M/XI/M **Dual 1.25Gbps Transceiver**

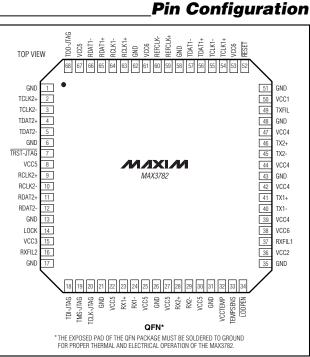
General Description

The MAX3782 is a dual 1.25Gbps data retiming and clock recovery transceiver. It interfaces 1.25Gbps LVDS data and clock to a 1.25Gbps serial interface compatible with 1000Base-SX/LX (IEEE 802.3z-2000) standards, GBIC, and small form-factor pluggable (SFP) module interface recommendations. The serial differential transmitter and receiver are PECL compatible using an ACcoupled CML interface with on-chip termination/bias resistors for superior forward and back terminations. The transmit path converts the LVDS signaling to CML and retimes the serial data to a low-jitter reference clock. The transmitter section contains LVDS buffers, FIFO, clock multiplier, and CML output buffers. The transmitter accepts a single 1.25Gbps serial-data channel and a 625MHz double-data-rate (DDR) clock that are compatible with IEEE Std 1596-1996 DC specifications. Serial LVDS data is clocked into the FIFO on both edges of the 625MHz source-synchronous TCLK. Data is clocked out of the FIFO using an internal 1.25GHz clock derived from a low-jitter 125MHz reference. Serial data is then clocked out as differential CML.

The receive path converts the CML signaling to LVDS and locks on to the data stream to recover the sourcesynchronous clock (RCLK). The receive section contains a CML input buffer, clock recovery circuit, and LVDS output buffers. The receiver accepts a CML serial data stream. The clock recovery phase-locked loop (PLL) locks on to the incoming serial data stream and generates a 625MHz LVDS DDR clock. RCLK edges are at the center of the "eye" of RDAT data.

> 1000Base-SX/LX Optical Links **GBIC Modules** SFP Fiber Transceiver Modules

Typical Application Circuit appears at end of data sheet.


Features

- 1000Base-SX/LX, GBIC, or SFP Serial Data Conversion to/from 1.25Gbps LVDS Serial Data and DDR Clock
- CML Interface Exceeds all PECL AC Specifications for 1000Base-SX/LX, GBIC, or SFP Serial Data
- Tx Data Retiming with <0.1UI Total Output Jitter</p> as per IEEE802.3z
- Rx Data and Clock Recovery with 0.75UI Jitter Tolerance as per IEEE802.3z
- On-Chip Forward and Back Termination Using CML I/O and Integrated Termination/Bias Resistors
- PLL Lock Status Indicator
- System Loopback
- JTAG I/O Scan for Board-Level Testing

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX3782UGK	-5°C to +85°C	68 QFN-EP*	G6800-4

*EP = exposed pad.

MIXIM

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Applications

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC1, VCC2, VCC3,

VCC4, VCC5, VCC6, VCCTEMP)	0.5V to +4.0V
LVDS Input and Output Voltage	0.5V to (V _{CC} + 0.5V)
LVTTL Input or Output Voltage	0.5V to (V _{CC} + 0.5V)
CML Input Voltage	0.5V to (V _{CC} + 0.5V)
Continuous CML Output Current	10mA to +25mA
Momentary CML Output Voltage	
(duration <1min, +25°C)	0 to (V _{CC} + 0.5V)

TEMPSENS, RXFIL1, RXFIL2,

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(V_{CC} = 3.0V to 3.6V, LVDS differential load = $100\Omega \pm 1\%$, CML differential load = $100\Omega \pm 1\%$, T_A = -5°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = 3.3V and T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Current				440	620	mA
Power Dissipation				1.45	2.23	W
Supply Noise Tolerance		DC-500kHz, single-ended REFCLK (Note 1)		50		mV _{P-P}
LVTTL INPUTS AND OUTPUTS (except REF	CLK±)				
Input High Voltage			2.0			V
Input Low Voltage					0.8	V
Input High Current					-250	μΑ
Input Low Current					-500	μA
Output High Voltage		(Note 2)	2.4			V
Output Low Voltage		(Note 2)			0.4	V
Output Three State Current		Three-state enabled, $0.4V \le V_{OUT} \le V_{CC}$	-100		+100	
Output Three-State Current		Three-state enabled, $GND \le V_{OUT} < 0.4V$			400	μA
REFCLK INPUTS						
Differential Input Amplitude		REFCLK± AC-coupled	200		2000	mV _{P-P}
Single-Ended Input High Voltage		REFCLK- connected through 0.01µF to GND	2.0			V
Single-Ended Input Low Voltage		REFCLK- connected through 0.01µF to GND			0.8	V
REFCLK Input High Current		$2.0V \le V_{IN} \le V_{CC}$			440	μA
REFCLK Input Low Current		$GND \le V_{IN} \le 0.8V$			-227	μA
CML INPUTS (Note 3)						
Differential Input Voltage Range		802.3z and GBIC compatible	370		2000	mV _{P-P}
Common-Mode Voltage		Inputs open or AC-coupled		V _{CC} - 0.3		V
Input Impedance		(Note 4)	85	100	115	Ω
CML OUTPUTS (Note 3)					_	
Differential Output Voltage			1100		2000	mV _{P-P}
Output Common-Mode Voltage				V _{CC} - 0.4		V
Differential Output Impedance		(Note 4)	85	100	115	Ω

