
RX4000 (µµµµITRON 4.0)
Real-Time Operating System

Basics

User’s Manual

Target devices
VR4100 SeriesTM

VR5000 SeriesTM

Target real-time OS
RX4000V4 Ver. 4.10

Printed in Japan

Document No. U14833EJ2V0UM00 (2nd edition)
Date Published February 2003 N CP(K)

©

User’s Manual U14833EJ2V0UM2

[MEMO]

User’s Manual U14833EJ2V0UM 3

VR Series, VR4100 Series, VR5000 Series, VR4100, VR4121, VR4122, VR4131, VR4181, VR4181A, VR5000, VR5000A,

VR5432, VR5500, and VR10000 are trademarks of NEC Electronics Corporation.

Green Hills Software is a trademark of Green Hills Software, Inc.

TRON is the abbreviation for The Real-time Operating system Nucleus.

ITRON is the abbreviation for Industrial TRON.

µµµµITRON is the abbreviation for Micro Industrial TRON.

TRON, ITRON, and µµµµITRON are not the names of specific products or a product group.

The µµµµITRON4.0 specification is an open real-time kernel specification that was mainly established by the

ITRON sectional meeting of the TRON Association.

The µµµµITRON4.0 specification is available from the ITRON project home page (http://www.itron.gr.jp/).

User’s Manual U14833EJ2V0UM4

The information in this document is current as of February, 2002. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

User’s Manual U14833EJ2V0UM 5

Regional Information

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
 components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics America, Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000
 800-366-9782
Fax: 408-588-6130
 800-729-9288

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.
Shanghai, P.R. China
Tel: 021-6841-1138
Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore
Tel: 6253-8311
Fax: 6250-3583

J02.11

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 01
Fax: 0211-65 03 327

• Sucursal en España
Madrid, Spain
Tel: 091-504 27 87
Fax: 091-504 28 60

Vélizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

• Succursale Française

• Filiale Italiana
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

• Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45
Fax: 040-244 45 80

• Tyskland Filial
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

• United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

Some information contained in this document may vary from country to country. Before using any NEC
Electronics product in your application, pIease contact the NEC Electronics office in your country to
obtain a list of authorized representatives and distributors. They will verify:

User’s Manual U14833EJ2V0UM6

PREFACE

Target Readers This manual is aimed at users engaged in the design or development of VR4100

Series or VR5000 Series application systems.

Purpose The purpose of this manual is to give users an understanding of the functions of the

RX4000 shown under Organization below.

Organization This manual is broadly divided into the following sections.

• Overview

• Kernel

• Scheduler

• Task management

• Synchronous communication management

• Memory management

• Time management

• Interrupt management

• System configuration management

• Service call management

• Initialization management

• Interface library

• Service calls

How to Read This Manual Readers need to have general knowledge of electricity, logic circuits,

microcontrollers, and C and assembly languages.

To learn about the hardware or instruction functions of the VR4100 Series or VR5000

Series, refer to the user’s manual for the relevant product.

Conventions Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numerical representation: Binary ... XXXX or B’XXXX

Decimal ... XXXX

Hexadecimal ... 0xXXXX or H’XXXX

Prefixes indicating powers of 2 (address space and memory capacity):

K (kilo): 210 = 1,024

M (mega): 220 = 1,0242

User’s Manual U14833EJ2V0UM 7

Related Documents The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Documents related to VR4100 Series

Document Name Document No.

VR4100 Series Architecture User’s Manual U15509E

VR4121TM User’s Manual U13569E

µPD30121 (VR4121) Data Sheet U14691E

VR4122TM User’s Manual U14327E

µPD30122 (VR4122) Data Sheet U15585E

VR4131TM Hardware User’s Manual U15350E

µPD30131 (VR4131) Data Sheet U16219E

VR4181TM Hardware User’s Manual U14272E

µPD30181 (VR4181) Data Sheet U14273E

VR4181ATM Hardware User’s Manual U16049E

µPD30181A, 30181AY (VR4181A) Data Sheet U16277E

Documents related to VR5000 Series

Document Name Document No.

VR5000TM, VR5000ATM User’s Manual U11761E

µPD30500, 30500A Data Sheet U12031E

VR5432TM User’s Manual U13751E

µPD30541 Data Sheet U13504E

VR5500TM User’s Manual U16044E

µPD30550 Data Sheet U15700E

VR5000, VR10000TM Instruction User’s Manual U12754E

Documents related to development tools (user’s manuals)

Document Name Document No.

Basics This manual

Installation U14834E

RX4000 (µITRON4.0)

(Real-time OS)

Technical U14835E

AZ4000 Ver. 4.0 System Performance Analyzer U15031E

User’s Manual U14833EJ2V0UM8

CONTENTS

CHAPTER 1 OVERVIEW..16

1.1 Real-Time OS ...16
1.2 Multitask OS...16
1.3 Features..17
1.4 Configuration...18
1.5 Applications...18
1.6 Execution Environment ..19
1.7 Development Environment...19

CHAPTER 2 KERNEL...20

2.1 Overview...20
2.2 Configuration...20
2.3 Functions ...21
2.4 Objects ...23

2.4.1 Object control blocks..23

2.4.2 Object identification number...23

2.4.3 Creating and deleting objects...24

2.4.4 Automatic assignment of ID number ..24

CHAPTER 3 SCHEDULER...25

3.1 Overview...25
3.2 Drive Method..25
3.3 Scheduling Methods ...25

3.3.1 Priority method ...25

3.3.2 FCFS method...25

3.4 Ready Queue ...26
3.5 Implementing a Round Robin Method ..27
3.6 Scheduling Delay ..30
3.7 Enabling/Disabling Scheduling ...31
3.8 Idle Routines..32

