UNISONIC TECHNOLOGIES CO., LTD LR1108 **CMOS IC** ## 1A FAST ULTRA LOW DROPOUT LINEAR REGULATOR #### DESCRIPTION The UTC LR1108 operate from a +2.5V ~ +7.0V input supply as fast ultra low-dropout linear regulators. Wide output voltage range options are available. The fast response characteristic to make UTC LR1108 suitable for low voltage microprocessor application. The low quiescent current operation and low dropout quality caused by the CMOS process. The UTC LR1108 has ultra low dropout voltage; 300mV at 1A load current typically. The ground pin current is typically 200uA at 1mA load current. ERROR Flag: When the output voltage drops 10% below nominal value Error flag goes low. Output Voltage Precision: Multiple output voltage options are available and ranging from 1.2V ~ 5.0V at room temperature with a guaranteed accuracy of ±1.5%, and ±3.0% when varying line, load and temperature. #### **FEATURES** - * Ultra Low Dropout Voltage - * Low Ground Pin Current - * 0.04% Load Regulation - * The Guaranteed Output Current is 1A DC - * Output Voltage Accuracy ± 1.5% - * ERROR Flag Indicates Output Status - * Low Output Capacitor Required - * Over temperature Protection And Over current Protection ## ORDERING INFORMATION | Ordering Number | | Packago | Pin Assignment | Packing | | |---------------------------------------|----------------------|---------|----------------|-----------|--| | Lead Free | Halogen Free Package | | ① | | | | LR1108L-xx-AA3-①-R | LR1108G-xx-AA3-①-R | SOT-223 | A: GOI | | | | LR1108L-xx-AB3-①-R | LR1108G-xx-AB3-①-R | SOT-89 | C: GIO | Tono Dool | | | LR1108L-xx-TN3-①-R LR1108G-xx-TN3-①-R | | TO-252 | D: IGO | Tape Reel | | | LR1108L-xx-AF5-R | LR1108G-xx-AF5-R | SOT-25 | I G SD ERROR O | | | LR1108 cmos ic ## MARKING INFORMATION | PACKAGE | VOLTAGE CODE | MARKING | |---------|--|---| | SOT-223 | | Pin Code LR1108 L: Lead Free G: Halogen Free Voltage Code 1 2 3 | | SOT-25 | 15 :1.5V
18:1.8V
25:2.5V
2J:2.85V | SPXX G: Halogen Free L: Lead Free 1 2 3 | | TO-252 | 33:3.3V
50: 5.0V | UTC L: Lead Free → G: Halogen Free → Lot Code Voltage Code → Date Code | | SOT-89 | | Date Code Date Code LR1108 L: Lead Free G: Halogen Free 1 2 3 | ## ■ PIN DESCRIPTION ## For SOT-223/SOT-89/TO-252 Package | PIN CODE & NO | | PIN NAME | I/O | DESCRIPTION | | | |---------------|---|----------|------------------|-------------|----------------|--| | Α | С | D | PIN NAIVIE | 20 | DESCRIPTION | | | 2 | 3 | 3 | V _{OUT} | 0 | Output Voltage | | | 1 | 1 | 2 | GND | | Ground | | | 3 | 2 | 1 | V _{IN} | | Input Supply | | ## For SOT-25 Package | 1010012 | .o i ackage | | | |---------|-----------------|-----|---| | PIN NO | PIN NAME | I/O | DESCRIPTION | | 1 | V _{IN} | | Input supply | | 2 | GND | | Ground | | 3 | SD | I | Shutdown LR1108 enable; when the \overline{SD} pin connects to GND will shutdown the LR1108; At normal operation, \overline{SD} must be tied to V_{DD} through a 10K Ω pull up resistor. | | 4 | ERROR | 0 | Error flag, active low; when the output dropout of regulation due to low input voltage, the LR1108 produces a logic low signal at the ERROR pin. | | 5 | V_{OUT} | 0 | Output voltage | ## ■ BLOCK DIAGRAM LR1108 cmos ic ### ■ ABSOLUTE MAXIMUM RATINGS | PARAMETER | SYMBOL | RATINGS | UNIT | |--|-----------------------|---------------------------|------| | Input Voltage (Operating) (Note 10) | V | 2.5~7.0 | V | | Input Voltage (Survival) | V_{IN} | -0.3~+7.5 | V | | Shutdown Input Voltage | V _{IN(SHDN)} | -0.3~V _{IN} +0.3 | V | | Output Voltage (Survival), (Note 4, 5) | V_{OUT} | -0.3~+7.5 | V | | I _{OUT} (Survival) | | Short Circuit Protected | | | Maximum Voltage for ERROR Pin | | V _{IN} +0.3 | V | | Maximum Operating Current (DC) | | 1 | Α | | Power Dissipation (Note 2) | P_{D} | Internally Limited | | | Junction Temperature | T_J | +125 | °C | | Operating Temperature | T _{OPR} | -40~+125 | °C | | Storage Temperature | T _{STG} | -65~+150 | °C | Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied. ### ■ THERMAL DATA | PARAMETER | | SYMBOL | RATINGS | UNIT | | |---------------------|---------|-----------------|--------------------|------|------| | | SOT-223 | | 165 | | | | Lunction to Ambient | SOT-25 | θ _{JA} | 249 | °C/W | | | Junction to Ambient | TO-252 | | 112 | | | | | SOT-89 | | 179 | | | | Junction to Case | SOT-223 | θ _{JC} | 15 | | | | | SOT-25 | | 165 | °C/W | | | | TO-252 | | ^U JC 12 | | CIVV | | | SOT-89 | | 47 | | | ## ■ ELECTRICAL CHARACTERISTICS Limits in standard typeface are for T_J = 25°C, and limits in **boldface type** apply over the full operating temperature range. (T_J = 25°C, V_{IN} = $V_{O(NOM)}$ + 1V, I_L = 10mA, C_{OUT} = 2.2 μ F, V_{SD} = V_{IN} -0.3V, unless otherwise specified.) | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | | |---|---------------------------------------|---|----------------------|----------|------------|------|--|--| | Output Voltage Tolerance (Note 6) | V _{OUT} | $0mA \le I_L \le 1A$ $V_{OUT} +1 \le V_{IN} \le 7.0V$ | -1.5
-3 | 0 | +1.5
+3 | % | | | | Output Voltage Line Regulation (Note 6) | $\triangle V_{OUT}$ | V _{OUT} +1V <v<sub>IN<7.0V</v<sub> | | 0.05 | | % | | | | Output Voltage Load Regulation (Note 6) | $\triangle V_{OUT}/\triangle I_{OUT}$ | 10mA < I∟ < 1A | | 0.04 | | % | | | | Dropout Voltage (Note 8) | V_D | I _L = 1A | | 300 | 500 | mV | | | | Ground Pin Current In Normal Operation | 1 | $I_L = 0mA$ | | 200 | | | | | | Mode | I _{GND} | I _L = 1A | | 300 | | uA | | | | Peak Output Current | I _{O(PEAK)} | (Note 2) | 1 | | | Α | | | | SHORT CIRCUIT PROTECTION | | | | | | | | | | Short Circuit Current | I _{SC} | | | 2 | | Α | | | | OVER TEMPERATURE PROTECTION | | | | | | | | | | Shutdown Threshold | T _{SHDN(THR)} | | | 165 | | °C | | | | Thermal Shutdown Hysteresis | T _{SHDN(HYS)} | | | 10 | | °C | | | | SHUTDOWN INPUT | | | | | | | | | | Shutdown Threshold | V | Output = High | V _{IN} -0.3 | V_{IN} | | V | | | | Shutdown Threshold | V_{SHDN} | Output = Low | | 0 | 0.2 | V | | | | Turn-off Delay | t _{D(OFF)} | I _L = 1A | | 20 | | μs | | | | Turn-on Delay | t _{D(ON)} | I _L = 1A | | 25 | | μs | | | | SD Input Current | I_{SD} | $V_{SD} = V_{IN}$ | | 1 | | nA | | | ## ■ ELECTRICAL CHARACTERISTICS(Cont.) | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--------------------------------|----------------------|--|-----|------|-----|---------------| | ERROR FLAG COMPARATOR | | | | | | | | ERROR Flag Saturation | V _{EF(SAT)} | $I_{SINK} = 100 \mu A$ | | 0.02 | 0.1 | V | | ERROR Flag Pin Leakage Current | I _{I(LEAK)} | | | 1 | | nA | | Threshold | V_{T} | (Note 7) | 5 | 10 | 16 | % | | Threshold Hysteresis | V_{THR} | (Note 7) | 2 | 5 | 8 | % | | Flag Reset Delay | t _D | | | 1 | | μs | | AC PARAMETERS | | | | | | | | Divide Distriction | DODD | $V_{IN} = V_{OUT} + 1.5V$
