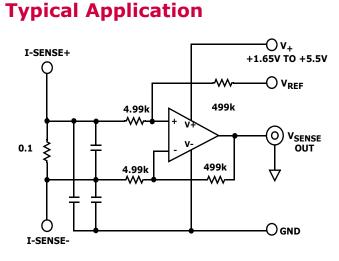


Dual and Quad Micropower, Zero-Drift, RRIO Operational Amplifiers

ISL28233, ISL28433

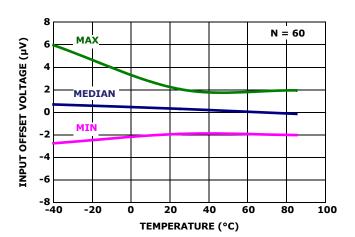
The ISL28233 and ISL28433 are dual and quad micropower, zero-drift operational amplifiers that are optimized for single and dual supply operation from 1.65V to 5.5V and $\pm 0.825V$ to $\pm 2.75V$. Their low supply current of 18µA and wide input range enable the ISL28233, ISL28433 to be an excellent general purpose op amp for a range of applications. The ISL28233 and ISL28433 are ideal for handheld devices that operate off 2 AA or single Li-ion batteries.

The ISL28233 is available in an 8 Ld MSOP package. The ISL28433 is available in 14 Ld TSSOP and 14 Ld SOIC packages. All devices operate over the temperature range of -40°C to $+85^{\circ}$ C.


Features

•	Low Input	Offset	Voltage.					8µV,	Max.
---	-----------	--------	----------	--	--	--	--	------	------

- Low Offset Drift 0.06 μ V/°C, Max
- Quiescent Current (Per Amplifier) 18µA, Typ.
- Single Supply Range. +1.65V to +5.5V
- Dual Supply Range $\pm 0.825V$ to $\pm 2.75V$
- Low Noise (0.01Hz to 10Hz) 1.1 $\mu V_{P\text{-}P^{\prime}}$ Typ.
- Rail-to-Rail Inputs and Output
- Operating Temperature Range . . . -40°C to +85°C


Applications

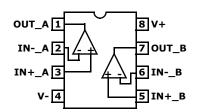
- Bi-Directional Current Sense
- Temperature Measurement
- Medical Equipment
- Electronic Weigh Scales
- Precision/Strain Gauge Sensor
- Precision Regulation
- Low Ohmic Current Sense
- High Gain Analog Front Ends

BI-DIRECTIONAL CURRENT SENSE AMPLIFIER

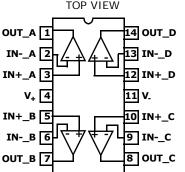
V_{OS} vs TEMP

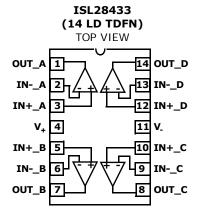
Ordering Information

PART NUMBER (Note 3)	PART MARKING	PACKAGE (Pb-Free)	PKG. DWG. #
ISL28233IUZ (Note 2)	8233Z	8 Ld MSOP	M8.118A
ISL28233IUZ-T7 (Notes 1, 2)	8233Z	8 Ld MSOP	M8.118A
Coming Soon ISL28433IBZ (Note 2)	28433 IBZ	14 Ld SOIC	MDP0027
Coming Soon ISL28433IBZ-T7 (Notes 1, 2)	28433 IBZ	14 Ld SOIC	MDP0027
Coming Soon ISL28433IVZ (Note 2)	28433 IVZ	14 Ld TSSOP	MDP0044
Coming Soon ISL28433IVZ-T13 (Notes 1, 2)	28433 IVZ	14 Ld TSSOP	MDP0044
Coming Soon ISL28433IRTZ (Note 2)	TBD	14 Ld 3x4 mm TDFN	TBD
Coming Soon ISL28433IRTZ-T13 (Notes 1, 2)	TBD	14 Ld 3x4 mm TDFN	TBD

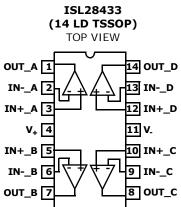

NOTES:

1. Please refer to TB347 for details on reel specifications.


- 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
- 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28233, ISL28433. For more information on MSL please see techbrief TB363.


Pin Configurations

ISL28233 (8 LD MSOP) TOP VIEW



Pin Configurations (Continued)

Pin Descriptions

ISL28233 (8 Ld MSOP)	ISL28433 (14 Ld TSSOP, SOIC, TDFN)	PIN NAME	FUNCTION	EQUIVALENT CIRCUIT
3	3	IN+_A	Non-inverting	
5	5	IN+_B	input	
	10	IN+_C		
	12	IN+_D		
				Circuit 1
4	11	V-	Negative supply	
2	2	INA	Inverting input	(See Circuit 1)
6	6	INB		
	9	INC		
	13	IND		
1	1	OUT_A	Output	V+
7	7	OUT_B		····-ť, <u>k</u>
	8	OUT_C		н н н п п п п п п п п п п п п п п п п п
	14	OUT_D		···
8	4	V+	Positive supply	
	PD	NC	Thermal Pad	Thermal Pad. Connect to most negative supply. TDFN package only.