3.8.1 Registering idle routines...32

3.8.2 Executing and terminating idle routines..32

3.8.3 PID ...32

3.8.4 Coprocessor...32

3.8.5 Stack ..32

CHAPTER 4 TASK MANAGEMENT ...33

4.1 Overview...33
4.2 Creating Tasks...34
4.3 Deleting Tasks ...34
4.4 Activating Tasks..34

4.4.1 Activation with activation request retained ...34

4.4.2 Activation with activation request not retained ...34

4.5 Terminating Tasks...35

User’s Manual U14833EJ2V0UM 9

4.5.1 Normal termination...35

4.5.2 Forcible termination ...35

4.5.3 Reactivating terminated tasks..35

4.6 Task States ..36
4.7 Task State Transition..38
4.8 Task Delay and Timeout...39
4.9 Task Priority Order..39
4.10 Task Context..40
4.11 PID ..40
4.12 Obtaining Task Information ...40
4.13 Coprocessor ..40
4.14 Task Exceptions..41

4.14.1 Task exception processing routines...41

4.14.2 Defining task exception processing routines..41

4.14.3 Canceling task exception processing routine definitions..41

4.14.4 Task exception enabled/disabled states ..42

4.14.5 Task exception processing requests..42

4.14.6 Activating task exception processing routines ...43

4.14.7 Terminating task exception processing routines ..44

4.14.8 Issuing service calls from task exception processing routines ...45

4.14.9 Obtaining task exception processing routine information...45

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT...46

5.1 Overview ..46
5.2 Semaphores...46

5.2.1 Creating semaphores...46

5.2.2 Deleting semaphores ...47

5.2.3 Acquiring resources ...47

5.2.4 Returning resources...47

5.2.5 Obtaining semaphore information ..47

5.2.6 Examples of exclusive control using semaphores..48

5.3 Event Flags ..50
5.3.1 Creating event flags ...50

5.3.2 Deleting event flags ...50

5.3.3 Waiting for events ..50

5.3.4 Setting event flags ...51

5.3.5 Wait conditions...51

5.3.6 Event flag clear attribute ..51

5.3.7 Obtaining event flag information ..51

5.3.8 Examples of wait function using event flags ..52

5.4 Data Queues ..54
5.4.1 Creating data queues...54

5.4.2 Deleting data queues ...54

5.4.3 Receiving data ...55

5.4.4 Obtaining data queue information ..55

5.4.5 Transmitting data ...55

5.4.6 Examples of communication using data queues..56

5.5 Mailboxes...60

User’s Manual U14833EJ2V0UM10

5.5.1 Creating mailboxes ..60

5.5.2 Deleting mailboxes...60

5.5.3 Messages...61

5.5.4 Transmitting messages ..61

5.5.5 Receiving messages ..62

5.5.6 Obtaining mailbox information..62

5.5.7 Examples of message communication using mailboxes ..62

5.6 Mutexes ..65
5.6.1 Creating mutexes ...65

5.6.2 Deleting mutexes ...65

5.6.3 Priority inheritance protocol..65

5.6.4 Priority ceiling protocol ...65

5.6.5 Simplified priority order control rules ..66

5.6.6 Locking mutexes ..66

5.6.7 Releasing mutex locks ...66

5.6.8 Obtaining mutex information ..66

5.6.9 Examples of synchronization using mutexes..67

CHAPTER 6 MEMORY MANAGEMENT...69

6.1 Overview...69
6.2 System Pool...69
6.3 Stack Pool ..70
6.4 User Pool..70
6.5 Fixed-Length Memory Pools ..70

6.5.1 Creating fixed-length memory pools...70

6.5.2 Deleting fixed-length memory pools ...70

6.5.3 Fixed-length memory blocks ..71

6.5.4 Structure of fixed-length memory pool ...71

6.5.5 Acquiring fixed-length memory blocks..72

6.5.6 Returning fixed-length memory blocks ...72

6.5.7 Obtaining fixed-length memory pool information ..72

6.5.8 Examples of acquiring memory blocks from fixed-length memory pools73

6.6 Variable-Length Memory Pools ...75
6.6.1 Creating variable-length memory pools..75

6.6.2 Deleting variable-length memory pools ..75

6.6.3 Variable-length memory blocks ..75

6.6.4 Structure of variable-length memory pool..76

6.6.5 Acquiring variable-length memory blocks...77

6.6.6 Returning variable-length memory blocks ..79

6.6.7 Obtaining variable-length memory pool information ...80

6.6.8 Examples of acquiring memory blocks from variable-length memory pools81

CHAPTER 7 TIME MANAGEMENT ..84

7.1 Overview...84
7.2 System Clock...84

7.2.1 Setting the system clock...84

User’s Manual U14833EJ2V0UM 11

7.2.2 Reading the system clock ..84

7.2.3 Updating the system clock ...84

7.3 Delaying Tasks..85
7.4 Timeout ..85
7.5 Cyclic Handlers ...86

7.5.1 Creating cyclic handlers...86

7.5.2 Deleting cyclic handlers ...86

7.5.3 Cyclic handler states..86

7.5.4 Activating a cyclic handler..87

7.5.5 Terminating cyclic handlers ...87

7.5.6 Cyclic handler phase..87

7.5.7 Interrupts during cyclic handler execution..88

7.5.8 PID...89

7.5.9 Use of coprocessor in cyclic handler..89

7.5.10 Issuance of service calls from cyclic handler ...89

7.5.11 Obtaining cyclic handler information ..89

