TELEDYNE COMPONENTS

9

OPERATIONAL AMPLIFIER — HIGH-VOLTAGE, VERY-HIGH-POWER

FEATURES

- High-Output Current Guaranteed.......±10A (Peak)
- Unity-Gain StableGain-Bandwidth Product

- Pin/Performance Compatible with PA-12, OPA512

APPLICATIONS

- Motor Drives
- Magnetic Deflection Circuits
- Programmable Power Supplies
- High-Power Servo Amplifiers
- Audio Amplifiers (to 120W rms)

GENERAL DESCRIPTION

The 1468 is a high-voltage, very-high-power operational amplifier. It can operate over a wide range of supply voltages (\pm 10V to \pm 50V) and has a guaranteed minimum output current of \pm 10A (peak). The output stage is biased Class AB for low crossover distortion and optimum linearity. It is also protected against back-EMF which is encountered when driving inductive loads, such as motors or solenoids.

With an 8 Ω load, the 1468's open-loop gain is 96 dB minimum, 108 dB typical. Input offset voltage is ± 2 mV and input bias current is 12 nA. The 1468 is internally compensated for unity gain and delivers excellent dynamic performance for a device of this type. Slew rate is a fast 5V/µs and unity-gain bandwidth is an impressive 4 MHz.

The 1468 is housed in an 8-pin TO-3 can. The standard product is specified for -25° C to $+85^{\circ}$ C operation. The 1468 High Reliability (HR) version is specified for -55° C to $+125^{\circ}$ C operation.

STANDARD CONFIGURATION

HIGH-VOLTAGE, VERY-HIGH-POWER OPERATIONAL AMPLIFIER

1468 (TCPA12)

PIN CONFIGURATION

PIN NO.	DESIGNATION	6 7
1	OUTPUT	
2	+ ^I LIMIT	i i i
3	+Vcc	$(()) \qquad ())$
4	+INPUT	
5	-INPUT	
6	-V _{CC}	$\overline{3}$ $\frac{1}{2}$
7	FOLDOVER	
8	- ^I LIMIT	BOTTOM VIEW

ABSOLUTE MAXIMUM RATINGS

Vcc	Supply Voltage	±50V
VID	Differential Input Voltage	±(IV _{CC} I–3V)

- V_{ICM} Common-Mode Input Voltage±V_{CC}
- Io Output Current......±15A
- T_C Operating Temperature Range (Case) 1468-25°C to +85°C 1468-HR-55°C to +125°C
- $\begin{array}{ll} T_{STG} & Storage \ Temperature \ Range \ 65^\circ C \ to \ + 150^\circ C \\ T_J & Junction \ Temperature \end{array}$
- (Output Transistor) (Note 1).....+200°C θ_{JC} Junction-to-Case Thermal Resistance
- NOTES: 1. Prolonged operation at maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTBF.

2. AC rating applies if the output current alternates between both output transistors at a rate greater than 60 Hz.

			1468			1468-HR			
Symbol	Parameter	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
Vos	Input Offset Voltage			±2	±6	-	±2	±6	mV
V _{OS} TC	Input Offset Voltage Drift vs Temperature	Average, T _{MIN} to T _{MAX}		±10			±10	±65	μV/ºC
l _B	Input Bias Current		_	±12	±30		±12	±30	nA
IB TC	Input Bias Current Drift vs Temperature	Average, T _{MIN} to T _{MAX}	-	±50			±50	±400	pA/°C
los	Input Offset Current			±12	±30	_	±12	±30	nA
los TC	Input Offset Current Drift vs Temperature	Average, T _{MIN} to T _{MAX}	_	±50			±50	±400	pA/°C
AVOL	Open-Loop Voltage Gain			110			110		dB
		$R_{L} = 8\Omega$	96	108	_	96	108		dB
PSRR	Power Supply Rejection Ratio		74	90	-	74	90	-	dB
CMRR	Common-Mode Rejection Ratio	$V_{CM} = \pm 33V$	74	100		74	100	-	dB
CMR	Common-Mode Range (DC Linear Operation)	CMRR ≥ 68 dB	±35	±37		±35	±37	_	V
ZID	Differential Input Impedance			200MII3			200MII3		ΩllpF
Vo	Output Voltage Swing	Ι _{ΟUT} = 5Α	±35	—	—	±35			V
.0		I _{OUT} = 10A	±34			±34			v
lo	Output Current	Peak	±10			±10			A
lsc	Output Short-Circuit Current	Note 2	-	—	_	-			A
Ro	Output Resistance (DC Open-Loop)			2		-	2	_	Ω
Vcc	Supply Voltage Range (Operating)		±10	±40	±45	±10	±40	±45	V
lcc	Quiescent Supply Current		—	±25	±50	-	±25	±50	mA

DC CHARACTERISTICS: (Note 1) $V_{CC} = \pm 40V$, $R_L = 1 k\Omega$, $T_C = 25^{\circ}C$, unless otherwise noted.

NOTES: 1. Limits printed in **boldface** type are guaranteed and 100% production tested. Limits in normal font are guaranteed but not 100% production tested.

2. Current limiting is set by user via external resistors.

HIGH-VOLTAGE, VERY-HIGH-POWER OPERATIONAL AMPLIFIER

1468 (TCPA12)

9

			1468			1468-HR			
Symbol	Parameter	Test Conditions	Min	Тур	Max	Min	Тур	Max	Unit
S _R	Slew Rate		2.5	5	_	2.5	5	_	V/µs
GBWP	Gain-Bandwidth Product	$f = 1 \text{ MHz}, R_L = 8\Omega$	_	4	-	_	4	_	MHz
UGBW	Unity-Gain Bandwidth		- 1	4	—	—	4		MHz
ts	Settling Time (A _{CL} = -1)	2V step/0.1%	-	2	_	_	2	1	μs
en	Input Voltage Noise Density	f = 1 kHz		16	_	—	16		nV/√Hz
in	Input Current Noise Density	f = 1 kHz		0.18			0.18		pA∕√Hz
CL	Capacitive Load (Maximum w/o oscillation)	A _{CL} = +1	1500		SOA	1500		SOA	рF

AC CHARACTERISTICS: (Note 1) $V_{CC} = \pm 40V$, $R_L = 1 k\Omega$, $T_C = 25^{\circ}C$, unless otherwise noted.

NOTES: 1. Limits printed in **boldface** type are guaranteed and 100% production tested. Limits in normal font are guaranteed but not 100% production tested.

Output Current Limiting

The 1468 output can be current limited using the $\pm I_{\text{LIMIT}}$ formulas shown in the standard configuration diagram. In some applications, foldover current limiting can be used to allow increased output current as the 1468 output approaches the power supply rail voltage. To calculate the foldover current limit, use the formula for I_{FO} shown in the diagram. The following procedures should be followed:

- 1. Calculate a value for R_{CL} that provides a safe current limit at $V_O=0V.$
- 2. Calculate the maximum value of I_{FO}^* by using a value of 0Ω for R_{FO} . This is the maximum current limit possible using the foldover current-limit option.
- Calculate a value for R_{FO} using the value for R_{CL} calculated in step 1, and a desired I_{FO} limit which is lower than the maximum limit calculated in step 2.
- * This calculation assumes the output voltage (V_O) is the same polarity as the current carrying supply voltage. If not, invert the polarity of V_O before making this calculation.