Absolute Maximum Ratings

Max Supply Voltage V+ to V
Max Input Differential Voltage 6.5V
Max Input Current
Max Voltage VOUT to GND (10s)±3.0V
ESD Tolerance
Human Body Model
Machine Model
Charged Device Model
Latch-Up Passed Per JESD78B +125°C

Thermal Information

Thermal Resistance (Typical)	θ_{JA} (°C/W)	θ_{JC} (°C/W)
14 Ld TSSOP (Notes 4, 6)	. 110	TBD
14 Ld SOIC (Notes 4, 6)	. 75	TBD
14 Ld TDFN (Notes 4, 5)		TBD
8 Ld MSOP (Notes 4, 6)	. 180	65
Maximum Storage Temperature Rang	e65°	C to +150°C
Pb-Free Reflow Profile		ee link below
http://www.intersil.com/pbfree/Pb-	FreeReflow.	<u>asp</u>

Operating Conditions

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:

- 4. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
- 5. For θ_{JC} , the "case temp" location is the center of the exposed metal pad on the package underside.
- 6. For θ_{1C} , the "case temp" location is taken at the package top center.

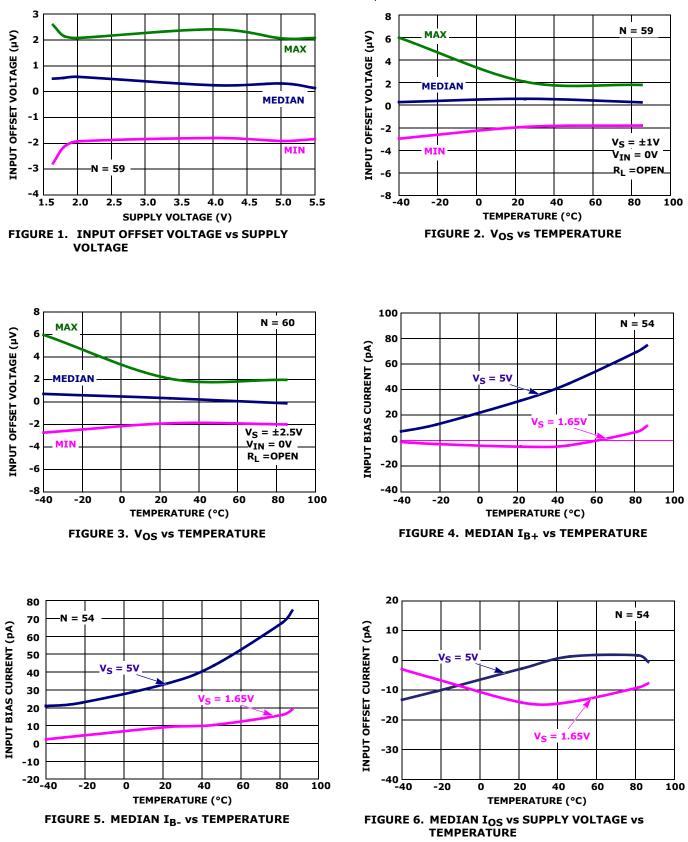
Electrical Specifications

 $V_+=5V,\,V_-=0V,\,VCM=2.5V,\,T_A=+25\,^\circ\text{C},\,R_L=10k\Omega$ unless otherwise specified. Boldface limits apply over the operating temperature range, -40\,^\circ\text{C} to +85 $^\circ\text{C}$.

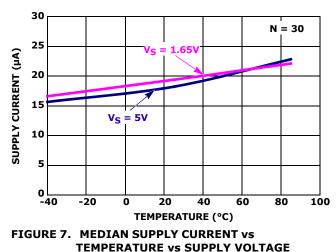
PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 7)	түр	MAX (Note 7)	UNIT
DC SPECIFICATI	ONS					
V _{OS}	Input Offset Voltage		-8	±2	8	μV
			-11.9	-	11.9	μV
TCV _{OS}	Input Offset Voltage Temperature Coefficient		-0.06	0.02	0.06	µV/°C
I _{OS}	Input Offset Current		-	1	-	pА
TCI _{OS}	Input Offset Current Temperature Coefficient		-	0.11	-	pA/°C
IB	Input Bias Current		-110	±30	110	pА
			-110	-	110	pА
TCIB	Input Bias Current Temperature Coefficient		-	0.49	-	pA/°C
Common Mode Input Voltage Range		V+ = 5.0V, V- = GND	-0.1	-	5.1	V
CMRR	Common Mode Rejection Ratio	VCM = -0.1V to 5.1V	118	125	-	dB
			115		-	dB
PSRR	Power Supply Rejection Ratio	Vs = 1.65V to 5.5V	110	138	-	dB
			110		-	dB
V _{OH}	Output Voltage Swing, High	$R_L = 10k\Omega$	4.965	4.981	-	V
V _{OL}	Output Voltage Swing, Low			18	35	mV
A _{OL}	Open Loop Gain	$R_L = 1M\Omega$		174	-	dB
V ₊	Supply Voltage	Guaranteed by PSRR	1.65	-	5.5	V
IS	Supply Current, Per Amplifier	$R_L = OPEN$	-	18	25	μA
			-	-	35	μΑ

