

155Mbps SFP Transceiver with Spring Latch

(Without DDM function, for 40km transmission)

Features

- Up to 155Mbps data-rate
- 1310nm FP laser and PIN photodetector for 40km transmission
- Standard serial ID information compatible with SFP MSA
- SFP MSA package with duplex LC connector
- With spring latch for easily removing
- Very low EMI and excellent ESD protection
- +3.3V single power supply
- Operating case temperature:
 Standard : -5 to +70 ℃
 Industrial : -40 to +85 ℃

Applications

- SDH STM-1, L-1.1
- SONET OC-3 LR1
- Fast Ethernet
- Other optical links

Standard

- Compatible with SFP MSA
- Compatible with ITU-T G.957 and G.958
- Compatible with Telcordia GR-253-CORE
- Compatible with FCC 47 CFR Part 15, Class B

Members of Flexon[™] Family

- Compatible with FDA 21 CFR 1040.10 and 1040.11, Class I
- Compliant with RoHS

Description

Sourcephotonics 155Mbps spring-latch SFP transceiver is high performance, cost effective modules that supports data-rate of 155Mbps and transmission distance up to 40km.

The transceiver consists of two sections: The transmitter section incorporates a FP laser. And the receiver section consists of a PIN photodiode integrated with a trans-impedance preamplifier (TIA). All modules satisfy class I laser safety requirements.

The optical output can be disabled by a TTL logic high-level input of Tx Disable. Tx Fault is provided to indicate degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver.

The standard serial ID information compatible with SFP MSA describes the transceiver's capabilities, standard interfaces, manufacturer and other information. The host equipment can access this information via the two-wire serial CMOS EEPROM protocol. For further information, please refer to SFP Multi-Source Agreement (MSA).

Source Photonics Proprietary and Confidential, Do Not Copy or Distribute

40km transmission

Regulatory Compliance

The transceivers have been tested according to American and European product safety and electromagnetic compatibility regulations (See Table 1). For further information regarding regulatory certification, please refer to Source Photonics regulatory specification and safety guidelines, or contact with Source Photonics, Inc. America sales office listed at the end of documentation.

Feature	Standard	Performance	
Electrostatic Discharge	MIL-STD-883E	Class 2(>2000 V)	
(ESD) to the Electrical Pins	Method 3015.7	Class $2(2000 \text{ V})$	
Electrostatic Discharge (ESD)	IEC 61000-4-2	Compatible with standards	
to the Duplex LC Receptacle	GR-1089-CORE	Compatible with standards	
Electromagnetic	FCC Part 15 Class B		
Electromagnetic	EN55022 Class B (CISPR 22B)	Compatible with standards	
Interference (EMI)	VCCI Class B		
Immunity	IEC 61000-4-3	Compatible with standards	
Leaser Eve Sefety	FDA 21CFR 1040.10 and 1040.11	Compatible with Class 1 laser	
Laser Eye Safety	EN60950, EN (IEC) 60825-1,2	product.	
Component Recognition	UL and CSA	Compatible with standards	
RoHS	2002/95/EC 4.1&4.2	Compliant with standards note	
	2005/747/EC		

Table 1 - Regulatory Compliance

Note:

In light of item 5 in Annex of 2002/95/EC, "Pb in the glass of cathode ray tubes, electronic components and fluorescent tubes." and item 13 in Annex of 2005/747/EC, "Lead and cadmium in optical and filter glass.", the two exemptions are being concerned for Sourcephotonics's transceivers, because Sourcephotonics's transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.

Absolute Maximum Ratings

Stress in excess of the maximum absolute ratings can cause permanent damage to the module.

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Supply Voltage	V _{CC}	-0.5	3.6	V
Operating Relative Humidity	-	5	95	%

Table 2 - Absolute Maximum Ratings

Recommended Operating Conditions

Table 3- Recommended Operating Conditions

Parameter		Symbol	Min.	Typical	Max.	Unit
Operating Case	Standard	Tc	-5		+70	°C
Temperature	Industrial		-40		+85	C
Power Supply Voltage		V _{CC}	3.13	3.3	3.47	V
Power Supply Current		I _{CC}			300	mA
Data Rate				155		Mbps

SP-03-LR1-CNFH; SP-03-LR1-INFH (1310nm FP and PIN, 40km)