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 3.0V \text{ to } 3.6V, \text{LVDS} \text{ differential load} = 100\Omega \pm 1\%, \text{CML differential load} = 100\Omega \pm 1\%, T_A = -5^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted}$. Typical values are at V_{CC} = 3.3V and T_A = +25^{\circ}C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
LVDS INPUTS	•		•			
Input Voltage Range	VI	IV _{GPD} I < 925mV	0		2000	mV
Differential Input Voltage	IVIDI	IV _{GPD} I < 925mV	150		500	mV
Differential Input Impedance	RIN		85	100	115	Ω
Input Common-Mode Current		$V_{OS} = 1.2V$, inputs tied together		270	400	μA
LVDS OUTPUTS						
Differential Output Voltage	IV _{OD} I		250		400	mV
Output High Voltage	VOH				1.475	V
Output Low Voltage	Vol		0.925			V
Change in Magnitude of Differential Output Voltage for Complementary States	ΔIV _{OD} I				25	mV
Output Offset Voltage	VOS		1.125		1.275	V
Change in Magnitude of Output Offset Voltage for Complementary States	ΔIV _{OS} I				25	mV
Differential Output Impedance	Rod		80	100	120	Ω
Short-Circuit Current		Short to supply or ground			40	mA

Note 1: Supply noise tolerance is the amount of noise allowable on the power supply. The intent of this is to specify the conditions whereby the CML I/O jitter performance remains compliant with IEEE802.3z jitter specifications.

Note 2: The LOCK output is open collector and requires a $10k\Omega$ pullup to V_{CC}. TDO output load $\geq 11k\Omega$ to V_{CC} or to GND.

Note 3: CML differential signal amplitudes are specified as the total signal across the load (V+ - V-). CML inputs and outputs are designed to be AC-coupled.

Note 4: 100Ω is standard for SFP, nonstandard for IEEE802.3z and GBIC.

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 3.0V \text{ to } 3.6V, LVDS \text{ differential load} = 100\Omega \pm 1\%$, CML differential load = 100 $\Omega \pm 1\%$, REFCLK = 125MHz, T_A = -5°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = 3.3V and T_A = +25°C.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
JTAG PARAMETERS						
Clock Frequency					15	MHz
Setup Time		Data input to clock positive edge	15	7		ns
Hold Time		Clock positive edge to data input	13	5		ns
Propagation Delay		Clock negative edge to data output $(C \le 20pF)$	2		30	ns
TDO Output Rise Time		$C \le 20pF$, measured 20% to 80%	2		20	ns
TDO Output Fall Time		$C \le 20pF$, measured 20% to 80%	1		20	ns
TDO Output Three-State to Active Time		$C \le 20pF$, measured as rise or fall time	1		30	ns

AC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 3.0V \text{ to } 3.6V, \text{LVDS} \text{ differential load} = 100\Omega \pm 1\%, \text{ CML differential load} = 100\Omega \pm 1\%, \text{ REFCLK} = 125\text{MHz}, \text{ T}_{\text{A}} = -5^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted}. Typical values are at V_{CC} = 3.3V \text{ and } \text{T}_{\text{A}} = +25^{\circ}\text{C}.)$ (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
LOCK DETECT PARAMETERS	•					
Assert Time		To assert, the Tx and Rx PLL internal lock indicators must be high (lock achieved) for this period.		394		μs
Deassert Time		To deassert, the Tx or Rx PLL internal lock indicators must be low for this period		1053		μs
TRANSMITTER PARAMETERS						
TCLK Frequency				625		MHz
REFCLK Input Rise/Fall Time		Single ended, 20% to 80%			2	ns
Transmitter Latency		From TDAT to Tx		5		ns
LVDS INPUTS						
Accumulated Phase Error at TCLK1 or TCLK2		Relative to REFCLK		±1		ns
Setup Time	tsu	Figure 1	100	42		ps
Hold Time	tH	Figure 1	100	42		ps
CML OUTPUTS						
Differential Skew					25	ps
Tx Output Jitter, Total		(Notes 6, 8)		32	73	psp-p
Tx Output Jitter, Deterministic		(Notes 6, 8)		9	20	psp-p
Tx Output Jitter, Random		(Notes 6, 8)		23	53	psp-p
RECEIVER PARAMETERS (Not	es 7, 8)					
Input Data Rate				1.25		Gbps
PLL Lock Time		K28.5 pattern applied to Rx inputs, REFCLK must be applied and stable		1		ms
		Pattern = $2^7 - 1$, differential skew = 0, 0.45UI _{P-P} of data-dependent jitter		0.938		
Input Jitter Tolerance (Note 9)		Pattern = CRPAT, differential skew = 0ps, 0.45UIP-P of data-dependent jitter		0.885]
		Pattern = CRPAT, differential skew = 218ps, $0.45UI_{P-P}$ of data-dependent jitter	0.776	0.838		UIP-P
		Pattern = CJTPAT, differential skew = 218 ps, 0.248UI _{P-P} of pulse-width distortion (Note 10)	0.595	0.694		1
Differential Skew Tolerance		802.3z and GBIC compliant	205			ps
Jitter Generation				20	100	psp-p
Receiver Latency		From Rx to RDAT		5		ns