CHAPTER 8 INTERRUPT MANAGEMENT ..90

8.1 Overview ..90
8.2 Interrupt Management ..90

8.2.1 Interrupt control..90

8.2.2 Interrupt processing management ...91

8.3 Saving/Restoring Registers ...93
8.4 Interrupt Generation Notification ..93
8.5 Interrupt Service Routines ...94

8.5.1 Interrupt service routine ID number and interrupt number ...94

8.5.2 Creating interrupt service routines ...94

8.5.3 Deleting interrupt service routines..94

8.5.4 Activating interrupt service routines ...94

8.5.5 Terminating interrupt service routines..95

8.5.6 PID...95

8.5.7 Use of coprocessor in interrupt service routine..95

8.5.8 Issuance of service calls from interrupt service routines..95

CHAPTER 9 SYSTEM CONFIGURATION MANAGEMENT ...96

9.1 Overview ..96
9.2 Exception Processing ..96

9.2.1 Exception processing flow ...96

9.2.2 Saving/restoring registers ..99

9.2.3 Exception occurrence notification ..99

9.2.4 CPU exception handlers ..99

9.3 Initialization Routines...101
9.3.1 Defining initialization routines...101

9.3.2 Activating initialization routines ..101

9.3.3 Terminating initialization routines...101

CHAPTER 10 SERVICE CALL MANAGEMENT ...102

User’s Manual U14833EJ2V0UM12

10.1 Overview...102
10.2 Extended Service call Routines...102

10.2.1 Defining extended service call routines..102

10.2.2 Activating and terminating extended service call routines..102

10.2.3 PID ...103

10.2.4 Use of coprocessor in extended service call routine ..103

CHAPTER 11 INITIALIZATION PROCESSING ..104

11.1 Overview...104
11.2 Boot Processing Block ...104
11.3 Kernel Initialization Block...105

11.3.1 Interrupt initialization ..105

11.3.2 Pool creation and initialization..105

11.3.3 Management object creation and initialization..105

11.4 Initialization Routines ...105

CHAPTER 12 INTERFACE LIBRARY...106

12.1 Overview...106
12.2 Function and Position of Interface Library...106

CHAPTER 13 SERVICE CALLS ...107

13.1 Overview...107
13.2 Types of Functions ...107
13.3 Return Values (Error Codes) ..109
13.4 Data Types ...110

13.4.1 General data types...110

13.4.2 RX4000 data types...111

13.5 Macros..112
13.6 Parameter Value Range ..113
13.7 Context From Which Service calls Can Be Issued ..114
13.8 Explanation of Service calls...115

13.8.1 Task management function service calls..117

13.8.2 Task-associated synchronization function service calls ...138

13.8.3 Task exception processing function service calls...151

13.8.4 Synchronization/communication management function service calls...161

13.8.5 Memory pool management function service calls...231

13.8.6 Time management function service calls ...259

13.8.7 System status management function service calls...272

13.8.8 Interrupt management function service calls ..283

13.8.9 System configuration management function service calls ..292

13.8.10 Service call management function service calls ...297

APPENDIX INDEX ...301

User’s Manual U14833EJ2V0UM 13

LIST OF FIGURES (1/2)

Figure No. Title Page

2-1 Kernel Configuration...20

3-1 Ready Queue ...26

3-2 State 1 of Ready Queue During Round Robin Processing ...27

3-3 State 2 of Ready Queue During Round Robin Processing ...28

3-4 State 3 of Ready Queue During Round Robin Processing ...28

3-5 Processing Flow of Round Robin Scheduling...29

3-6 Scheduling Delay..30

3-7 Disabling Dispatch..31

4-1 Task State Transition..38

4-2 Example of Task Exception Processing Routine Activation (1) ..43

4-3 Example of Task Exception Processing Routine Activation (2) ..43

4-4 Example of Task Exception Processing Routine Activation (3) ..44

4-5 Example of Task Exception Processing Routine Activation (4) ..44

6-1 Fixed-Length Memory Block...71

6-2 Fixed-Length Memory Pool ..71

6-3 Variable-Length Memory Block ..75

6-4 Variable-Length Memory Pool Structure (Immediately After Creation) ...76

6-5 Variable-Length Memory Pool Structure (After Memory Block Acquisition)..76

6-6 Variable-Length Memory Pool Structure (When Area Divided into Islands) ...77

6-7 Memory Block Acquisition ..77

6-8 Case When Task Is Waiting Even Though Sufficient Area Is Available..78

6-9 Memory Block Linking 1 ...79

6-10 Memory Block Linking 2 ...79

6-11 Memory Block Linking 3 ...80

7-1 Cyclic Handler Phase ...87

7-2 Phase Saving ...88

7-3 No Phase Saving..88

8-1 Interrupt Processing Flow...92

9-1 Exception Processing Flow ..98

11-1 Initialization Processing Flow ...104

12-1 Position of Interface Library..106

13-1 Service call Description Format ..115

13-2 Task Attributes..119

13-3 Task Exception Processing Routine Attribute...153

13-4 Semaphore Attribute...164

User’s Manual U14833EJ2V0UM14

LIST OF FIGURES (2/2)

