where I $_{\rm A} = I_{\rm B}$. The derating data considers the thermal response of the junction and is based upon the criteria that the junction temperature must not exceed rated $T_{\rm J(max)}$ when peak reverse voltage is applied However, because of the slow thermal response and the close thermal response and

mal coupling between the individual semiconductor die in the MDA920A assembly, the maximum ambient temperature is given closely by

where P_T is the total average power dissipation in the assembly. For the circuit of Figure B, use of the above formula will yield suitable rating information. For example to determine $T_{A(max)}$ for the conditions

From Figure 5: For IA, read $P_{TA} \approx 0.8 \text{ W}$ For IB, read $P_{TB} \approx 2.2 \text{ W}$

$$P_{T} = (P_{TA} + P_{TB}) \div 2 = 1.5 \text{ W}$$

(Division by 2 is necessary as data from Figure 5 is for full-wave bridge operation.) \pm TA(max) = 175° - (50) (1.5) = 100°C.

FIGURE 8 - FORWARD RECOVERY TIME

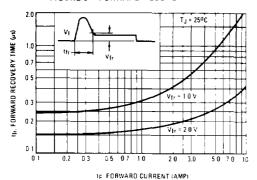


FIGURE 9 - REVERSE RECOVERY TIME

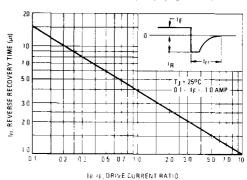


FIGURE 10 ~ RECTIFICATION WAVEFORM EFFICIENCY

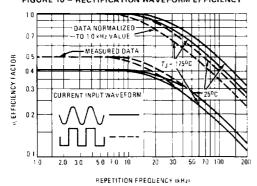
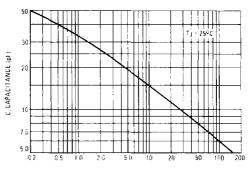
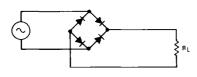



FIGURE 11 - CAPACITANCE



VR REVERSE VOLTAGE (VOLTS)

4 V 2 m

RECTIFIER EFFICIENCY NOTE

FIGURE 12 - SINGLE-PHASE FULL-WAVE BRIDGE RECTIFIER CIRCUIT

 $\frac{a_{\{\text{sine}\}} - \frac{\pi^2 R_L}{V_{m}^2}}{\frac{V_{m}^2}{2R_L}} = \frac{100^{c_e}}{100^{c_e}} = \frac{8}{\pi^2} = 100^{a_a} = 81.2^{a_a}$ (2)

For a square wave input of amplitude V_m , the efficiency factor becomes: $\frac{\sigma_{\text{(square)}}}{\frac{V_m}{R_L}} = \frac{\frac{V_m^2 m}{R_L}}{100\%} = 100\% = 100\%$ (3)

The rectification efficiency factor σ shown in Figure 10 was calculated using the formula.

$$\sigma = \frac{\frac{P_{\{dc\}}}{P_{\{rms\}}}}{\frac{P_{\{cd\}}}{P_{\{cd\}}}} = \frac{\frac{V^2_{o}(dc)}{R_L}}{\frac{R_L}{R_L}} = \frac{100\%}{V^2_{o}(ac) + V^2_{o}(dc)} = \frac{100\% \text{ (1)}}{R_L}$$

For a sine wave input V_{m} sin (ωt) to the diode, assumed lossless, the maximum theoretical efficiency factor becomes.

As the frequency of the input signal is increased, the reverse recovery time of the diode (Figure 9) becomes significant, resulting in an increasing ac voltage component across R_{\parallel} which is opposite in polarity to the forward current, thereby reducing the value of the efficiency factor $\sigma_{\rm c}$ as shown on Figure 10.

It should be emphasized that Figure 10 shows waveform efficiency only, it does not provide a measure of diode losses. Data was obtained by measuring the ac component of $V_{\rm O}$ with a true rms ac voltmeter and the dc component with a dc voltmeter. The data was used in Equation 1 to obtain points for Figure 10