AC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 3.0V \text{ to } 3.6V, \text{LVDS} \text{ differential load} = 100\Omega \pm 1\%, \text{ CML differential load} = 100\Omega \pm 1\%, \text{ REFCLK} = 125\text{MHz}, \text{ T}_{\text{A}} = -5^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted}.$ Typical values are at V_{CC} = 3.3V and T_A = +25°C.) (Note 5)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LVDS OUTPUTS						
Clock Duty-Cycle Distortion		Variation of 50% crossing from ideal time	-32		+32	ps
Deterministic Jitter		Measured with K28.5 pattern at RDAT_ outputs		8	50	psp-p
Edge Speed	t _r , t _f	20% to 80%		200	250	ps
Clock-to-Data Delay	τclk-Q	Figure 2	268	400	532	ps
REFERENCE CLOCK REQUIRE	MENTS					
REFCLK Frequency				125		MHz
REFCLK Frequency Tolerance			-100		+100	ppm
REFCLK Duty Cycle			40		60	%
		f - Ekula iitter ensumed Coursion			210	psp-p
		f < 5kHz, jitter assumed Gaussian			15	ps _{RMS}
REFCLK Jitter		f > 5kHz, jitter is assumed deterministic, caused by power-supply noise and buffer jitter			20	psp-p

Note 5: AC characteristics are guaranteed by design and characterization.

- **Note 6:** Tx output jitter, total, is the sum of both deterministic (20psp-p max) and random (53psp-p max at BER = 10⁻¹²), as per IEEE802.3z. Measured with K28.5 pattern and one-pole 637kHz highpass filter weighting.
- Note 7: JITTER TEST METHODS: These are described in the draft technical report by ANSI T11.2/Project 1230, document FC-MJS, "Fibre Channel - Methodologies for Jitter Specification." The maximum BER used to specify both Fibre Channel links, as well as IEEE802.3z links is 10⁻¹².
- **Note 8:** JITTER TEST CONDITIONS: The difference between the MAX3782 jitter specifications and the IEEE802.3z standards (see Table 1) represents the margin that must absorb all impairments such as jitter transfer from REFCLK, power-supply noise, and oscillator pulling (due to different Tx and Rx frequencies).
- Note 9: Input jitter tolerance is the total amount of high-frequency jitter at the inputs. Total jitter = deterministic jitter (DJ) + random jitter (RJ) + 5MHz sinusoidal jitter (SJ). Random jitter = 2ps_{RMS} (35mUI_{RMS}).
- **Note 10:** CJTPAT is a unique pattern, which toggles between high transition-density sections to low transition-density sections at a rate within the loop bandwidth of a CDR. Passing this signal through a band-limited channel results in data-dependent jitter (DDJ) that has instantaneous phase jumps occurring at the rate of transition-density change. The phase vs. time looks like a low-frequency square wave. A 0.5UIP-P low-frequency square wave of jitter is the maximum that can be tolerated by an ideal CDR. In other words, 0.5UIP-P low-frequency square-wave jitter produces an equivalent stress as 1.0UIP-P high-frequency square-wave jitter.

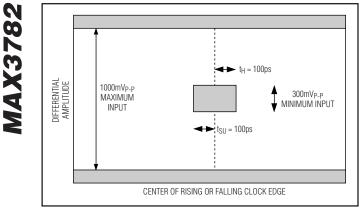


Figure 1. LVDS Receiver Input Eye Mask

(V_{CC} = 3.3V, T_A = $+25^{\circ}C$, unless otherwise noted.)

