

7.0 x 5.0 x 1.8mm

> FEATURES:

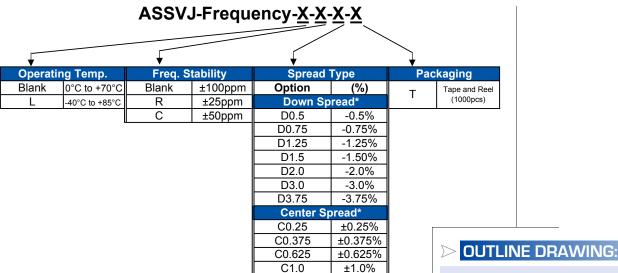
- Low Cycle to Cycle Jitter
- Integrated Spread Spectrum Technology
- EMI reduction up to 20dB
- Solve EMI failures as a drop in replacement for std. 7 x5 mm Osc.
- Cost effective EMI reduction

> APPLICATIONS:

 Printers, Digital Copy Machines, Scanners, Projectors, Modems, LAN, WAN, Navigation Equipment, Audio, Hand-held readers, Industrial Automation

STANDARD SPECIFICATIONS:


PARAMETERS			
ABRACON P/N	ASSVJ Series		
Frequency Range	13.0 MHz to 220.0 MHz		
Spread Type & Percentage	Center Spread ±0.5% (see options)		
EMI Reduction	EMI reduction (dB) =		
(Reduction is applied to the	10Log ("Total %" x "SSC Frequency (MHz) "/0.12)		
entire freq. spectrum)	(See 125MHz Example)		
Operating Temperature	0°C to + 70°C (see options)		
Storage Temperature	- 55°C to + 125°C		
Frequency Stability	± 100 ppm (see options)		
Supply Voltage (Vdd)	3.3 Vdc ± 5%		
Start-up Time	2ms typ, 5ms max.		
Rise and Fall Time (Tr/Tf)	1.2n sec. max. (20% Vdd <-> 80% Vdd)		
Load	15pF		
Current Consumption	25mA Typical (depends on frequency)		
Duty Cycle	50% ± 5% (CL = 15pF at 50% VDD)		
Output Logic	CMOS		
Cycle to cycle Jitter	±100ps typ; ±150ps max.		
Output Impedance	40ohm		
Static Discharge Voltage	>2,000V (per MIL-STD-883, method 3015)		
Aging	±5ppm per year max.; Ta=+25°C		
Output Voltage "High"; "1"	2.4V min. (at 80% VDD)		
Output Voltage "Low"; "0"	0.4V max. (at 20% V _{DD})		
Modulation Carrier Freq. (dither rate)	25.3kHz min.; 58.6kHz max; (depends on frequency)		


ASSVJ SERIES

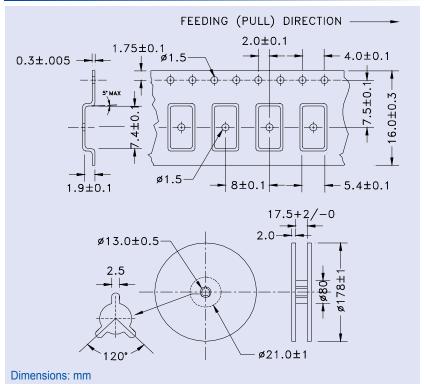
> OPTIONS AND PART IDENTIFICATION:

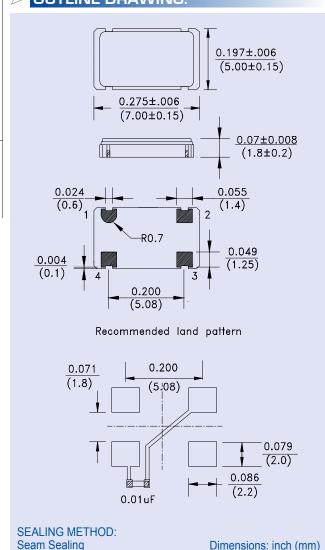
(Left blank if standard)

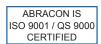
C1.5

C1.875

±1.5%

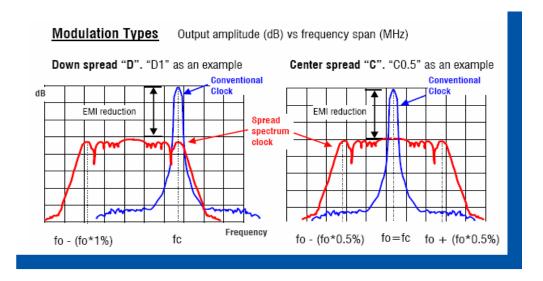

±1.875%

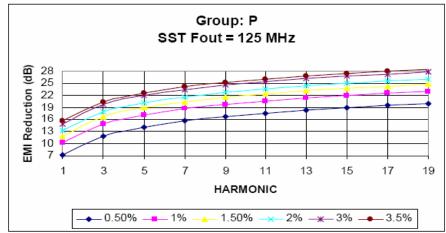

PIN	FUNCTION		
1	NC		
2	Ground		
3	SS Output		
4	Vdd		


Please see note below about Down and Center Spread.

* MOQ 1K for all spread type

TAPE & REEL:




7.0 x 5.0 x 1.8mm

MODULATION:

EMI REDUCTION:

EMI Reduction Data 125 MHz at various spread percentages. Modulation Carrier Frequency: 48.8 KHz

Main mode: EMI reduction (dB) = $10Log(\frac{Total\%*Frequency(MHz)}{10Log(\frac{Total\%*Frequency(M$

 3^{rd} Harmonic: EMI reduction (dB) = $10Log(\frac{Total\%*Frequency(MHZ)*3}{2})$

5th Harmonic: EMI reduction (dB) = $10Log(\frac{Total\%*Frequency(MHz)*5}{2})$

7.0 x 5.0 x 1.8mm

> FREQUENCY:

Instantaneous Frequencies (Example of 100 MHz)

If over-clocking is a problem to your system please choose down spread

Total Spread %	Down Spread Instantaneous Frequency		Center Spread Instantaneous Frequency	
	min.	max.	min.	max.
	Down Range	Up Range	Down Range	Up Range
0.5 %	- 1%	0%	-0.5 %	+0.5%
	-5,000 ppm	0 ppm	-2500 ppm	+2500 ppm
	99.500000	100.000000	99.750000	100.250000
2 %	- 2.0%	0%	-1.0 %	+1.0%
	-20,000 ppm	0 ppm	-10,000 ppm	+10,000 ppm
	98.000000	100.000000	99.000000	101.000000
3 %	- 3.0%	0%	-1.5 %	+1.5%
	-30,000 ppm	0 ppm	-15,000 ppm	+15,000 ppm
	97.000000	100.000000	98.500000	101.500000

