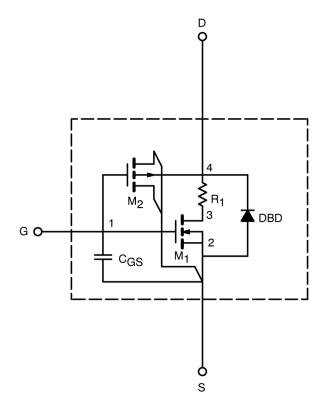


N-Channel 30-V (D-S), Fast Switching MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- · Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

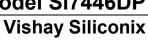
SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

Document Number: 71720 www.vishay.com 10-Oct-01

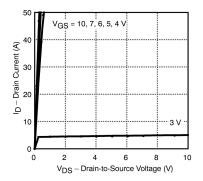
SPICE Device Model Si7446DP

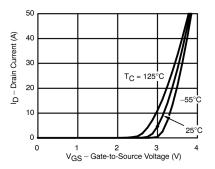
Vishay Siliconix

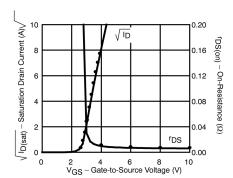


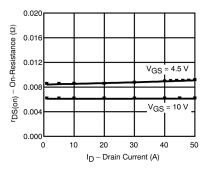
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.89	V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS}$ = 10 V	759	Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = 10 V, I_{D} = 19 A	0.0061	Ω
		V _{GS} = 4.5 V, I _D = 17 A	0.0086	
Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 19 A	55	S
Diode Forward Voltage ^a	V_{SD}	$I_{S} = 4.3 \text{ A}, V_{GS} = 0 \text{ V}$	0.83	V
Dynamic ^b				
Total Gate Charge ^b	Qg	$V_{DS} = 15 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 19 \text{ A}$	36	nC
Gate-Source Charge ^b	Q _{gs}		14	
Gate-Drain Charge ^b	Q_{gd}		12	
Turn-On Delay Time ^b	t _{d(on)}	$V_{DD} = 15 \text{ V}, \text{ R}_L = 15 \Omega$ $I_D \cong 1\text{A}, \text{ V}_{GEN} = 10 \text{ V}, \text{ R}_G = 6 \Omega$ $I_F = 2.3 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	18	ns
Rise Time ^b	t _r		37	
Turn-Off Delay Time ^b	t _{d(off)}		39	
Fall Time ^b	t _f		108	
Source-Drain Reverse Recovery Time	t _{rr}		49	

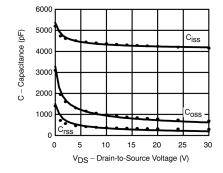
www.vishay.com Document Number: 71720

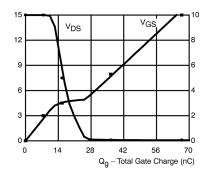

a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2%.
b. Guaranteed by design, not subject to production testing.








COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.