Figure No. Title Page

13-5 Event Flag Attribute ..175

13-6 Data Queue Attribute ..189

13-7 Mailbox Attribute ...206

13-8 Mutex Attribute..219

13-9 Fixed-Length Memory Pool Attribute ..233

13-10 Variable-Length Memory Pool Attribute ..246

13-11 Cyclic Handler Attribute ..264

13-12 Interrupt Service Routine Attribute..284

13-13 Exception Handler Attribute ..294

13-14 Exception Handler Attribute ..296

13-15 Extended Service call Routine Attribute..299

User’s Manual U14833EJ2V0UM 15

LIST OF TABLES

Table No. Title Page

1-1 Development Environment ...19

2-1 Synchronous Communication Function ..21

6-1 Memory Area..69

7-1 Service calls That Can Specify Timeout ...85

7-2 Cyclic Handler Terminology Correspondence Table ..86

13-1 Error Code List ...109

13-2 Macro List ...112

13-3 Parameter Value Ranges ...113

13-4 Context That Can Issue Service calls...114

13-5 Context From Which Service calls Can Be Issued ...114

13-6 Task Management Function Service calls ..117

13-7 Task Status ..134

13-8 Wait Source..134

13-9 Task-Associated Synchronization Function Service calls...138

13-10 Task Exception Processing Function Service calls...151

13-11 Synchronization/Communication Management Function Service calls ..161

13-12 Memory Pool Management Function Service calls...231

13-13 Time Management Function Service calls..259

13-14 System Status Management Function Service calls...272

13-15 Interrupt Management Function Service calls ..283

13-16 System Configuration Management Function Service calls..292

13-17 Service call Management Function Service calls..297

User’s Manual U14833EJ2V0UM16

CHAPTER 1 OVERVIEW

The RX4000 (µITRON4.0) is an embedded real-time, multitask control OS that provides a highly efficient real-time,

multitasking environment to increase the application range of processor control units. This product is a high-speed,

compact OS capable of being stored in and run from the ROM of a target system.

1.1 Real-Time OS

Control equipment demands systems that can rapidly respond to events occurring both internal and external to the

equipment. Conventional systems have utilized simple interrupt processing as a means of satisfying this demand.

With the recent improvements in the performance and functionality of control equipment, however, it has proved

difficult for systems to satisfy these requirements by means of simple interrupt processing alone.

In other words, the task of managing the order in which internal and external events are processed has become

increasingly difficult as systems have increased in complexity and programs have become ever larger.

Real-time operating systems have been designed to overcome this problem.

The main goals of a real-time OS are to respond to internal and external events rapidly and execute programs in

the optimum order.

1.2 Multitask OS

A “task” is the minimum unit in which a program can be executed by an OS. “Multitasking” is the name given to the

mode of operation in which a single processor processes multiple tasks concurrently.

Actually, the processor can handle no more than one program (instruction) at a time. But, by switching the

processor’s attention to individual tasks on a regular basis (at a certain timing), it appears that the tasks are being

processed simultaneously.

A multitask OS therefore enables the parallel processing of tasks by switching the tasks to be executed as

determined by the system.

A major goal of a multitask OS is to improve the processing capability of the overall system through the parallel

processing of multiple tasks.

CHAPTER 1 OVERVIEW

User’s Manual U14833EJ2V0UM 17

1.3 Features

The RX4000 has the following features.

1. Conformity with µµµµITRON4.0 Specification

As a representative embedded type control OS architecture, the RX4000 is used to perform design that is

compliant with the µITRON4.0 Specification. Thus, by constructing software in accordance with the

µITRON4.0 Specification, users can improve the software’s portability and capitalization.

Because the µITRON4.0 Specification enables selection of an incorporation range in extended areas outside

the standard profile, the following functions have been realized in the RX4000.

• All functions specified in the standard profile

• Function to dynamically create and delete resources

• Extended synchronous communication function (mutex)

• Memory pool management function (fixed-length memory pool, variable-length memory pool)

• Interrupt processing function

• Service call management function (extended service call routine)

• System configuration management function

• State-referencing service calls (service calls prefixed with “ref_”)

2. Customization

Because processing that supports interrupts and CPU exceptions must have an exceptionally fast response

time, by supplying the source code of these functions as a sample, users are able to customize the RX4000 to

create the most suitable OS for their peripheral hardware and other environments.

3. ROMization

The RX4000 is a real-time, multitask OS that has been designed on the assumption that it will be incorporated

into the target system; it has been made as compact as possible to enable it to be loaded into a system’s ROM.

4. Utilities supporting system construction

The RX4000 provides the following utilities to aid in system construction:

• CF4000 (System configurator)

• RD4000 (Task debugger)

5. Cross tools

The RX4000 supports the following cross tools for the VR Series™:

• CCMIPE (Green Hills Software™, Inc.)

CHAPTER 1 OVERVIEW

User’s Manual U14833EJ2V0UM18

1.4 Configuration

The RX4000 consists of four subsystems: a kernel, an interface library, a system configurator, and a task debugger.

These subsystems are outlined below.

1. Kernel

The center or nucleus of the RX4000 is called the kernel. The kernel is embedded in the target system along

with the processing program (task/non-task), and provides real-time multitask processing such as task

switching, as well as the various services requested via service calls.

2. Interface library

When a processing program (task/non-task) is written in a high-level language such as C and a service call is

issued, an external function format is used as the service call issuance format. The input format that can be

understood by the kernel, however, differs from the external function format. The interface library is therefore

used to translate a service call issued in an external function format into the kernel input format. The interface

library thus acts as an agent between processing programs and the kernel.

The interface library provided by the RX4000 supports the C cross compiler shown in the tools in 1.7

Development Environment.

3. System configurator

The system configurator is a tool that operates on the development machine and is used to output the tables

(system information tables) in which the data required by the kernel during initialization (such as the number of

tasks or semaphores, and the memory allocation) is stored.

4. Task debugger

The task debugger is a tool that operates on the development machine and is used to improve debugging at

the software development stage by displaying via a GUI information managed by the OS, such as the state of a

task or the number of semaphores.

1.5 Applications

The RX4000 can be used in the following application fields.

• Control systems such as in automobiles and robots

• Measuring instruments

• Control devices such as exchangers, numerical controls, communication controls, and plant controls

• OA machines such as facsimiles and photocopiers

• Data collection and data calculation systems such as medical treatment devices and space monitoring devices

CHAPTER 1 OVERVIEW

User’s Manual U14833EJ2V0UM 19

1.6 Execution Environment

The RX4000 is operated in target systems equipped with the following hardware.

