

UNISONIC TECHNOLOGIES CO., LTD

Preliminary

LINEAR INTEGRATED CIRCUIT

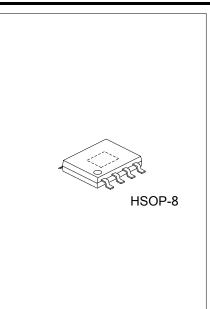
HIGH INPUT VOLTAGE, LOW QUIESCENT CURRENT, 300mA LDO REGULATOR

DESCRIPTION

The **UTC LM5954** is a low ground current linear regulator which operates with input voltage from $6.5V \sim 25V$ and delivers output current up to 300mA. Typical dropout voltage is only 450mV at 300mA loading.

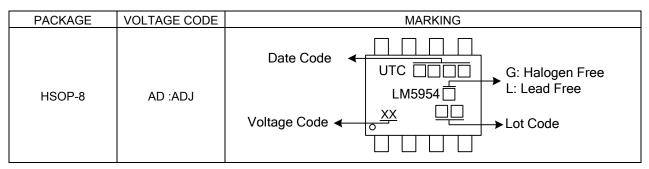
The **UTC LM5954** has many protection functions including over temperature and current limit which prevent the device from thermal over-load and current over-load.

FEATURES

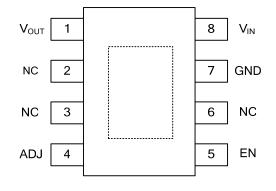

- * Wide Operating Voltage : 6.5V~25V
- * Ultra Low Ground Current :120µA
- * High Output Accuracy : ±2% over temperature
- * Excellent Load/Line Transient
- * Low Dropout Voltage : 450mv @ 300mA
- * Built-in Current Limit Protection
- * Built-in Over Temperature Protection
- * Zero Shutdown Current

ORDERING INFORMATION

Ordering Number		Daakaga	Decking		
Lead Free	Halogen Free	Package	Packing		
LM5954L-xx-SH2-R	LM5954G-xx-SH2-R	HSOP-8	Tape Reel		
LM5954L-xx-SH2-T	LM5954G-xx-SH2-T	HSOP-8	Tube		
Note: vyu Outrut Voltage, refer to Marking Information					


Note: xx: Output Voltage, refer to Marking Information.

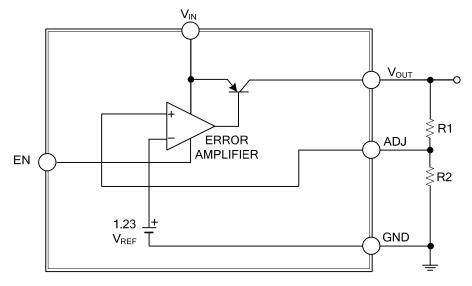
LM5954L-xx-SH2-R (1)Packing Type (2)Package Type (3)Output Voltage Cod	(1) 1 1 1 3 1 1 1
(4)Lead Free	(4) G: Halogen Free, L: Lead Free



Preliminary

MARKING INFORMATION

PIN CONFIGURATION



PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	V _{OUT}	Output pin
2, 3, 6	NC	No Connection
4	ADJ	ADJ: output feedback pin
5	EN	ON/OFF pin, low=output ON; high=output OFF
7	GND	Ground
8	V _{IN}	Input pin

BLOCK DIAGRAM

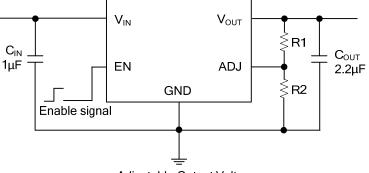
■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	-0.3~+27	V
Feedback Voltage	V _{FB}	-1.5~+27	V
Shutdown Voltage	V _{SHDN}	-0.3~+27	V
Power Dissipation	PD	Internally Limited	W
Junction Temperature	TJ	+125	°C
Storage Temperature	T _{STG}	-65~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER	SYMBOL RATINGS		UNIT	
Junction to Ambient	θ _{JA}	50	°C/W	
Junction to Case	θ _{JC}	20	°C/W	


■ ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, these specifications apply over $V_{IN}=V_{OUT}+2.5V$, $C_{IN}=1\mu$ F, $C_{OUT}=2.2$ mF, $T_{A}=-40^{\circ}$ C ~ 85°C. Typical values refer to $T_{A}=25^{\circ}$ C.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Input Voltage	V _{IN}		6.5		25	V	
Output Voltage Accuracy	Vout		-2		2	%	
Output Voltage Range			3		20	V	
Quiescent Current	ΙQ	I _{OUT} =0.1mA	75	120	140	uA	
		I _{OUT} =300mA	8	12	22	mA	
Load Current Range	Ι _{ουτ}		0		300	mA	
Reference Voltage	V _{REF}		-2%	1.235	+2%	V	
Line Regulation	ΔV_{OUT}	V _{OUT} +2.5V <v<sub>IN<25V, I_{OUT}=1mA</v<sub>		0.1	0.2	%	
Load Regulation	ΔV_{OUT}	0.1mA <i<sub>OUT<300mA</i<sub>		0.2	0.5	%	
Dropout Voltage	VD	I _{OUT} =0.1mA	50	80	150	mV	
		I _{OU} T=300mA	380	450	600		
PROTECTION							
Over Temperature Shutdown	OTS			150		°C	
Circuit Current Limit	I _{LIMIT}	V _{IN} =V _{OUT} +2.5V	350	400	500	mA	
Short Current	I _{SHORT}	V _{OUT} =0V		50		mA	
SHUTDOWN							
Input High Voltage	Ň		2			V	
Input Low Voltage	V _{EN}				0.7	v	
EN pin Input Bias Current	I _{EN}	V _{EN} =25V		450	600	μA	
Shutdown Supply Current	I _{QSHDN}	EN=High, V _{IN} =19V		0.1	1	mA	

TYPICAL APPLICATION CIRCUIT

Adjustable Output Voltage

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