ISL28233, ISL28433

Electrical Specifications


V_+ = 5V, V_- = 0V, VCM = 2.5V, T_A = +25°C, R_L = 10k Ω unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 7)	ТҮР	MAX (Note 7)	UNIT
I _{SC+}	Output Source Short Circuit Current	R_L = Short to ground or V+	13	17	26	mA
I _{SC-}	Output Sink Short Circuit Current		-26	-19	-13	mA
AC SPECIFICATIO	ONS					
GBWP	Gain Bandwidth Product f = 50kHz	$\begin{array}{l} A_V = 100, \ R_F = 100 k\Omega, \\ R_G = 1 k\Omega, \ R_L = 10 k\Omega \ to \ V_{CM} \end{array}$	-	400	-	kHz
e _N V _{P-P}	Peak-to-Peak Input Noise Voltage	f = 0.01Hz to 10Hz	-	1.1	-	μV _{P-P}
e _N	Input Noise Voltage Density	f = 1kHz	-	65	-	nV/√(Hz)
i _N	Input Noise Current Density	f = 1kHz	-	72	-	fA/√(Hz)
		f = 10Hz	-	79	-	fA/√(Hz)
C _{in}	Differential Input Capacitance	f = 1MHz	-	1.6	-	pF
	Common Mode Input Capacitance		-	1.12	-	pF
TRANSIENT RESP	PONSE		1	1	1	1
SR	Positive Slew Rate	$V_{OUT} = 1V$ to 4V, $R_L = 10k\Omega$	-	0.2	-	V/µs
	Negative Slew Rate		-	0.1	-	V/µs
t _r , t _f , Small Signal	Rise Time, t _r 10% to 90%	$A_V = +1, V_{OUT} = 0.1V_{P-P},$	-	1.1	-	μs
	Fall Time, t _f 10% to 90%	$R_{F} = 0\Omega, R_{L} = 10k\Omega,$ $C_{L} = 1.2pF$	-	1.1	-	μs
t _r , t _f Large Signal	Rise Time, t _r 10% to 90%	$A_V = +1, V_{OUT} = 2V_{P-P},$	-	8	-	μs
	Fall Time, t _f 10% to 90%	$R_{F} = 0\Omega, R_{L} = 10k\Omega,$ $C_{L} = 1.2pF$	-	10	-	μs
t _s	Settling Time to 0.1%, 2V _{P-P} Step		-	35	-	μs
t _{recover}	Output Overload Recovery Time, Recovery to 90% of output saturation	$\begin{array}{l} A_V = +2, \ R_F = 10 k \Omega, \\ R_L = 0 pen, \ C_L = 3.7 p F \end{array}$	-	10.5	-	μs


NOTE:

7. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested.

V+ = 5V, V- = 0V, V_{CM} = 2.5V, RL = Open, T = +25°C, unless otherwise specified.

V+ = 5V, V- = 0V, V_{CM} = 2.5V, R_L = Open, T = +25°C, unless otherwise specified. **(Continued)**

20

FIGURE 9. SUPPLY CURRENT vs TEMPERATURE

TEMPERATURE (°C)

0

40

60

28

26

24

22

20

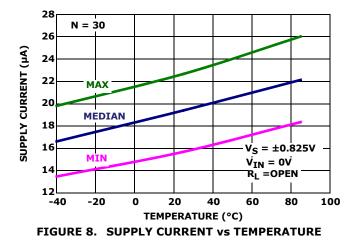
18

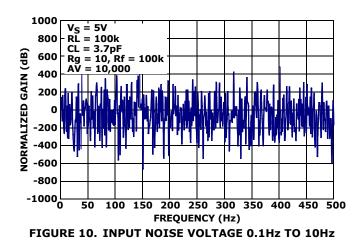
16

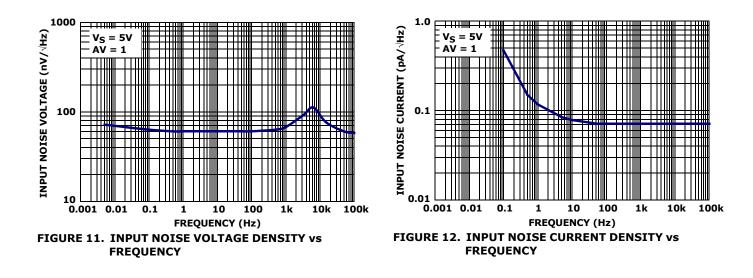
14

12∟ -40

SUPPLY CURRENT (µA)


N = 30

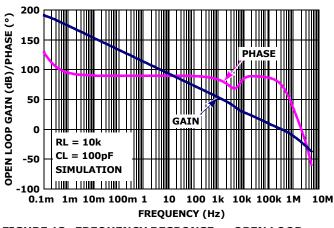

MAX


4TN

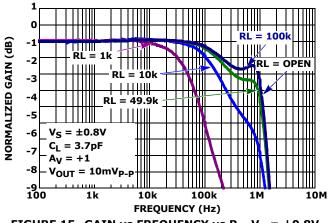
-20

MEDIAN

V_S = ±2.5V


VIN = OV

R_L =OPEN


80

otherwise specified. (Continued)

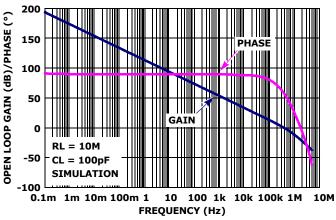
Typical Performance Curves

l

ll kf

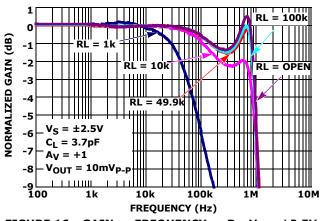
10

9

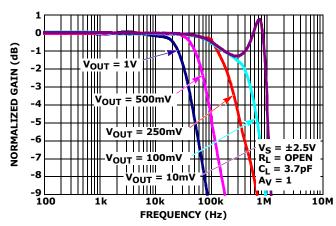

8

7

6


5

GAIN (dB)



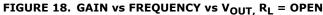
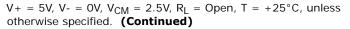

V+ = 5V, V- = 0V, V_{CM} = 2.5V, R_L = Open, T = +25°C, unless

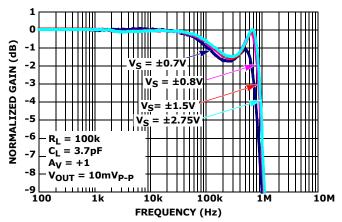
FIGURE 14. FREQUENCY RESPONSE vs OPEN LOOP GAIN, $R_L = 10M\Omega$