1. Processor

VR4100 Series

VR5000 Series

2. Peripheral hardware

In order to enable support of a wide variety of hardware environments, the hardware-dependant section of the

kernel in the RX4000 is supplied as a separate source file, which can be used to rewrite this section to accord

with the system used, thereby eliminating the need for specific peripheral hardware.

1.7 Development Environment

The hardware and software environments required to develop an application system in which the RX4000 is

embedded are shown below.

Table 1-1. Development Environment

Type Name Remarks

Host OS Windows 98/NT 4.0

Windows 2000/Me/XP

Solaris 2.5.x or later

Cross tools CCMIPE V1.8.9 R400 (Green Hills Software)

Debuggers PARTNER-ET II/Win

Multi

V2.0 (KMC: Kyoto Microcomputer Corporation)

V1.8.9 R4.0.2

Evaluation boards CMB-VR4131

Ostrich VR4181A

RTE-VR5500-CB

PARTNER-ET II

VR4131 evaluation board [SolutionGear II] (NEC Eloctronics)

VR4181A evaluation board (NEC Electronics)

VR5500 evaluation board (Midas Lab Co., Ltd.)

ROM emulator for board connection (KMC)

User’s Manual U14833EJ2V0UM20

CHAPTER 2 KERNEL

This chapter describes the kernel, which is the core of the RX4000.

2.1 Overview

The kernel forms the heart of the RX4000 and is the main body of the OS embedded in the target system together

with the application program (tasks, handlers, etc.). The kernel provides the following two major functions. Note that

the module that controls the former is usually known as the scheduler.

• Switching execution to the task selected as the most suitable task to be executed next, according to an event that

occurs internal or external to the target system

• Provision of functions corresponding to the service calls (system calls) issued from the tasks or handlers

2.2 Configuration

The kernel consists of a scheduler and management modules that exist in each function. These functions can be

used by issuing the service calls provided by the RX4000. The configuration of the RX4000 kernel is shown below.

Figure 2-1. Kernel Configuration

System status management

Time management Memory pool
management

Other

Interrupt management

Synchronous communication

Task
management

Task exception
processing

Task-associated
synchronization

Scheduler

(Extended synchronous communication)

System configuration
management

Service call management

CHAPTER 2 KERNEL

User’s Manual U14833EJ2V0UM 21

2.3 Functions

This section overviews the functions of the scheduler and management modules.

Refer to CHAPTER 3 SCHEDULER to CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT for

details of the individual management modules.

1. Scheduler

The scheduler manages and determines the order in which tasks are executed and assigns tasks the right to

use the CPU. In the RX4000, the task execution order is determined according to an assigned priority and by

applying the FCFS (First Come First Served) system. When activated, the scheduler determines the priorities

assigned to the tasks, selects an optimum task from those ready to be executed (running or ready state) (by

assessing which task has the highest priority and entered the ready state the earliest) and assigns that task

the right to use the CPU.

2. Task management

This module manipulates and manages the states of a task, the minimum unit in which processing is

performed by the RX4000. The module can, for example, create, activate, execute, stop, terminate, and delete

a task.

3. Task-associated synchronization

This module is used to perform synchronization that is not reliant on objects other than tasks, such as

semaphores. This module can, for example, put a task unconditionally into a self-imposed waiting state,

interrupt execution of another task, or release another task from a waiting state. For further details of this

module, refer to the explanation in CHAPTER 4 TASK MANAGEMENT.

4. Task exception management
This module is newly added for µITRON4.0 and is used to enable the writing of not only the routine for normal

execution of the main body of tasks (task main processing routine), but also a task exception processing

routine that is activated by the occurrence of an event exceptional to a task. A more detailed explanation of the

task exception management function can be found in CHAPTER 4 TASK MANAGEMENT.

5. Synchronous communication management

This module provides the following five functions related to exclusive control, wait, and communication, which

comprise the three types of synchronous communication between tasks. Note that in accordance with

µITRON4.0, the correct categorization of a mutex is as an extended synchronous communication function.

Table 2-1. Synchronous Communication Function

Type Provided Function

Exclusion Semaphores, mutexes

Wait Event flags

Communication Data queues, mailboxes

CHAPTER 2 KERNEL

User’s Manual U14833EJ2V0UM22

6. Memory management

The memory area is managed by the RX4000 as two types of areas: memory pools and memory blocks. A

memory pool consists of memory blocks grouped together in one large chunk. When memory is necessary to

execute applications such as tasks or handlers, memory blocks can be acquired from a memory pool, and then

returned to the memory pool when no longer required. Performing this kind of dynamic memory manipulation

allows users to make efficient use of a limited memory area.

7. Time management

The RX4000 manages a software clock to enable specific operations at a fixed interval or at a specified time,

providing functions such as system clock management, task timeout (wait time upper limit setting), and cyclic

handlers.

8. System status management

System management functions provided in this module include enabling/disabling dispatch (task switching)

and referencing the status of the system. Note that this category appears for the first time in µITRON4.0; the

majority of its associated service calls are classified into other categories in µITRON3.0.

9. Interrupt management

The two kinds of interrupt management functions provided in this module are interrupt control functions for

processing such as enabling/disabling interrupts, and interrupt processing management functions for activating

interrupt service routines corresponding to interrupt sources. Note that because interrupt management is

heavily dependent on the hardware operated by the application, a source file has been provided as a sample,

allowing users to customize these functions.

10. Service call management

This module provides a function that can be used to register functions described by users as service calls.