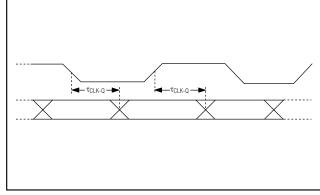
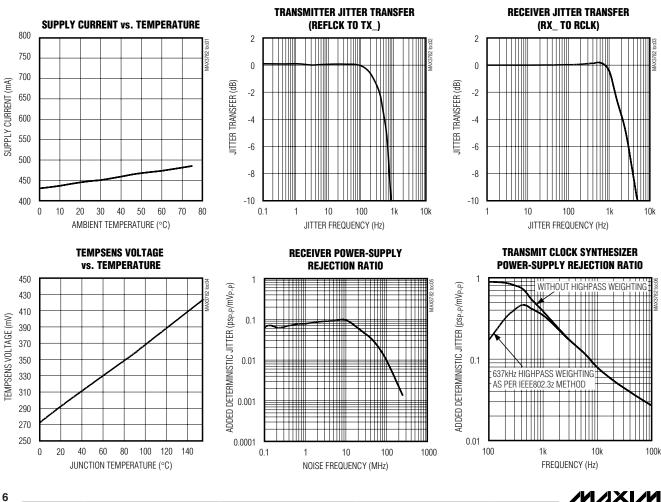
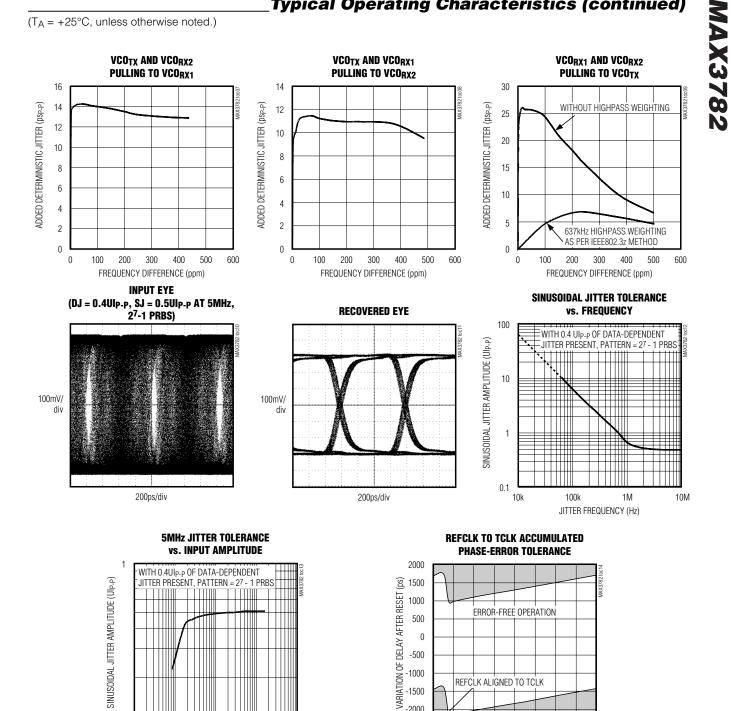




Figure 2. Definition of Clock-to-Data Delay

Typical Operating Characteristics

Typical Operating Characteristics (continued)

REFCLK ALIGNED TO TCLK

100 200 300 400 500 600 700 800

PHASE AT RESET (ps)

-2000

-2500

0

/N/XI/N

0.1

1

10

100

INPUT AMPLITUDE (mVP-P)

1000

10,000

MAX3782

PIN	NAME	FUNCTION
1, 6, 13, 17, 21, 26, 31, 35, 43, 48, 51, 58, 62	GND	Supply Ground
2	TCLK2+	Transmitter Positive Clock Input 2, LVDS. Input data is clocked on both the rising and falling edges of the 625MHz clock.
3	TCLK2-	Transmitter Negative Clock Input 2, LVDS. Input data is clocked on both the rising and falling edges of the 625MHz clock.
4	TDAT2+	Transmitter Positive Data Input 2, LVDS
5	TDAT2-	Transmitter Negative Data Input 2, LVDS
7	TRST-JTAG	JTAG Test Reset Input, LVTTL. Momentarily connect $\overline{\text{TRST}}$ to GND to reset JTAG test circuitry. Internally pulled high through 15k Ω resistor.
8, 22, 25, 27, 30, 67	VCC5	3.3V Supply for Receiver Digital Functions and JTAG Circuitry
9	RCLK2+	Receiver Positive Clock Output 2, LVDS. Output data is clocked on both the rising and falling edges of the 625MHz clock.
10	RCLK2- Receiver Negative Clock Output 2, LVDS. Output data is clocked on both the rising and fallin of the 625MHz clock.	
11	RDAT2+	Receiver Positive Data Output 2, LVDS
12	RDAT2-	Receiver Negative Data Output 2, LVDS
14	LOCK	Lock Status Indicator Output, LVTTL. This output goes high when the transmit PLL and receiver PLLs are in lock. Because this output is open-collector TTL, the LOCK pins from multiple MAX3782s can be connected in parallel to form a single LOCK signal.
15	VCC3	3.3V Supply for RX2 Receiver VCO, Analog Receiver Functions, and External Loop-Filter Connection
16	RXFIL2	RX2 Receiver Loop-Filter Connection. Connect a 0.1µF capacitor between RXFIL2 and VCC3.
18	TDI-JTAG	JTAG Test Data Input, LVTTL. Internally pulled high through 15k Ω resistor.
19	TMS-JTAG	JTAG Test Mode Select Input, LVTTL. Internally pulled high through 15k Ω resistor.
20	TCLK-JTAG	JTAG Test Clock Input, LVTTL. Internally pulled high through 15k Ω resistor.
23	RX1+	Receiver Positive Input 1, CML
24	RX1-	Receiver Negative Input 1, CML
28	RX2+	Receiver Positive Input 2, CML
29	RX2-	Receiver Negative Input 2, CML
32	VCCTEMP	3.3V Supply for TEMPSENS. Connect to ground to disable the temperature-sensing function.
33	TEMPSENS	Junction Temperature Sensor Output, Analog. TEMPSENS corresponds to the junction temperature of the die. Leave open for normal use.
34	LOOPEN	Loopback Enable Input, LVTTL. Force low to enable system loopback. Internally pulled high through $15 k\Omega$.
36	VCC2	3.3V Supply for RX1 Receiver VCO, Analog Receiver Functions, and External Loop-Filter Connection
37	RXFIL1	RX1 Receiver Loop-Filter Connection. Connect a 0.1µF capacitor between RXFIL1 and VCC2.
38, 53, 61	VCC6	3.3V Supply for Transmitter Digital Functions
39, 42, 44, 47	VCC4	3.3V Supply for CML Outputs