4 Rf = Rg = 100k $V_S = \pm 2.5V$ 3 R_L = 100k 2 -C_L = 3.7pF $A_{V} = +2$ 1 $V_{OUT} = 10mV_{P-P}$ 0 10k 100 1k 100k 1M 10M **FREQUENCY (Hz)**

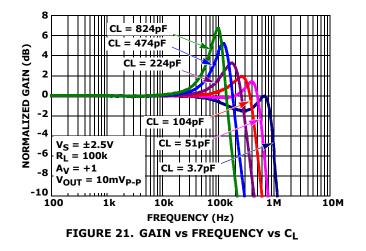
8

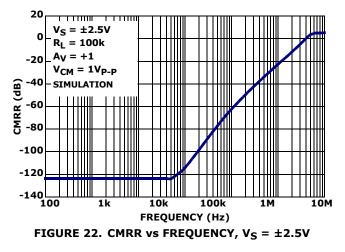
intersi

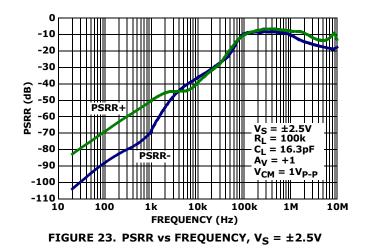

Rg = 1k

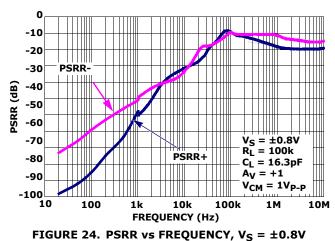

Rf = Rg

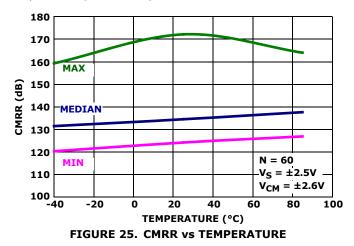
= 10k

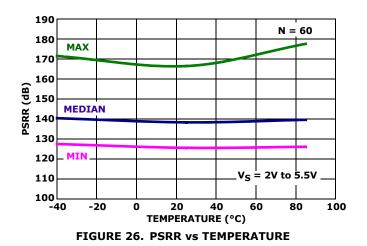

70 TITUT AV = 1000 Ш Rg = 100, Rf = 100k 60 1 1 1 1 1 1 1 1 TÌ ЩЩ 50 Rg = 1k, Rf = 100k ++++ AV = 100 40 (dB) ╓╢ $\prod C_{L} = 3.7 pF$ GAIN 30 $R_{L} = 100k$ $V_{OUT} = 10mV_{P-P}$ AV = 10 20 ΗЩ uii Rg = 10k, Rf = 100k 10 AV = 10 Rg = OPEN, Rf 0 -10 10 100 1k 10k 100k 1M 10M **FREQUENCY (Hz)**



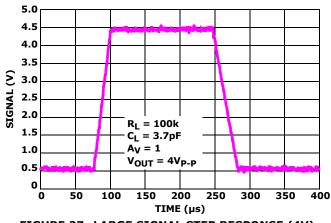
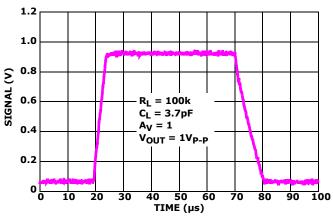
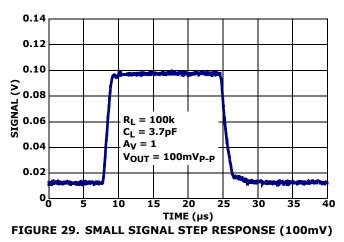


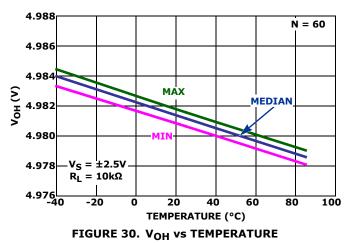




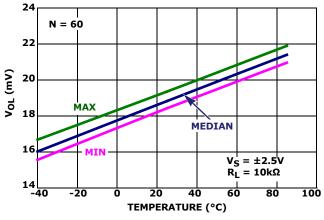
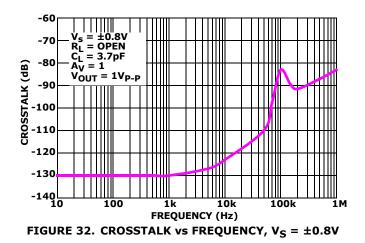
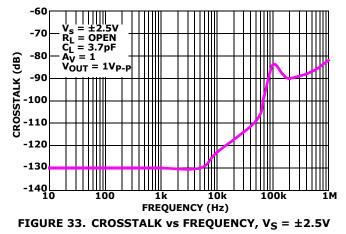
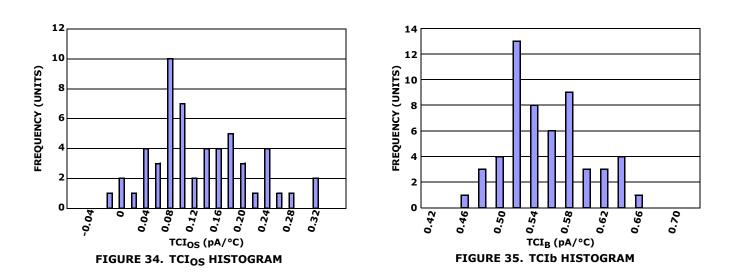


