

Silicon Epicap Diodes

Designed for general frequency control and tuning applications; providing solid-state reliability in replacement of mechanical tuning methods.

- High Q with Guaranteed Minimum Values at VHF Frequencies
- Controlled and Uniform Tuning Ratio
- Available in Surface Mount Package

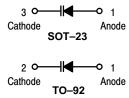
MAXIMUM RATINGS

Rating	Symbol	MMBV109LT1	MV209	Unit
Reverse Voltage	V _R	30		Vdc
Forward Current	I _F	200	mAdc	
Forward Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	200 2.0	200 1.6	mW mW/°C
Junction Temperature	TJ	+125		°C
Storage Temperature Range	T _{stg}	–55 to +150		°C

DEVICE MARKING

MMBV109LT1 = M4A, MV209 = MV209

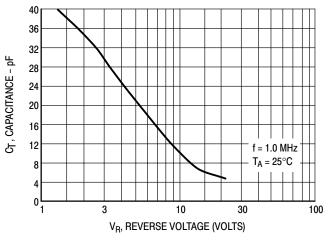
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)


Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage (I _R = 10 μAdc)	V _{(BR)R}	30	_	_	Vdc
Reverse Voltage Leakage Current (V _R = 25 Vdc)	I _R	_	_	0.1	μAdc
Diode Capacitance Temperature Coefficient (V _R = 3.0 Vdc, f = 1.0 MHz)	TC _C	_	300		ppm/°

MMBV109LT1, MV209

MMBV109LT1 and MV209 are Preferred Devices

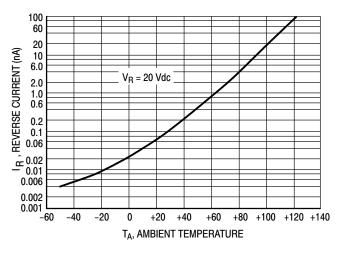
26–32 pF VOLTAGE VARIABLE CAPACITANCE DIODES



	C _t , Diode Capacitance V _R = 3.0 Vdc, f = 1.0 MHz pF		Q, Figure of Merit V _R = 3.0 Vdc f = 50 MHz	C_R , Capacitance Ratio C_3/C_{25} f = 1.0 MHz (Note 1)		
Device	Min	Nom	Max	Min	Min	Max
MMBV109LT1, MV209	26	29	32	200	5.0	6.5

^{1.} C_R is the ratio of C_t measured at 3 Vdc divided by C_t measured at 25 Vdc.

Preferred devices are ON Semiconductor recommended choices for future use and best overall value.


MMBV109LT1, MV209

1000 V_R = 3 Vdc T_A = 25°C

Figure 1. DIODE CAPACITANCE

Figure 2. FIGURE OF MERIT

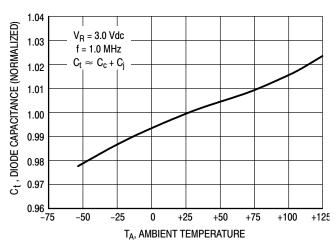


Figure 3. LEAKAGE CURRENT

Figure 4. DIODE CAPACITANCE

NOTES ON TESTING AND SPECIFICATIONS

1. C_R is the ratio of C_t measured at 3.0 Vdc divided by C_t measured at 25 Vdc.