Pin Description

_Pin Description (continued)

PIN	NAME	FUNCTION
40	TX1-	Transmitter Negative Output 1, CML
40	TX1-	Transmitter Positive Output 1, CML
41	TX1+ TX2-	Transmitter Negative Output 2, CML
43	TX2+	Transmitter Positive Output 2, CML
40	TXEIL	
-		Transmitter Loop-Filter Connection. Connect a 0.1μ F capacitor between TXFIL and VCC1.
50	VCC1	3.3V Supply for Transmitter VCO, Analog Transmitter Functions, and External Loop-Filter Connection
52	RESET	Reset Input, LVTTL. Connect low for >80ns to reset FIFO and receiver components. Internally pulled high through $15k\Omega$.
54	TCLK1+	Transmitter Positive Clock Input 1, LVDS. Input data is clocked on both the rising and falling edges of the 625MHz clock.
55	TCLK1-	Transmitter Negative Clock Input 1, LVDS. Input data is clocked on both the rising and falling edges of the 625MHz clock.
56	TDAT1+	Transmitter Positive Data Input 1, LVDS
57	TDAT1-	Transmitter Negative Data Input 1, LVDS
59	REFCLK+	Reference Clock Positive Input. See specification table for differential or single-ended use.
60	REFCLK-	Reference Clock Negative Input. See specification table for differential or single-ended use.
63	RCLK1+	Receiver Positive Clock Output 1, LVDS. Output data is clocked on both the rising and falling edges of the 625MHz clock.
64	RCLK1-	Receiver Negative Clock Output 1, LVDS. Output data is clocked on both the rising and falling edges of the 625MHz clock.
65	RDAT1+	Receiver Positive Data Input 1, LVDS
66	RDAT1-	Receiver Negative Data Input 1, LVDS
68	TDO-JTAG	JTAG Test Data Output, Three-State LVTTL
EP	Exposed Pad	Supply Ground. The exposed pad must be soldered to the circuit board ground for proper thermal and electrical performance. See <i>Exposed-Pad Package</i> . The MAX3782 uses exposed pad variation G6800-4 in the package outline drawing.

MAX3782

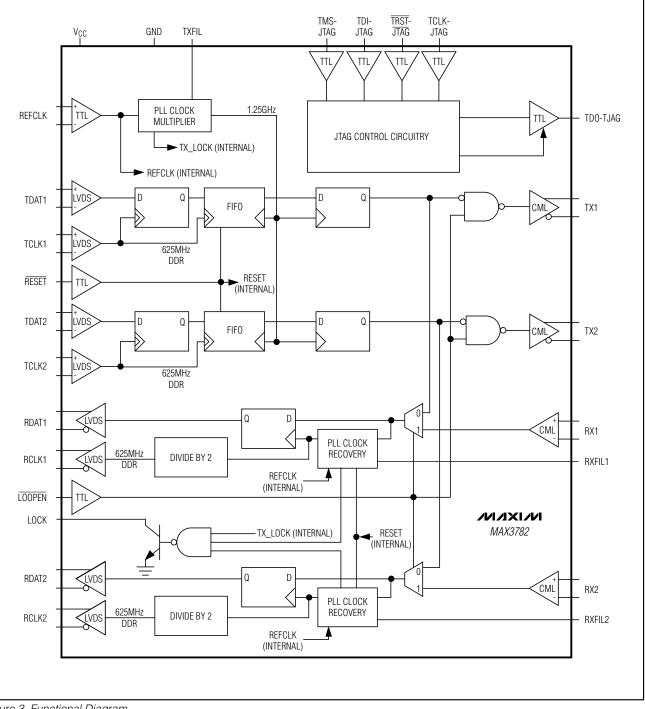


Figure 3. Functional Diagram

Detailed Description

The MAX3782 dual 1.25Gbps transceiver is a data retimer and clock recovery device for 1000Base-SX/LX, GBIC, and SFP applications. In the transmitter, an integrated clock synthesizer generates a clean 1.25GHz clock. This clock is used with a FIFO to retime the data before transmission. CML output buffers provide excellent performance with minimal external components.