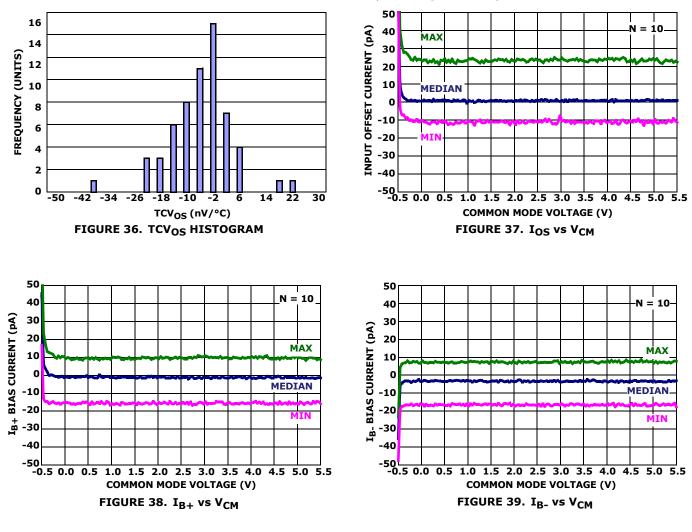
V+ = 5V, V- = 0V, V_{CM} = 2.5V, R_L = Open, T = +25°C, unless otherwise specified. **(Continued)**

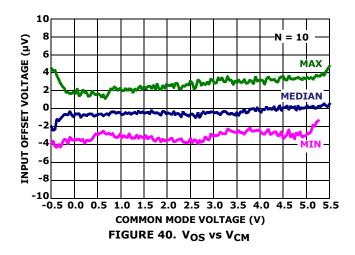




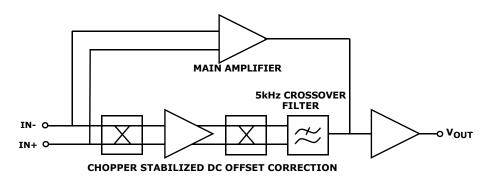

FIGURE 27. LARGE SIGNAL STEP RESPONSE (4V)

V+ = 5V, V- = 0V, V_{CM} = 2.5V, RL = Open, T = +25°C, unless otherwise specified. (Continued)


FIGURE 31. VOL vs TEMPERATURE







V+ = 5V, V- = 0V, V_{CM} = 2.5V, R_L = Open, T = +25°C, unless otherwise specified. **(Continued)**

Applications Information

Functional Description

The ISL28233 and ISL28433 use a proprietary chopper-stabilized technique (see Figure 41) that combines a 400kHz main amplifier with a very high open loop gain (174dB) chopper amplifier to achieve very low offset voltage and drift (2μ V, 0.02μ V/°C typical) while consuming only 18 μ A of supply current per channel.

This multi-path amplifier architecture contains a time continuous main amplifier whose input DC offset is corrected by a parallel-connected, high gain chopper stabilized DC correction amplifier operating at 100kHz. From DC to ~5kHz, both amplifiers are active with DC offset correction and most of the low frequency gain is provided by the chopper amplifier. A 5kHz crossover filter cuts off the low frequency amplifier path leaving the main amplifier active out to the 400kHz gain-bandwidth product of the device.

The key benefits of this architecture for precision applications are very high open loop gain, very low DC offset, and low 1/f noise. The noise is virtually flat across the frequency range from a few millihertz out to 100kHz, except for the narrow noise peak at the amplifier crossover frequency (5kHz).

Rail-to-rail Input and Output (RRIO)

The RRIO CMOS amplifier uses parallel input PMOS and NMOS that enable the inputs to swing 100mV beyond either supply rail. The inverting and non-inverting inputs do not have back-to-back input clamp diodes and are capable of maintaining high input impedance at high differential input voltages. This is effective in eliminating output distortion caused by high slew-rate input signals.

The output stage uses common source connected PMOS and NMOS devices to achieve rail-to-rail output drive capability with 17mA current limit and the capability to swing to within 20mV of either rail while driving a $10 k \Omega$ load.

IN+ and IN- Protection

All input terminals have internal ESD protection diodes to both positive and negative supply rails, limiting the input voltage to within one diode beyond the supply rails. For applications where either input is expected to exceed the rails by 0.5V, an external series resistor must be used to ensure the input currents never exceed 20mA (see Figure 42).

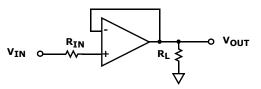
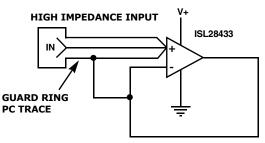
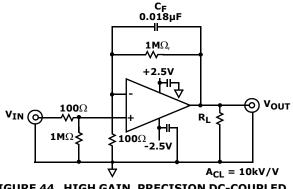


FIGURE 42. INPUT CURRENT LIMITING

Layout Guidelines for High Impedance Inputs

To achieve the maximum performance of the high input impedance and low offset voltage of the ISL28233 and ISL28433 amplifiers, care should be taken in the circuit board layout. The PC board surface must remain clean and free of moisture to avoid leakage currents between adjacent traces. Surface coating of the circuit board will reduce surface moisture and provide a humidity barrier. reducing parasitic resistance on the board. The use of guard rings around the amplifier inputs will further reduce leakage currents. Figure 43 shows how the guard ring should be configured. The guard ring does not need to be a specific width, but it should form a continuous loop around both inputs. By setting the guard ring voltage equal to the voltage at the non-inverting input, parasitic capacitance is minimized as well.




