

P-Channel 30-V (D-S), 150°C MOSFET

Product Summary

V _{DS} (V)	$\mathbf{r_{DS(on)}}(\Omega)$	$I_{D}(A)^{a}$	
-30	$0.015 @ V_{GS} = -10 V$	±13	
-30	$0.024 @ V_{GS} = -4.5 V$	±8	

P-Channel MOSFET

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ Unless Otherwise Noted)

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V_{DS}	-30	v	
Gate-Source Voltage		$V_{ m GS}$	±20	·	
Continuous Drain Current ^b	$T_A = 25^{\circ}C$	T	±13		
Continuous Diam Current	$T_A = 100^{\circ}C$	I _D	±8		
Pulsed Drain Current		I_{DM}	± 100	A	
Continuous Source Current (Diode Conduction)		I_S	-13		
Maximum Power Dissipation ^b	$T_C = 25^{\circ}C$	D_	70	W	
Maximum I ower Dissipation	$T_A = 25^{\circ}C$	P_{D}	4 ^a	**	
Operating Junction and Storage Temperature Range		T_J, T_{stg}	-55 to 150	°C	

Thermal Resistance Ratings

Parameter	Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^b	R_{thJA}		30	0.0784
Maximum Junction-to-Case	R _{thJC}		1.8	°C/W

Notes

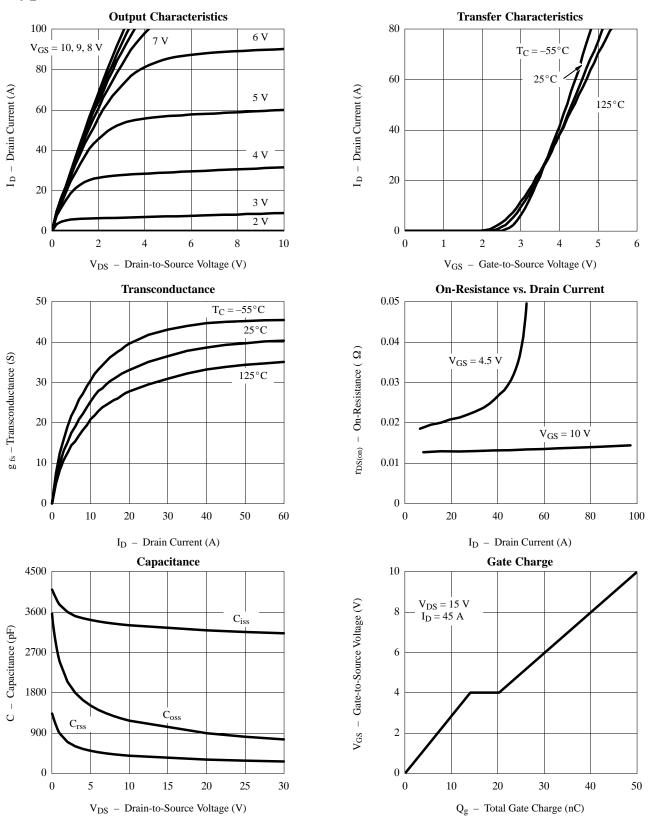
Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70267.

a. Calculated Rating for $T_A = 25^{\circ}$ C, for comparison purposes only. This cannot be used as continuous rating (see Absolute Maximum Ratings and Typical Characteristics).

b. Surface Mounted on FR4 Board, $t \le 10$ sec.

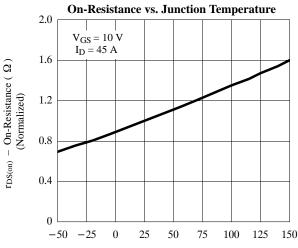
Siliconix

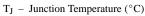
Specifications ($T_J = 25^{\circ}C$ Unless Otherwise Noted)