The receiver has two separate PLL clock recovery circuits, allowing independent recovery of each received data signal. The receiver has CML inputs, easing system design and decreasing component count.

JTAG functionality is included to help with board-level testing. A LOCK pin indicates the status of the internal PLLs. System loopback may be asserted with the LOOPEN input.

LVDS Inputs and Outputs

The MAX3782 LVDS interface includes two differential data inputs at 1.25Gbps, two half-rate differential clock inputs at 625MHz, two differential data outputs at 1.25Gbps, and two half-rate differential clock outputs at 625MHz. The MAX3782 LVDS-compatible interface is designed to work with the user's ASICs, minimize power dissipation, speed transition time, and improve noise immunity. The LVDS outputs also have short-circuit protection in case of shorts to VCC or GND. The LVDS inputs must be DC-coupled for proper biasing. AC-coupling these inputs results in unreliable opera-

tion. The LVDS outputs are designed to drive 100 $\!\Omega$ differential loads and are not designed to drive 50 $\!\Omega$ to ground.

PLL Clock Multiplier

The PLL clock multiplier uses the 125MHz reference clock to synthesize the 1.25GHz clock that synchronizes the transmitter functions. The reference clock also aids frequency acquisition in the receiver. To achieve proper jitter performance and BER benchmarks, using a high-quality, low-jitter reference clock is critical. REFCLK inputs can be driven differentially or single ended. Differential operation is recommended for its superior jitter performance and noise immunity.

PLL Clock Recovery

Both receive channels (RX1 and RX2) use PLLs to recover synchronous clocks from the incoming serial data. The recovered clocks are then used to retime the serial data. The typical loop bandwidth of the PLL clock recovery circuits is 1.5MHz.

CML Inputs and Outputs

The CML inputs and outputs of the MAX3782 offer low power dissipation, excellent performance, and integrated termination resistors. AC-coupling capacitors should be used for PECL and IEEE802.3z compatibility. Figure 4 shows interface examples. The CML output structure is shown in Figure 5, and the CML input structure is shown in Figure 6. For more information, refer to

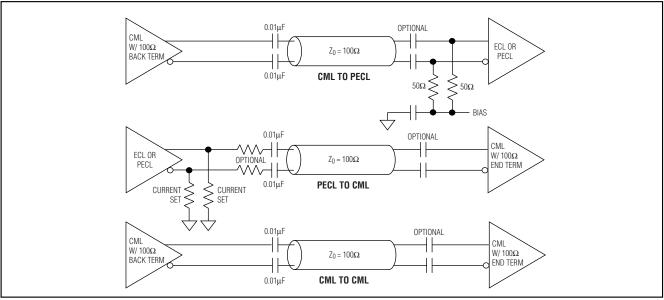


Figure 4. CML I/O Interconnect Examples

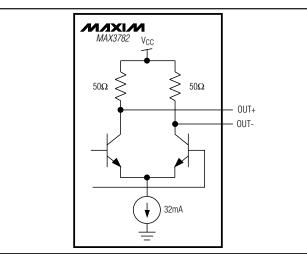


Figure 5. CML Output Structure

the applications note HFAN-01.0, *Introduction to LVDS, PECL, and CML*.

Lock Detection

The LOCK output indicates the state of the transmitter and receiver PLLs. For lock detect to be asserted high, the transmitter and receiver internal lock indicators must be high for 394µs. The internal lock signals go high once frequency lock has been achieved. For lock detect to be asserted low, either the transmitter or receiver internal lock indicators must be low for a minimum of 1053µs. Lock detect also is asserted low when the external reset pin is forced low. LOCK stays low for a minimum of 394µs. For the lock detector to function properly, there must be data transitions at the RX1 and RX2 inputs and a valid reference clock input. Note: The LOCK output is not an accurate indicator of signal presence at the receiver inputs. With no data input, the LOCK output can be high, low, or toggling. The output structure of the LOCK pin is shown in Figure 7.

RESET Input

RESET must be held low for a minimum of four reference clock cycles for it to be properly asserted. Approximately 10ms or longer after power up, the RESET input should be asserted low. RESET resets the LOCK state and FIFO clock logic.