FIGURE 43. USE OF GUARD RINGS TO REDUCE

High Gain, Precision DC-Coupled Amplifier

The circuit in Figure 44 implements a single-stage DC-coupled amplifier with an input DC sensitivity of under 100nV that is only possible using a low VOS

amplifier with high open loop gain. High gain DC amplifiers operating from low voltage supplies are not practical using typical low offset precision op amps. For example, the typical $\pm 100\mu$ V V_{OS} and offset drift 0.5 μ V/°C of a low offset op amp would produce a DC error of >1V with an additional 5mV/°C of temperature dependent error making it difficult to resolve DC input voltage changes in the mV range.

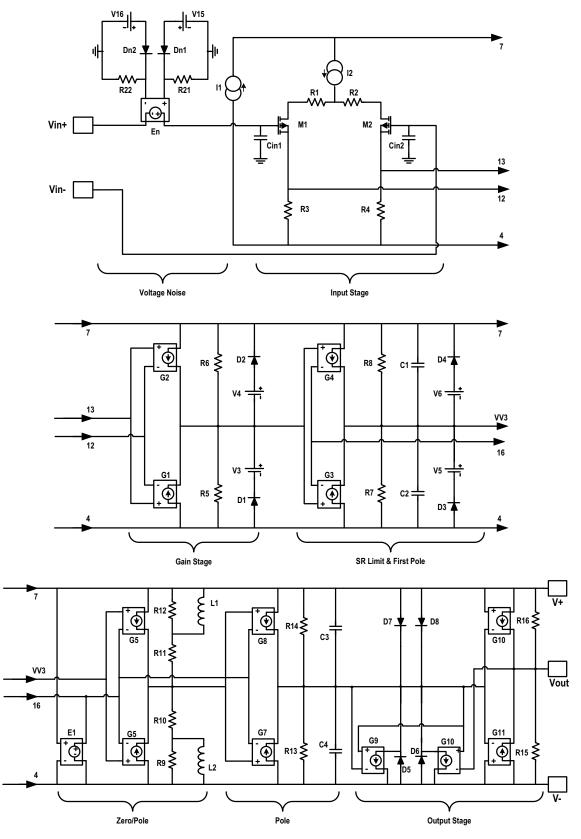
The $\pm 8\mu$ V max V_{OS} and 0.06 μ V/°C of the ISL28233, ISL28433 produces a temperature stable maximum DC output error of only ± 80 mV with a maximum temperature drift of 0.06 μ V/°C. The additional benefit of a very low 1/f noise corner frequency and some feedback filtering enables DC voltages and voltage fluctuations well below 100nV to be easily detected with a simple single stage amplifier.

FIGURE 44. HIGH GAIN, PRECISION DC-COUPLED AMPLIFIER

ISL28233, ISL28433 SPICE Model

Figure 45 shows the SPICE model schematic and Figure 46 shows the net list for the ISL28233, ISL28433 SPICE model. The model is a simplified version of the actual device and simulates important parameters such as noise, Slew Rate, Gain and Phase. The model uses typical parameters from the "Electrical Specifications Table" on page 4. The poles and zeroes in the model were determined from the actual open and closed-loop gain and phase response. This enables the model to present an accurate AC representation of the actual device. The model is configured for ambient temperature of +25°C.

Figures 47 through 54 show the characterization vs simulation results for the Noise Density, Frequency Response vs Close Loop Gain, Gain vs Frequency vs CL and Large Signal Step Response (4V).


LICENSE STATEMENT

The information in this SPICE model is protected under the United States copyright laws. Intersil Corporation hereby grants users of this macro-model hereto referred to as "Licensee", a nonexclusive, nontransferable licence to use this model as long as the Licensee abides by the terms of this agreement. Before using this macro-model, the Licensee should read this license. If the Licensee does not accept these terms, permission to use the model is not granted.

The Licensee may not sell, loan, rent, or license the macro-model, in whole, in part, or in modified form, to anyone outside the Licensee's company. The Licensee may modify the macro-model to suit his/her specific applications, and the Licensee may make copies of this macro-model for use within their company only.

This macro-model is provided "AS IS, WHERE IS, AND WITH NO WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUY NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE."

In no event will Intersil be liable for special, collateral, incidental, or consequential damages in connection with or arising out of the use of this macro-model. Intersil reserves the right to make changes to the product and the macro-model without prior notice.

* Revision * AC chara *Copyright : *Refer to da *this model	L28233	9 foltage sil Corp ENSE r accep the Lic +inp 3	e Noise ooration STATE otance ense S	e MENT ⁷ with the stateme	e nt. upply	f ipply output 6
D_DN2	104 103 I	DN				
R_R21	0 101 12					
R_R22	0 103 12					
E_EN	8 3 101 10					
V_V15 V_V16	102 0 0.1 104 0 0.1					
*	1010011	, ac				
*Input Sta						
C_Cin1						
C_Cin2 R R1	2 0 2.0p 9 10 10					
R R2	10 11 10					
	4 12 100					
R_R4	4 13 100					
M_M1	12899	pmosi	sil			
+ L=50u + W=50u						
+ w=30u M M2	13 2 11 11	pmos	sisil			
+ L=50u		p				
+ W=50u						
_	17 DC 92uA					
I_I2 7 *	7 10 DC 100	uA				
*Gain stag	je					
	, 4 VV2 13 1	2 0.0	002			
_	7 VV2 13 1		002			
R_R5	4 VV2 1.3	•				
R_R6 D_D1	VV2 7 1.3 4 14 DX	Meg				
D_D1 D_D2	4 14 DX 15 7 DX					
V_V3	VV2 14 0.7	Vdc				
V_V4	15 VV2 0.7	Vdc				
*						
*SR limit fi G_G3	irst pole 4 VV3 VV2	2 1 6 1				
G_G3 G_G4	7 VV3 VV2					
R_R7	4 VV3 1m					
R_R8	VV37 1m	eg				
C_C1	VV37 12u	I				

