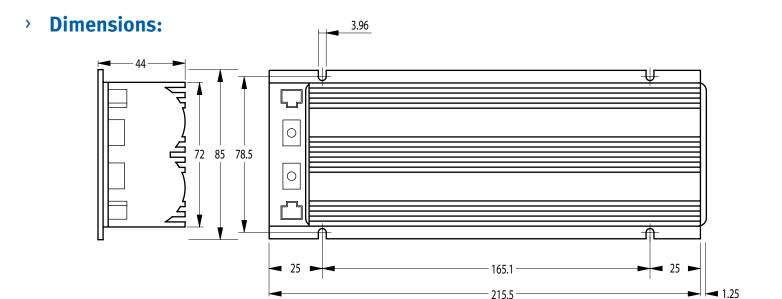


Lug Connection

Series: BMOD


> Features:

- 15 V working voltage
- > Individually balanced cells
- > Rugged, fully enclosed system
- Screw mountable
- Module-to-module balance cable included
- > UL Recognized

> Applications:

- > Automotive subsystems
- > Heavy duty vehicle subsystems
- Rail system power
- Windmill pitch control systems
- Wireless transmissions

			Dimensions, mm					Typical
Case size	Part #	Balancing	L	W	Т	Weight [g]	Vol. [l]	package qty
BMOD0350-15EA	104058	Active	218	85	44	680	0.69*	1
BMOD0350-15ER	104057	Passive	218	85	44	680	0.69*	1

*Volume does not include mounting rails.

Product dimensions and specifications may change without notice. Please contact Maxwell Technologies directly for any technical specifications critical to application.

Specifications:

	Product Specification					
	BMOD0350-15EA	BMOD0350-15ER	Tolerance	Standard		
Mounting	Screw to chassis surface		ce			
Capacitance, C _R [F]	58		+/- 20%			
Voltage, U _R	15					
Internal resistance, DC [ohm]	0.019		+/- 25 %	Discharging at Constant Current (25°C)		
Internal resistance, 1 kHz [ohm]	0.01		+/- 25 %			
Thermal Resistance, [^O C/W]	1.84			\triangle T=DR _{th} I $_{c}$ ² R $_{d}$		
Short circuit current, I _{SC} [A]	1500			Caution, current possible with short circuit from U _R		
Leakage current [mA]	1	50		72 hrs, 25°C		
Operating temp. range [C]		-40 to 65				
Storage temp. range [C]		-40 to 70				
Endurance, Capacitance [F]		< 20% decrease		- 1000 hrs @ U _R and 65°C		
Endurance, Resistance [ohm]		< 25% increase				
Maximum energy, E _{max} [Wh/kg]		2.67		Full discharge from U _R		
Peak Power Density [W/kg]		8,200		Matched Load		
Power, P _d [W/kg]	2,100			See additional technical information		
Life Time	\triangle C/C _R < 20% decrease, ESR < 2x increase		2x increase	from initial value after 10y @ 25°C		
Cycle Life	△C/C _R < 20%	decrease, ESR <	2x increase	from initial value after 500K cycles @ 25°C (I = 5A)		

Markings: Capacitors are marked with the following information:

Rated capacitance, rated voltage, product number, name of manufacturer, UL symbol, positive terminal and negative terminal

> Mounting Recommendations:

The module should be mounted to a strong chassis surface with four 6-32, or M4 screws. The mounting screws should have a mechanical locking method that is appropriate for the vibration levels. To provide the best possible EMI protection, the mounting surface should be electrically grounded. Do not reverse polarize.

Additional Technical Information:

$$P_d = (0.12 \text{ x E}^2/R_d)/M$$

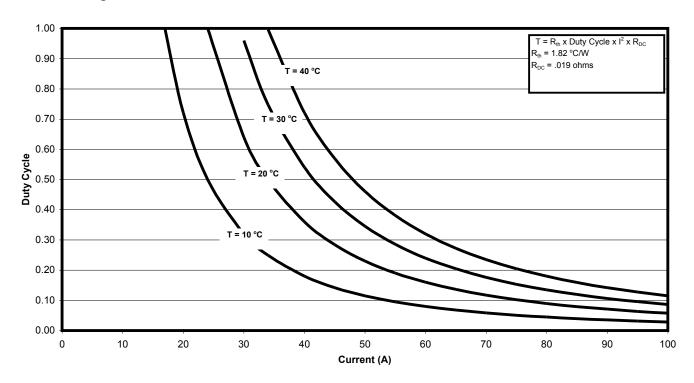
$$\triangle T = D R_{th} I_c^2 R_d$$

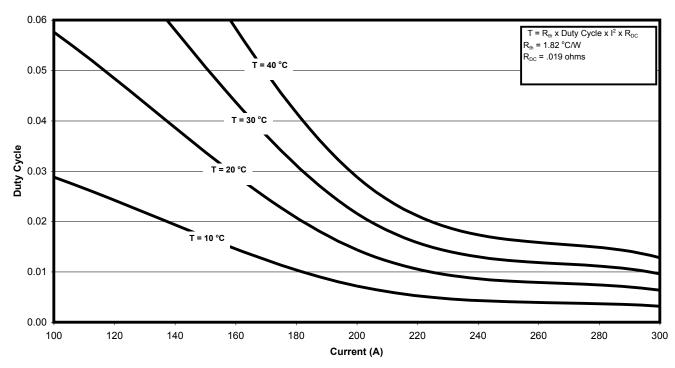
 $E = charge voltage (U_R)$

M = capacitor weight (kg)

D = duty cycle

R_d = internal resistance (DC)


V = capacitor volume (l)


 I_{C} = continuous current

ΔT - duty cycle vs. operating current:

Curves generated under free convection at 25°C ambient

US Patent: 6,806,686 and additional Patents Pending

Worldwide Headquarters

FAX: +(1) 858 503 3301

EMAIL: info@maxwell.com

MAXWELL TECHNOLOGIES 9244 Balboa Avenue • San Diego, 92123 CA, USA PHONE: +(1) 858 503 3300 MAXWELL TECHNOLOGIES SA CH-1728 Rossens • Switzerland PHONE: +41 (0) 26 411 85 00 FAX: +41 (0) 26 411 85 05 EMAIL: info@maxwell.com

European Office