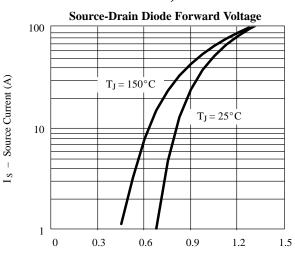

Parameter	Symbol	Test Condition	Min	Typa	Max	Unit	
Static				•			
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu A$	-30				
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-1.0	†	1	V	
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	1		±100	nA	
7 C . W. D. C	Ţ	$V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V}$,		-1		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 125^{\circ}\text{C}$			-50	μΑ	
On-State Drain Current ^b	_	$V_{DS} = -5 \text{ V}, V_{GS} = -10 \text{ V}$	-50				
	I _{D(on)}	$V_{DS} = -5 \text{ V}, V_{GS} = -4.5 \text{ V}$	-20			A	
		$V_{GS} = -10 \text{ V}, I_D = -13 \text{ A}$		0.012	0.015		
Drain-Source On-State Resistance ^b	r _{DS(on)}	$V_{GS} = -10 \text{ V}, I_D = -13 \text{ A}, T_J = 125 ^{\circ}\text{C}$		0.018	0.026	Ω	
		$V_{GS} = -4.5 \text{ V}, I_D = -13 \text{ A}$		0.020	0.024		
Forward Transconductance ^b	g_{fs}	$V_{DS} = -15 \text{ V}, I_D = -13 \text{ A}$	20			S	
Dynamic ^a							
Input Capacitance	C _{iss}			3200			
Output Capacitance	Coss	$V_{GS} = 0 \text{ V}, V_{DS} = -25 \text{ V}, F = 1 \text{ MHz}$		800		pF	
Reverse Transfer Capacitance	C _{rss}			280			
Total Gate Charge ^c	Qg			50	125	nC	
Gate-Source Charge ^c	Q_{gs}	$V_{DS} = -15 \text{ V}, \ V_{GS} = -10 \text{ V}, I_D = -45 \text{ A}$		14			
Gate-Drain Charge ^c	Q_{gd}	1 1		6.2		1	
Turn-On Delay Time ^c	t _{d(on)}			13	20		
Rise Time ^c	t _r	$V_{DD} = -15 \text{ V}, R_L = 0.33 \Omega$		10	20	ns	
Turn-Off Delay Time ^c	t _{d(off)}	$I_D \cong -45 \text{ A}, V_{GEN} = -10 \text{ V}, R_G = 2.4 \Omega$		50	100		
Fall Time ^c	t _f	1 1		20	40		
Source-Drain Diode Ratings and	Characterist	ic $(T_C = 25^{\circ}C)$					
Pulsed Current	I_{SM}				100	A	
Diode Forward Voltage ^b	V_{SD}	$I_F = -45 \text{ A}, V_{GS} = 0 \text{ V}$	1	1.0	1.5	V	
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = -45 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		55	100	ns	

Notes

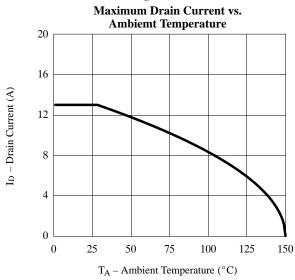
- a. Guaranteed by design, not subject to production testing.
- b. Pulse test; pulse width $\leq 300 \,\mu\text{s}$, duty cycle $\leq 2\%$.
- c. Independent of operating temperature.

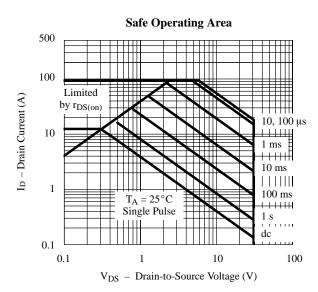

Typical Characteristics (25°C Unless Otherwise Noted)

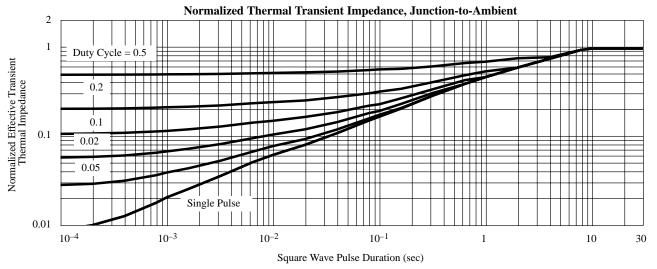



Siliconix

Typical Characteristics (25°C Unless Otherwise Noted)







V_{SD} - Source-to-Drain Voltage (V)

Thermal Ratings

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com