11. System configuration management

This module provides a function to allow users to register handlers that are used to process exceptions

detected by the CPU, and a function to define the initialization routines called when the system is initialized.

12. Initialization processing

This module is used for processing such as initializing the hardware required for the RX4000 to operate and

initializing the kernel itself. Note that whereas the classifications of the functions in 1 to 11 above are specified

by µITRON4.0, initialization processing is not subject to this specification.

CHAPTER 2 KERNEL

User’s Manual U14833EJ2V0UM 23

2.4 Objects

The tasks (task main processing routine, task exception processing routine), semaphores, event flags, data

queues, mailboxes, mutexes, fixed-length memory pools, variable-length memory pools, memory blocks, cyclic

handlers, interrupt service routines, extended service call routines, and CPU exception handlers, which are created or

defined by the kernel and are under its management, are known as objects or kernel objects. (Note that these are

also sometimes called resources.)

2.4.1 Object control blocks

The RX4000 is equipped with data structures known as control blocks to manage the objects listed above. The

control block saves information such as the status of the object, and is therefore the (logical) substance of the object

to be processed by the kernel. Control blocks and objects exist on a one-to-one basis.

2.4.2 Object identification number

To uniquely identify the objects or control blocks in the RX4000, a number specific to each resource type is used.

The way this number is called and the range of its values differs depending on the resource. These numbers are

classified as follows.

1. ID number

In the RX4000, each object (task, semaphore, event flag, data queue, mailbox, mutex, fixed-length memory

pool, variable-length memory pool, cyclic handler, or interrupt service routine) is accessed using an ID number.

The ID numbers are used as an index of the control block array when an object is accessed, and each object

(task, semaphore, etc.) is assigned an ID number with a unique value of 1 or higher. The maximum value (or

range of usable ID numbers) is that specified for each object in the system information table.

2. Interrupt number

Interrupt service routines have an interrupt (source) number for specifying the interrupt source, which differs

from the ID number described above. The interrupt (source) number is a number that uniquely identifies each

interrupt source, and must be assigned by the user.

3. Extended function code

Extended function codes are used to access extended function routines. Like an ID number, an extended

function code consists of a unique value of 1 or higher and is used as an index of the control block array. The

maximum value of the extended function code is that specified in the system information table.

4. Handler number

When a CPU exception handler is defined, the CPU exception handler is assigned a unique value of 1 or

higher known as its handler number, which like an ID number is used as an index of the control block array.

The maximum value of this number is also specified in the system information table. Note that although the

handler number accords with the ID number in the kernel, it is necessary not only to identify the CPU exception

handler, but also to clarify its correspondence with the exception source.

5. Address

The memory block is identified by its top address.

CHAPTER 2 KERNEL

User’s Manual U14833EJ2V0UM24

2.4.3 Creating and deleting objects

When an object is created by issuing a service call such as cre_tsk, the index block specified from the control block

array in the system pool is secured and initialized. The control block array is fixed when the kernel is initialized, based

on the maximum value of each object as defined in the system information table. Object creation therefore means the

occupation of the relevant control block, and object deletion means the invalidation of the control block that was

occupied, thereby putting it in a state whereby it can be occupied again when a new object is created. The size of the

system pool is thus not affected by the creation or deletion of objects.

2.4.4 Automatic assignment of ID number

An object can be created without specifying an ID number by issuing a service call beginning with acre_, such as

acre_tsk. When acre_xxx is issued, the kernel searches for an unoccupied control block in the non-existent state from

the control block array for the object to be created.

If the search is successful, the ID number of that object is returned as the return value of the service call when

creation processing is complete. An unsuccessful search results in the return of the error code E_NOID, which

indicates that ID assignment failed.

Note that the ID numbers that can be used by objects created by automatic assignment can be specified from the

range assignable to each resource type. Therefore, because a control block indexed with an ID number that falls

outside this range will not be subject to the aforementioned search processing, if automatic assignment fails, it does

not necessarily mean that the maximum number of creatable objects already exists.

User’s Manual U14833EJ2V0UM 25

CHAPTER 3 SCHEDULER

This chapter explains the scheduling performed by the RX4000.

3.1 Overview

The module that manages the sequence in which tasks are executed and performs task switching is known as the

scheduler. The scheduler is activated each time a service call issued or an interrupt is generated. This chapter

describes the functions of the scheduler and outlines the processing performed by it.

3.2 Drive Method

The RX4000 scheduler uses an event-driven technique in which the scheduler activates driving in response to the

occurrence of some kind of event, such as the issuance of a service call that may cause a task state to change from a

processing program such as a task or a handler, or the generation of an interrupt (or more precisely, restoration from

an interrupt).

3.3 Scheduling Methods

When driven, the scheduler selects the task to be executed next according to predetermined methods, which in the

RX4000 are priority order and FCFS (First Come First Served).

3.3.1 Priority method

Each task is assigned a priority, which determines the sequence in which it will be executed.

The scheduler checks the priority of each task that can be executed (in the running or ready state), selects the task

with the highest priority, and assigns that task the right to use the CPU.

3.3.2 FCFS method

The RX4000 can assign the same priority to more than one task. Because the priority method is used for task

scheduling, there is a possibility that more than one task with the same (highest) priority will be selected. In this case,

the scheduler selects the task that first became executable from this group of tasks (i.e., the task that has been in an

executable state for the longest time) and assigns it the right to use the CPU. This is known as the FCFS (First Come

First Served) system.

CHAPTER 3 SCHEDULER

User’s Manual U14833EJ2V0UM26

3.4 Ready Queue

In the RX4000, tasks in the executable (ready) or execution (running) states are queued by the FIFO method in a

hash table (ready queue) arranged according to priority order. The scheduler searches the ready queue activation

from the top priority and assigns the task with the highest priority in the queue the right to use the CPU. In other

words, the priority and FCFS methods are implemented in the running state.

