

SPICE Device Model Si7943DP

Vishay Siliconix

Dual P-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

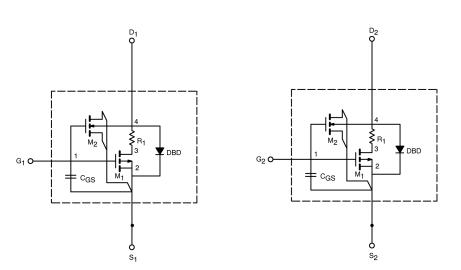
- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- · Level 3 MOS

- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range

intended as an exact physical interpretation of the device.

 Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

A novel gate-to-drain feedback capacitance network is used to model


the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized

to provide a best fit to the measured electrical data and are not

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit mode is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-to-10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

SPICE Device Model Si7943DP Vishay Siliconix

SPECIFICATIONS (T _J = 25° C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static	-			•	
Gate Threshold Voltage	V _{GS(th)}	$V_{\text{DS}} = V_{\text{GS}}, \ I_{\text{D}} = -250 \mu \text{A}$	1.1		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS}=-5V,V_{GS}=-10V$	235		А
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -10V, I_{D} = -9.4A$	0.020	0.020	Ω
		$V_{GS} = -4.5V, I_D = -8.6A$	0.024	0.024	
		$V_{GS} = -2.5V, I_{D} = -3A$	0.036	0.037	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -15V, I_D = -9.4A$	23	15	S
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = -2.9 A, $V_{\rm GS}$ = 0V	- 0.81	- 0.80	V
Dynamic ^b	-				
Total Gate Charge	Qg	V_{DS} = - 15V, V_{GS} = - 4.5V, I_D = - 9.4A	25	23.5	nC
Gate-Source Charge	Q _{gs}		8.5	8.5	
Gate-Drain Charge	Q _{gd}		5	5	
Turn-On Delay Time	t _{d(on)}	V_{DD} = - 15V, R _L = 15 Ω I _D \cong - 1A, V _{GEN} = - 10V, R _G = 6 Ω I _F = - 2.9A, di/dt = 100 A/µs	17	18	ns
Rise Time	tr		22	40	
Turn-Off Delay Time	t _{d(off)}		53	100	
Fall Time	t _f		73	60	
Source-Drain Reverse Recovery Time	t _{rr}		47	50	

Notes

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

SPICE Device Model Si7943DP

3.0 3.5

4.5 V

VGS = 10 V

> 24 30

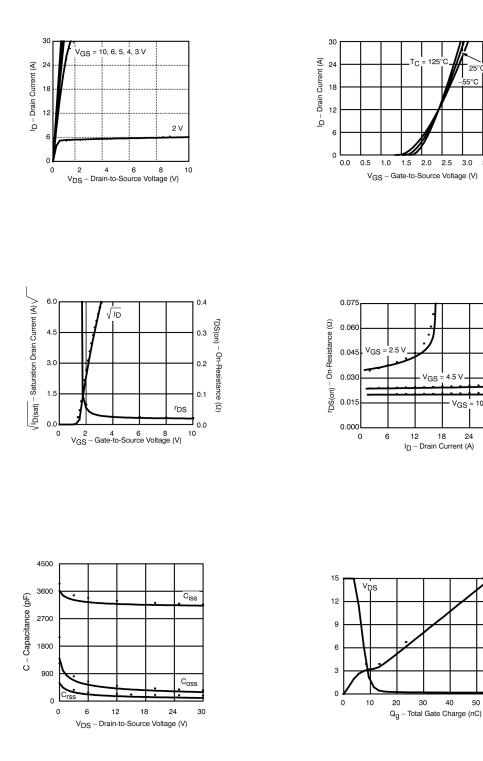
> > 10

8

6

4

2


0

50 60

VGS

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)

Note: Dots and squares represent measured data