$C_{OUT} = 100 \text{uF}, V_{OUT} = 3.3V$ | | 60 | | | | Ripple Rejection | PSRR | $V_{IN} = V_{OUT} + 0.3V$
$C_{OUT} = 100 uF, V_{OUT} = 3.3V$ | | 40 | | dB | | Output Noise Density | ρ _{N(L/F)} | f = 120Hz | | 0.8 | | μV | | Output Naise Valtage | e _N | BW = 10Hz ~ 100kHz | | 150 | | / | | Output Noise Voltage | | BW = 300Hz ~ 300kHz | | 100 | | μV_{RMS} | - Note 1. Conditions for which the device is intended to be functional is indicated by operating ratings, but specific performance limits isn't be guaranteed. To make sure of specifications and test conditions, read Electrical Characteristics. Only for the test conditions listed the guaranteed specifications can be applied. When the device is not operated under the listed test conditions some performance characteristics may degrade. - 2. Devices must be derated based on package thermal resistance at elevated temperatures. - 3. The most likely parametric norm represents at 25°C. - 4. The **LR1108** output must be diode-clamped to ground. If used in a dual-supply system where the regulator load is returned to a negative supply. - 5. Between the V_{IN} and V_{OUT} terminals the output PMOS structure contains a diode. This diode is reverse biased normally. If the voltage at the output terminal is forced to be higher than the voltage at the input terminal this diode will get forward biased. This diode can withstand 1Amp of peak current and 200mA of DC current typically. - 6. Output voltage line regulation is the change in output voltage from the nominal value which is due to change in the input line voltage. Which is defined as the change in output voltage from the nominal value due to change in load current is output voltage load regulation. The load regulation and line regulation specification include the typical number only. But, the limits for load and line regulation are included in the output voltage tolerance specification. - 7. Error Flag hysteresis and threshold are specified as regulated output voltage's percentage. - 8. At which the output drops 2% below the normal value dropout voltage is defined as the minimum input to output differential voltage. Only to output voltages of 2.5V and above dropout voltage specification applies. For output voltages below 2.5V, since the minimum input voltage is 2.5V, the drop-out voltage is nothing but the input to output differential. - 9. Specification has been tested at -40°C ≤ T_J ≤ +85°Ccause under shutdown conditions the temperature rise of the device is negligible. - 10. The minimum operating V_{IN} value is equal to $[V_{OUT(NOM)} + V_{DROPOUT}]$ or 2.5V, just the greater. LR1108 cmos ic ### ■ TYPICAL APPLICATION CIRCUIT Note: $\overline{\text{SD}}$ and $\overline{\text{ERROR}}$ pins must be pulled high through a 10k Ω pull-up resistor. Connect the $\overline{\text{ERROR}}$ pin to ground if this function is not used. #### ■ TYPICAL CHARACTERISTICS UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.