Temperature Sensor

To help evaluate thermal performance, a temperature sensor is incorporated into the MAX3782. The temperature sensor may be powered on or off regardless of the state of the rest of the chip. The VCCTEMP pin provides supply voltage for the temperature sensor circuit. The TEMPSENS output is designed to output a voltage pro-



Figure 6. CML Input Structure

portional to the die junction temperature (1mV per Kelvin). The temperature of the die can be calculated as:

$$\Gamma(^{\circ}C) \approx V_{\text{TEMPSENS}}(\text{mV}) \times \frac{1^{\circ}C}{\text{mV}} - 273^{\circ}C$$

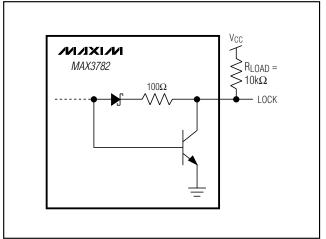
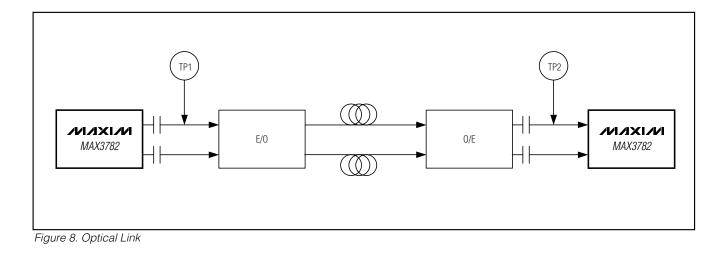


Figure 7. LOCK Output Structure

Applications Information

Jitter Budget Example for **Optical Link**

The MAX3782 outperforms IEEE802.3z jitter specifications. See Figure 8 and Table 1.


JTAG

JTAG functionality is compliant with IEEE1149.1 specifications. The BSDL file is available on request. Table 2 provides JTAG pin assignments.

Layout Techniques

For best performance, use good high-frequency layout techniques. Filter voltage supplies, keep ground connections short, and use multiple vias where possible. Use controlled-impedance 50Ω transmission lines to interface with the MAX3782 high-speed inputs and outputs.

Place power-supply decoupling capacitors as close to V_{CC} as possible. To reduce feedthrough, isolate the input signals from the output signals.

Table 1. Comparison of IEEE802.3z and MAX3782 Jitter Budget

	TOTAL JIT	TOTAL JITTER (psp-p) DETERMINISTIC JITTER		
COMPLIANCE POINT	IEEE802.3z SPECIFICATION	MAX3782 SPECIFICATION	IEEE802.3z SPECIFICATION	MAX3782 SPECIFICATION
TP1	192	73 (max)	100	20 (max)
	192	32 (typ)	100	9 (typ)
	TOTAL JITTER TO	TOTAL JITTER TOLERANCE (psp-p)		
COMPLIANCE POINT	IEEE802.3z SPECIFICATION	MAX3782 SPECIFICATION	-	_
TP2	600	620 (min, CRPAT)]	
172	600	670 (typ, CRPAT)		

MAX3782

MAX3782	BOUNDARY SCAN	Ι/Ο ΤΥΡΕ		ROUTING		
PIN NAME	PORT NAME		CELL TYPE	IN	OUT	
LOCK	lock	Open Collector Output	Observe and Control		1	
RX2+	rx2p	CML Input	Observe	2		
RX2-	rx2n	CML Input	Observe	2		
RX1+	rx1p	CML Input	Observe	3		
RX1-	rx1n	CML Input	Observe	3		
LOOPEN	loopen_bar	LVTTL Input	Observe	4		
TDAT2+	tdat2p	LVDS Input	Observe	5		
TDAT2-	tdat2n	LVDS Input	Observe	5		
TCLK2+	tck2p	LVDS Input	Observe	6		
TCLK2-	tck2n	LVDS Input	Observe	6		
TDAT1+	tdat1p	LVDS Input	Observe	7		
TDAT1-	tdat1n	LVDS Input	Observe	7		
TCLK1+	tck1p	LVDS Input	Observe	8		
TCLK1-	tck1n	LVDS Input	Observe	8		
TX1+	tx1p	CML Output	Observe and Control		9	
TX1-	tx1n	CML Output	Observe and Control		9	
TX2+	tx2p	CML Output	Observe and Control		10	
TX2-	tx2n	CML Output	Observe and Control		10	
RESET	reset_bar	LVTTL Input	Observe	11		
REFCLK+	refckp	LVTTL Input	Observe	12		
REFCLK-	refckn	LVTTL Input	Observe	12		
RCLK1+	rck1p	LVDS Output	Observe and Control		13	
RCLK1-	rck1n	LVDS Output	Observe and Control		13	
RDAT1+	rdat1p	LVDS Output	Observe and Control		14	
RDAT1-	rdat1n	LVDS Output	Observe and Control		14	
RCLK2+	rck2p	LVDS Output	Observe and Control		15	
RCLK2-	rck2n	LVDS Output	Observe and Control	15		
RDAT2+	rdat2p	LVDS Output	Observe and Control		16	
RDAT2-	rdat2n	LVDS Output	Observe and Control		16	
JTAG CONTROL PI	NS					
TCLK-JTAG	tck	LVTTL Input				
TDI-JTAG	tdi	LVTTL Input				
TDO-JTAG	tdo	LVTTL Output				
TMS-JTAG	tms	LVTTL Input				
TRST-JTAG	trst_bar	LVTTL Input				