C_C2 D_D3 D_D4 V_V5 V_V6 *	4 VV3 12u 4 17 DX 18 7 DX VV3 17 0.7Vdc 18 VV3 0.7Vdc
*Zero/Pol	e
E_E1	16 4 7 4 0.5
G_G5	4 VV4 VV3 16 0.000001
G_G6	7 VV4 VV3 16 0.000001
L_L1	20 7 0.3H
R_R12	20 7 2.5meg
R_R11	VV4 20 1meg
L_L2	4 19 0.3H
R_R9	4 19 2.5meg
R_R10	19 VV4 1meg
*Pole	
G_G7	4 VV5 VV4 16 0.000001
G_G8	7 VV5 VV4 16 0.000001
C_C3	VV5 7 0.12p
C_C4	4 VV5 0.12p
R_R13	4 VV5 1meg
R_R14 *	VV5 7 1meg
	teac
*Output S G_G9	21 4 6 VV5 0.0000125
G_G9 G_G10	21 4 8 VVS 0.0000125 22 4 VV5 6 0.0000125
G_G10 D_D5	4 21 DY
D_D5 D_D6	4 22 DY
D_D0 D_D7	7 21 DX
D_D8	7 22 DX
R_R15	4 6 8k
R_R16	6 7 8k
G_G11	6 4 VV5 4 -0.000125
G_G12	7 6 7 VV5 -0.000125
*	
	nosisil pmos (kp=16e-3 vto=10m)
.model DI	N D(KF=6.4E-16 AF=1)
MODEL	DX D(IS - 1F - 18 Rs - 1)

.model DN D(KF=6.4E-16 AF=1) .MODEL DX D(IS=1E-18 Rs=1) .MODEL DY D(IS=1E-15 BV=50 Rs=1) .ends ISL28233

FIGURE 46. SPICE NET LIST

Characterization vs Simulation Results

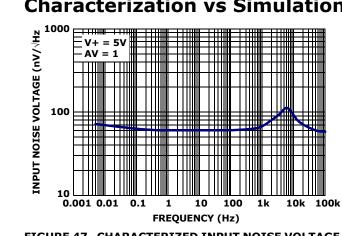


FIGURE 47. CHARACTERIZED INPUT NOISE VOLTAGE **DENSITY vs FREQUENCY**

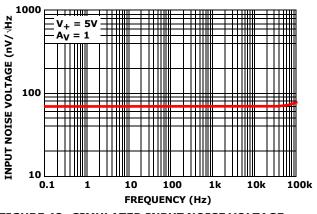


FIGURE 48. SIMULATED INPUT NOISE VOLTAGE **DENSITY vs FREQUENCY**

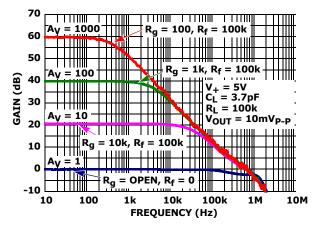


FIGURE 49. CHARACTERIZED FREQUENCY RESPONSE vs CLOSED LOOP GAIN

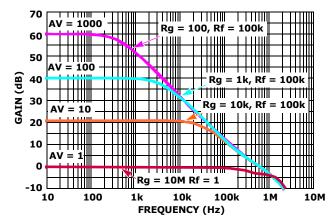


FIGURE 50. SIMULATED FREQUENCY RESPONSE vs **CLOSED LOOP GAIN**

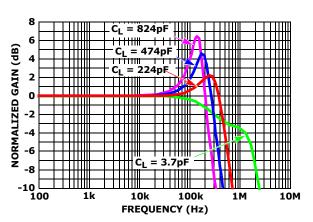


FIGURE 52. SIMULATED GAIN vs FREQUENCY vs CL

2 ΠI 0

 $C_L = 824 pF$

C_L = 474pF

. C_L = 224pF

8

6

4

TIT

(qB)

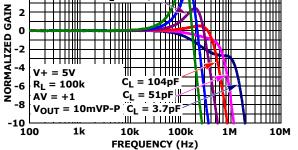
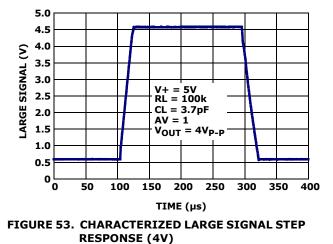
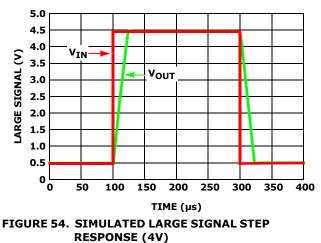




FIGURE 51. CHARACTERIZED GAIN vs FREQUENCY vs CL

Characterization vs Simulation Results (Continued)

Revision History

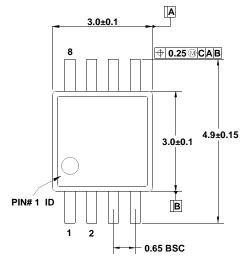
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.

DATE	REVISION	CHANGE
3/25/10	FN6942.0	Initial Release.

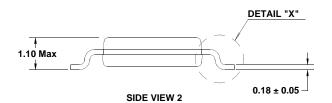
Products

Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to <u>www.intersil.com/products</u> for a complete list of Intersil product families.