Figure 3-1. Ready Queue

:
:

Ready queue
Priority

High

Low

Task B

Task C Task D Task E

Task A

Task being executed

CHAPTER 3 SCHEDULER

User’s Manual U14833EJ2V0UM 27

3.5 Implementing a Round Robin Method

In scheduling based on the priority and FCFS methods, even if a task has the same priority as that currently

running, it cannot be executed unless the task to which the right to use the CPU was assigned first enters another

state or relinquishes control of the processor.

The scheduling method generally used to avoid the above drawback is known as a round robin method. Although

the RX4000 does not include a round robin function itself, it does provide a service call, (i)rot_rdq, which can be

issued periodically to enable this scheduling method. The round robin method is realized in the following way.

(Assumed conditions)

• Task priority

Task A = Task B = Task C

• State of tasks

Task A: Running state

Task B: Ready state

Task C: Ready state

• Cyclic handler X is periodically activated and issues the irot_rdq service call

1. Task A is currently being executed. The other tasks (B and C) have the same priority as task A but cannot

be executed because task A has control of the CPU (see Figure 3-2).

Figure 3-2. State 1 of Ready Queue During Round Robin Processing

Low

High

Cyclic handler X

Task CTask BTask A

Ready stateReady stateRunning state

Ready queue

P
rio

rit
y

CHAPTER 3 SCHEDULER

User’s Manual U14833EJ2V0UM28

2. Cyclic startup handler X is activated when a predetermined period of time has passed, specifies the

priority held by task A, and issues the service call irot_rdq. Task A then shifts to the bottom of the ready

queue and task B moves to the top (see Figure 3-3).

Figure 3-3. State 2 of Ready Queue During Round Robin Processing

Low

High

Cyclic handler X

Task CTask B Task A

Ready stateReady state

In processing

Ready queue

P
rio

rit
y Running state

irot_rdq

3. Cyclic startup handler X finishes processing and the scheduler is activated. Because task A was shifted to

the bottom of the ready queue and is therefore in the ready state, the scheduler searches for the task to

execute next. Because there are no tasks with a higher priority than tasks A, B, and C, task B, which is

currently at the head of the queue, is executed (see Figure 3-4).

Figure 3-4. State 3 of Ready Queue During Round Robin Processing

Low

High

Cyclic handler X

Task ATask CTask B

Ready stateReady stateRunning state

Ready queue

P
rio

rit
y

Repeating the processing described above realizes a round robin system.

Figure 3-5 shows the processing flow when round robin scheduling, in which 1 to 3 above are repeated, is

performed.

CHAPTER 3 SCHEDULER

User’s Manual U14833EJ2V0UM 29

Figure 3-5. Processing Flow of Round Robin Scheduling

Handler X Task A Task CTask B

Priority: LowPriority: Low

∆T

return

irot_rdq (Priority: Low)

irot_rdq (Priority: Low)

Priority: Low

irot_rdq (Priority: Low)

∆T

∆T

return

return

CHAPTER 3 SCHEDULER

User’s Manual U14833EJ2V0UM30

3.6 Scheduling Delay

The execution order among processing units in the RX4000 such as tasks, interrupt service routines, and the

scheduler is set as follows, based on the µITRON4.0 Specification.

CPU exception handler = Interrupt service routine > Cyclic handler

> Scheduler > Task exception processing routine

> Task (task main processing routine) > Idle routine

In other words, even if scheduling is required such as releasing the waiting state of a task while a CPU exception

handler, interrupt service routine, or cyclic handler is being executed, the scheduler cannot be driven because the

processing under execution has a higher priority than the scheduler. This is because the processing performed by

CPU exception handlers, interrupt service routines, and cyclic handlers is generally highly urgent and indivisible, and

must therefore be carried out quickly. Consequently, because scheduling will not occur while the above are being

processed, there may be a delay between when a service call that requires scheduling is issued and when the

scheduling actually takes place (see Figure 3-6).

Figure 3-6. Scheduling Delay

Task A Task B Interrupt service
routine

Delay period

isig_sem

return

wai_sem

Interrupt generation

Priority: High Priority: Low

Waiting release

CHAPTER 3 SCHEDULER

User’s Manual U14833EJ2V0UM 31

3.7 Enabling/Disabling Scheduling

In the RX4000, dispatch, or scheduler activation, can be explicitly enabled or disabled by the issuance of a service

call from a task. If dispatch is disabled by a service call, scheduling processing is suspended and does not resume

until a service call is issued to enable dispatch. The service calls used to enable and disable dispatch are as follows.

dis_dsp: Disables dispatch

ena_dsp: Enables dispatch

loc_cpu: Puts the system in a CPU-locked state

unl_cpu: Releases the system from the CPU-locked state

The processing flow when enabling and disabling dispatch is shown below.

Figure 3-7. Disabling Dispatch

Task A Task B
Priority: Low

Delay period

dis_dsp

sig_sem

ena_dsp

wai_sem

Priority: High

Waiting release

CHAPTER 3 SCHEDULER

User’s Manual U14833EJ2V0UM32

3.8 Idle Routines

An idle routine is a processing routine that is activated from the scheduler if all the tasks are either complete or in a

waiting state, meaning that there are no longer any tasks in the ready state and therefore subject to scheduling (idle

state). Idle routines can be described by users to accord with the configuration of their system, enabling capitalization

of the low power consumption mode functions provided by the target VR Series processor.

Note that an idle routine is described as a void type function without an argument.

Example)

void idle_routine(void)

{

standby();

return;

}

A service call must not be issued in an idle routine. Nor can MIPS16 instructions be used.