Table 2. JTAG Pin Assignments

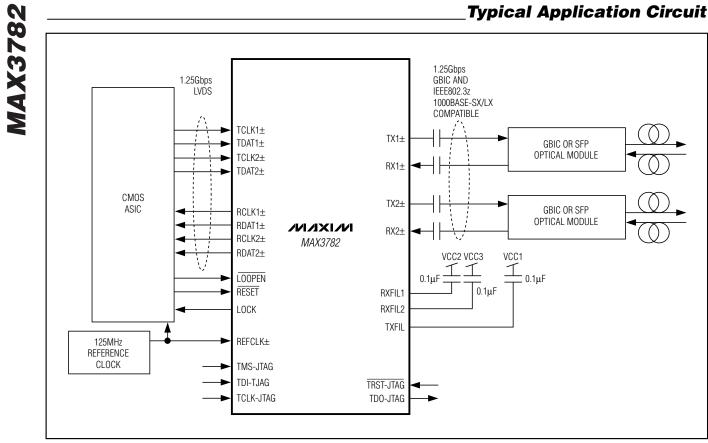
MAX3782

Table 3. JTAG Instructions

INSTRUCTION	JTAG OPCODE	ACTION
EXTEST	000 b	External boundary test mode
SAMPLE/PRELOAD	001 b	Initialization for boundary test mode
BYPASS	111 b	Connects bypass register between TDI and TDO
IDCODE	010 b	32-bit device ID register selected (see Table 4)

Table 4. Device Identification Code

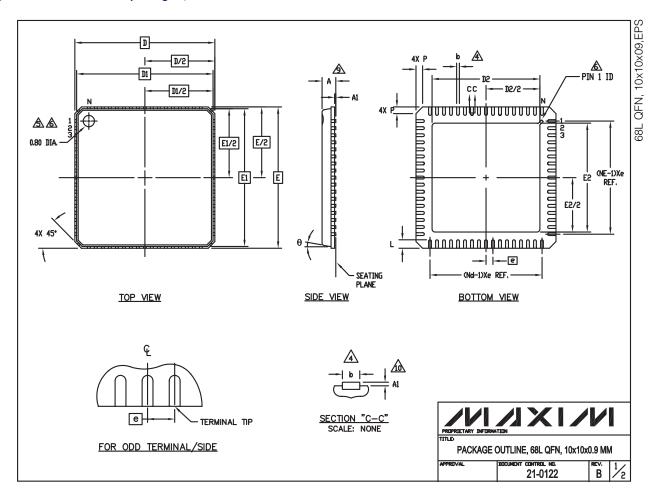
CODE	VERSION	ON PART NO. MANUFACTURER = MAXIM		LSB	
Binary	0001 b	0000 1110 1100 0110 b [= 3782 _{base10}]	00011001011 b [ref: JEDEC JEP106-I]	1 b	


Exposed-Pad Package

The exposed-pad, 68-pin QFN-EP incorporates features that provide a very low thermal-resistance path for heat removal from the IC. The EP and EP ring are electrical ground on the MAX3782 and must be soldered to the circuit board for proper thermal and electrical performance. Refer to HFAN 08.10, *Thermal Considerations of QFN and Other Exposed-Pad Packages*, for more information.

Chip Information

MAX3782


TRANSISTOR COUNT: 14329 PROCESS: Silicon bipolar

Typical Application Circuit

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

S Y∎®ol	COMMON DIMENSIONS			N _O T _E
٩	MIN.	NOM.	MAX.	ŤΕ
A	-	0.90	1.00	
A1	0.00	0.01	0.05	11
b	0.18	0.23	0.30	4
D	10.00 BSC			
D1	9.75 BSC			
e	0.50 BSC			
E	10.00 BSC			
E1	9.75 BSC			
L	0.50	0.60	0.75	
N	68			3
Nd	17 3			3
Ne	17			3
θ	0	12°		
Ρ	0 0.42 0.60			

EXPOSED PAD VARIATIONS						
	D2			E2		
PKG CODE	MIN	NDM	MAX	MIN	NDM	MAX
G6800-2	7.55	7.70	7.85	7.55	7.70	7.85
G6800-4	5.65	5.80	5.95	5.65	5.80	5.95

1. DIE THICKNESS ALLOWABLE IS .012 INCHES MAXIMUM.

- 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. 1994.
 - Nd IS THE NUMBER OF TERMINALS IN X-DIRECTION &
 - Ne IS THE NUMBER OF TERMINALS IN Y-DIRECTION.
- DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP.
- ∠S THE PIN #1 IDENTIFIER MUST BE LOCATED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY.
- 6 EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.
- 7. ALL DIMENSIONS ARE IN MILLIMETERS.
- PACKAGE WARPAGE MAX 0.10mm.
- APPLIES TO EXPOSED SURFACE OF PADS AND TERMINALS
- APPLIES ONLY TO TERMINALS.

	X	/	/ //
TITLE			

PACKAGE OUTLINE, 68L QFN, 10x10x0.9 MM

⅔

В

21-0122

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

	0
т	

____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2003 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.