Table 4 - Optical and Electrical Characteristics

Para	meter	Symbol	Min.	Typical	Max.	Unit	Notes
		т	ransmitter				
Centre Wavelength		λ _c	1263		1360	nm	
Average Output	Power	P _{0ut}	-5		0	dBm	1
Spectral Width (RMS)	σ			3	nm	
Extinction Ratio		EX	10			dB	
Jitter Generatior	n (RMS)				0.01	UI	
Jitter Generatior	n (pk-pk)				0.1	UI	
Output Optical E	ye	Compatib	ble with Telco	ordia GR-253 G.957	-CORE and	ITU-T	2
Data Input Swing	g Differential	V _{IN}	500		2400	mV	3
Input Differentia	Impedance	Z _{IN}	90	100	110	Ω	
TX Disable	Disable		2.0		Vcc	V	
TA Disable	Enable		0		0.8	V	
TX Fault	Fault		2.0		Vcc+0.3	V	
TA Fault	Normal		0		0.8	V	
			Receiver				
Centre Wavelen	gth	λ _C	1260		1580	nm	
Receiver Sensiti	vity				-34	dBm	4
Receiver Overlo	ad		-10			dBm	4
Optical Path Per	nalty				1	dB	5
LOS De-Assert		LOS _D			-37	dBm	
LOS Assert		LOS _A	-45			dBm	
LOS Hysteresis			1		4	dB	
Data Output Swi	ng Differential	V _{OUT}	370		2000	mV	6
LOS	High		2.0		Vcc+0.3	V	
103	Low		0		0.8	V	

40km transmission

Notes:

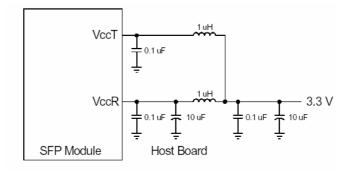
- 1. The optical power is launched into SMF.
- 2. Measured with a PRBS 2²³-1 test pattern @155Mbps.
- 3. Internally AC coupled and terminated.
- 4. Measured with a PRBS 2²³-1 test pattern @155Mbps, BER $\leq 1 \times 10^{-10}$.
- 5. Measured with a PRBS 2²³-1 test pattern @155Mbps, over 40km G.652 SMF, BER $\leq 1 \times 10^{-10}$.
- 6. Internally AC coupled.

EEPROM Information

The SFP MSA defines a 256-byte memory map in EEPROM describing the transceiver's capabilities, standard interfaces, manufacturer, and other information, which is accessible over a two-wire serial interface at the 8-bit address 1010000X (A0h). For memory contents please refer to Table 5.

Addr.	Field Size (Bytes)	Name of Field	Hex	Description
0	1	Identifier	03	SFP
1	1	Ext. Identifier	04	MOD4
2	1	Connector	07	LC
3—10	8	Transceiver	00 10 04 00 00 00 00 00	OC 3, Single mode long reach
11	1	Encoding	03	NRZ
12	1	BR, nominal	02	155Mbps
13	1	Reserved	00	
14	1	Length (9um)-km	28	40km
15	1	Length (9um)	FF	40km
16	1	Length (50um)	00	
17	1	Length (62.5um)	00	
18	1	Length (copper)	00	
19	1	Reserved	00	
20—35	16	Vendor name	53 4F 55 52 43 45 50 48 4F 54 4F 4E 49 43 53 20	"SOURCEPHOTONICS"(ASC II)
36	1	Reserved	00	
37—39	3	Vendor OUI	00 00 00	
40—55	16		53 50 30 33 4C 52 31 43(49) 4E 46 48 20 20 20 20 20	"SP03LR1CNFH or SP03LR1INFH" (ASC II)
56—59	4	Vendor rev	31 30 00 00	ASC II ("31 30 00 00" means 1.0 revision)
60-61	2	Wavelength	05 1E	1310nm
62	1	Reserved	00	

Table 5 - EEPROM Serial ID Memory	ry Contents (A0h)
-----------------------------------	-------------------


155Mbps Spring Latch SFP Transceiver

63	1	CC BASE	xx	Check sum of bytes 0 - 62
64—65	2	Options	00 1A	LOS, TX_FAULT and TX_DISABLE
66	1	BR, max	00	
67	1	BR, min	00	
68—83	16	Vendor SN	xx xx xx xx xx xx xx xx xx	ASC II.
00—05			xx xx xx xx xx xx xx xx xx	ASC II.
84—91	8	Vendor date code	xx xx xx xx xx xx 20 20	Year (2 bytes, Month (2 bytes), Day (2 bytes)
92—94	3	Reserved	00 00 00	
95	1	CC EXT	xx	Check sum of bytes 64 - 94
96—255	160	Vendor specific		

Note: The "xx" byte should be filled in according to practical case. For more information, please refer to the related document of *SFP Multi-Source Agreement (MSA)*.

Recommended Host Board Power Supply Circuit

Figure 1 shows the recommended host board power supply circuit.

Recommended Interface Circuit

Figure 2 shows the recommended interface circuit.