*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: <u>ISL28233, ISL28433</u>

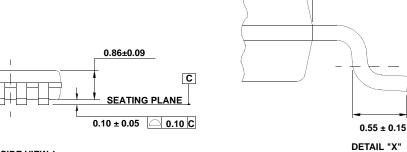

To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff

FITs are available from our website at http://rel.intersil.com/reports/search.php


Package Outline Drawing

M8.118A

8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE (MSOP) Rev 0, 9/09

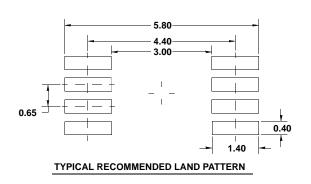

0.95 BSC

GAUGE

PLANE

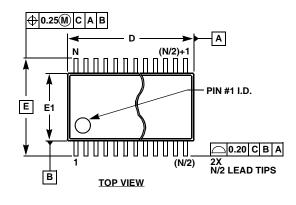
3°±3°

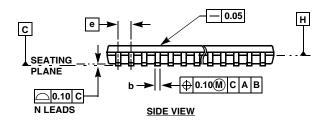
0.25

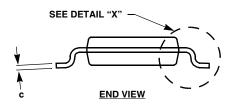


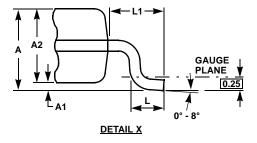
Н

0.33 +0.07/ -0.08


0.08 MCAB




NOTES:


- 1. Dimensions are in millimeters.
- 2. Dimensioning and tolerancing conform to JEDEC MO-187-AA and AMSE Y14.5m-1994.
- 3. Plastic or metal protrusions of 0.15mm max per side are not included.
- 4. Plastic interlead protrusions of 0.25mm max per side are not included.
- 5. Dimensions "D" and "E1" are measured at Datum Plane "H".
- 6. This replaces existing drawing # MDP0043 MSOP 8L.

Thin Shrink Small Outline Package Family (TSSOP)

MDP0044

THIN SHRINK SMALL OUTLINE PACKAGE FAMILY

		MIL								
SYMBOL	14 LD	16 LD	20 LD	24 LD	28 LD	TOLERANCE				
A	1.20	1.20	1.20	1.20	1.20	Max				
A1	0.10	0.10	0.10	0.10	0.10	±0.05				
A2	0.90	0.90	0.90	0.90	0.90	±0.05				
b	0.25	0.25	0.25	0.25	0.25	+0.05/-0.06				
С	0.15	0.15	0.15	0.15	0.15	+0.05/-0.06				
D	5.00	5.00	6.50	7.80	9.70	±0.10				
E	6.40	6.40	6.40	6.40	6.40	Basic				
E1	4.40	4.40	4.40	4.40	4.40	±0.10				
е	0.65	0.65	0.65	0.65	0.65	Basic				
L	0.60	0.60	0.60	0.60	0.60	±0.15				
L1	1.00	1.00	1.00	1.00	1.00	Reference				
	Rev. F 2/07									

NOTES:

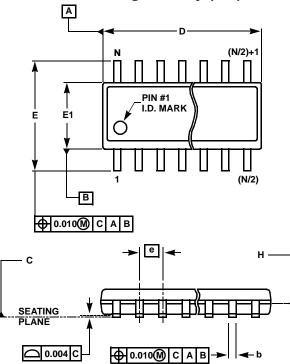
 Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm per side.

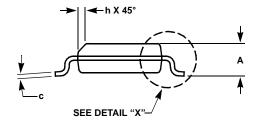
2. Dimension "E1" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm per side.

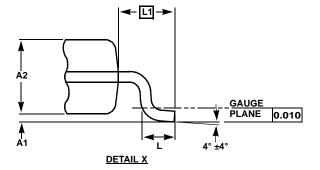
3. Dimensions "D" and "E1" are measured at dAtum Plane H.

4. Dimensioning and tolerancing per ASME Y14.5M-1994.

For additional products, see <u>www.intersil.com/product_tree</u>


Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality


Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.


For information regarding Intersil Corporation and its products, see www.intersil.com

Small Outline Package Family (SO)

MDP0027

SMALL OUTLINE PACKAGE FAMILY (SO)

SYMBOL	SO-8	SO-14	SO16 (0.150")	SO16 (0.300") (SOL-16)	SO20 (SOL-20)	SO24 (SOL-24)	SO28 (SOL-28)	TOLERANCE	NOTES
А	0.068	0.068	0.068	0.104	0.104	0.104	0.104	MAX	-
A1	0.006	0.006	0.006	0.007	0.007	0.007	0.007	±0.003	-
A2	0.057	0.057	0.057	0.092	0.092	0.092	0.092	±0.002	-
b	0.017	0.017	0.017	0.017	0.017	0.017	0.017	±0.003	-
С	0.009	0.009	0.009	0.011	0.011	0.011	0.011	±0.001	-
D	0.193	0.341	0.390	0.406	0.504	0.606	0.704	±0.004	1, 3
Е	0.236	0.236	0.236	0.406	0.406	0.406	0.406	±0.008	-
E1	0.154	0.154	0.154	0.295	0.295	0.295	0.295	±0.004	2, 3
е	0.050	0.050	0.050	0.050	0.050	0.050	0.050	Basic	-
L	0.025	0.025	0.025	0.030	0.030	0.030	0.030	±0.009	-
L1	0.041	0.041	0.041	0.056	0.056	0.056	0.056	Basic	-
h	0.013	0.013	0.013	0.020	0.020	0.020	0.020	Reference	-
Ν	8	14	16	16	20	24	28	Reference	-

Rev. M 2/07

NOTES:

1. Plastic or metal protrusions of 0.006" maximum per side are not included.

2. Plastic interlead protrusions of 0.010" maximum per side are not included.

3. Dimensions "D" and "E1" are measured at Datum Plane "H".

4. Dimensioning and tolerancing per ASME Y14.5M-1994