40km transmission

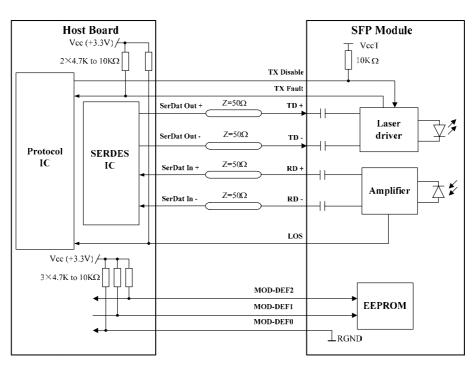


Figure 2, Recommended Interface Circuit

Pin Definitions

Figure 3 below shows the pin numbering of SFP electrical interface. The pin functions are described in Table 6 with some accompanying notes.

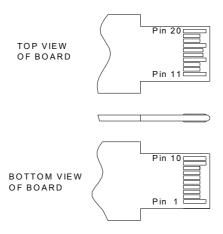


Figure 3, Pin View

Table 6– Pin Function Definitions

Pin No.	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	
2	TX Fault	Transmitter Fault Indication 3 No.		Note 1
3	TX Disable	Transmitter Disable	3	Note 2

155Mbps Spring Latch SFP Transceiver

40km transmission

Preliminary Datasheet

4	MOD-DEF2	Module Definition 2	3	Note 3
5	MOD-DEF1	Module Definition 1	3	Note 3
6	MOD-DEF0	Module Definition 0	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	VeeR	Receiver Ground	1	
10	VeeR	Receiver Ground	1	
11	VeeR	Receiver Ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	VeeR	Receiver Ground	1	
15	VccR	Receiver Power	2	
16	VccT	Transmitter Power	2	
17	VeeT	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	VeeT	Transmitter Ground	1	

Notes:

 TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.

2. TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10k\Omega$ resistor. Its states are:

Low (0~0.8V):	Transmitter on
(>0.8V, <2.0V):	Undefined
High (2.0~3.465V):	Transmitter Disabled
Open:	Transmitter Disabled

 MOD-DEF 0,1,2 are the module definition pins. They should be pulled up with a 4.7k~10kΩ resistor on the host board. The pull-up voltage shall be VccT or VccR.
 MOD-DEF 0 grounded by the module indicates that the module is present
 MOD-DEF 1 is the clock line of two-wire serial interface for serial ID

MOD-DEF 2 is the data line of two-wire serial interface for serial ID

- LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates loss of signal. In the low state, the output will be pulled to less than 0.8V.
- 5. These are the differential receiver outputs. They are internally AC-coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module.

Mechanical Design Diagram

The mechanical design diagram is shown in Figure 4.

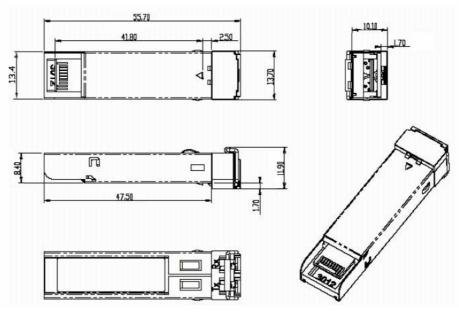
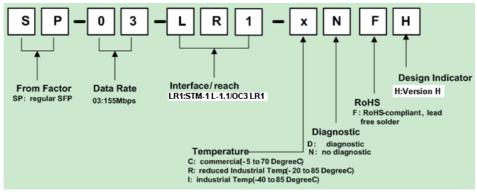



Figure 4, Mechanical Design Diagram of the SFP with Spring-Latch

Ordering information

Part No.	Product Description
SP-03-LR1-CNFH	1310nm, 155Mbps, 40km, SFP with spring latch,-5°C~+70°C,RoHS compliance
SP-03-LR1-INFH	1310nm, 155Mbps, 40km, SFP with spring latch, -40°C~+85°C,RoHS compliance

Related Documents

For further information, please refer to the following documents:

Sourcephotonics Spring-Latch SFP Installation Guide

- Sourcephotonics SFP Application Notes
- SFP Multi-Source Agreement (MSA)

Obtaining Document

You can visit our website:

http://www.Sourcephotonics.com

Or contact Sourcephotonics, Inc. America Sales Office listed at the end of the documentation to get the latest documents.

Revision History

Revision	Initiate	Review	Approve	Subject	Release Date
00	Solaris Zhu	Simon Jiang	Walker.Wei	Initial datasheet	June 25, 2008

© Copyright Source Photonics Inc. 2008

All Rights Reserved.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons.

The information contained in this document does not affect or change Source Photonics product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Source Photonics or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environment may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Source Photonics be liable for damages arising directly from any use of the information contained in this document.

Contact U.S.A. Headquarter: 20550 Nordhoff Street Chatsworth, CA91311 U. S. A. Tel: 818.773.9044 Fax: 818.773.0261 M-S@sourcephotonics.com.cn