3.8.1 Registering idle routines

Idle routines are registered by specifying the static API VATT_IDL or via the service call vatt_idl. One idle routine

must always be registered in the system, so if the above processing is not performed, the kernel will register a default

idle routine. A new idle routine can be registered when another idle routine is already registered (the previously

registered data will be discarded), but idle routine registration cannot be canceled.

The default idle routine simply performs unlimited loop processing.

3.8.2 Executing and terminating idle routines

If the scheduler is activated and judges that there are no executable tasks available, the kernel immediately

executes an idle routine. When the idle routine has completed C language return or equivalent processing, it is

executed again.

Return from an idle state to the normal state occurs when the scheduler is activated after the processing returns

from servicing an interrupt that was generated in the idle routine, following which a task became executable. In this

case, the processing does not return to where the interrupt was generated and the next processing of the idle routine

is discarded.

3.8.3 PID

If the idle routine registered by the user references PID (Position Independent Data), the value of the gp register

that should be set as the PID parameter must be set when the idle routine is registered. The assigned address is set

in the gp register when the idle routine is activated.

3.8.4 Coprocessor

The FPU (coprocessor 1) cannot be used in an idle routine.

3.8.5 Stack

An idle routine uses the stack that is used by the system (syssp of the system base table).

User’s Manual U14833EJ2V0UM 33

CHAPTER 4 TASK MANAGEMENT

This chapter describes the task management performed by the RX4000.

4.1 Overview

The processing program managed by the kernel is made up of units such as tasks, interrupt service routines, and

cyclic handlers. Unlike interrupt service routines, which are activated by interrupt generation, or cyclic handlers, which

are activated after a certain time has elapsed, tasks, which are the basic processing units of the system, are not

activated unless expressly manipulated by service calls.

In the RX4000, tasks are managed using data structures that correspond to tasks on a one-to-one basis. These

data structures are known as task control blocks. The task control block secures all the data required for task

management when tasks are created, and discards this data when tasks are deleted. For further details of task

control blocks, refer to the RX4000 (µµµµITRON4.0) Technical User’s Manual (U14835E). The major items included in a

task control block are shown below.

• Task address

• Priority

• Current status

• ID number of management object for which task is waiting

• Stack pointer, etc.

Note that tasks are divided into task main processing routine and task exception processing routine blocks. Since

the task main processing routine is what is usually executed, unless specified otherwise, it is described in this

document simply as a “task”.

Tasks are described as void type functions with one VP_INT type argument. The extended data exinf (activated by

act_tsk) or the task activation code stacd (activated by sta_tsk) is passed for this argument.

Example)

void task(VP_INT exinf)

{

...

ext_tsk();

}

CHAPTER 4 TASK MANAGEMENT

User’s Manual U14833EJ2V0UM34

4.2 Creating Tasks

Tasks are created by issuing the service calls cre_tsk and acre_tsk. With acre_tsk, assignment of the ID number

can be performed by the kernel. Specifying the static API CRE_TSK enables processing equivalent to cre_tsk to be

performed at system initialization. CRE_TSK also allows activation processing to be performed at the same time as

task creation.

In task creation processing, the kernel recognizes data (text) expanded in the memory as a task and places that

task under its management. Task creation processing involves securing and initializing the index (ID) block specified

from the task control block array in the system pool, and securing the stack area from the stack pool. Each created

task has a unique ID number. The ID number must be an integer in a range of 1 to 0x7fff, and the maximum number

that can be assigned is the number specified in the CF definition file.

Note that the size of the stack used by a task must be specified when the task is created. For how to calculate this

size, refer to the RX4000 (µµµµITRON4.0) Installation User’s Manual (U14834E).

4.3 Deleting Tasks

In cases such as when a task has completed processing and restarting that task is no longer necessary, the task

can be put into a non-existent state by issuing del_tsk; a process known as task deletion. It is also possible to perform

task termination and deletion together using the service call exd_tsk. When a task is deleted, its task control block is

invalidated, and can be used for a newly created task. Note that when a task is deleted, its stack area is also

released.

4.4 Activating Tasks

Two service calls are supplied in the RX4000 for activating tasks: (i)act_tsk and (i)sta_tsk. (i)act_tsk is used to

retain an activation request.

4.4.1 Activation with activation request retained

When (i)act_tsk is issued, if the target task is in the dormant state, it shifts from the dormant state to the ready

state, becoming subject to scheduling by the kernel. If the target task is in a state other than the dormant (or non-

existent) state, when (i)act_tsk is issued, the activation request is retained, causing the target task to be reactivated as

soon as it has terminated.

The extended data exinf specified when a task is created is passed as the activation parameter for tasks activated

by (i)act_tsk. Note that if TA_ACT is assigned as the attribute of a task created by the static API CRE_TSK, the

activation processing of that task is equivalent to that of act_tsk.

4.4.2 Activation with activation request not retained

(i)sta_tsk is provided in the RX4000 as a task activation method compatible with the µITRON3.0 specification, in

which tasks are activated without retention of the activation request.

If (i)sta_tsk is issued for a task in the dormant state, the task shifts from the dormant state to the ready state,

becoming subject to scheduling by the kernel. If (i)sta_tsk is issued for a task that is in a state other than dormant, an

error occurs, and the activation request is not retained.

For tasks activated by (i)sta_tsk, the VP_INT type data (4 bytes), which was specified as the (i)sta_tsk parameter,

can be received as the task activation code instead of the extended data exinf.

CHAPTER 4 TASK MANAGEMENT

User’s Manual U14833EJ2V0UM 35

4.5 Terminating Tasks

Task termination occurs when a task that was activated and executing processing shifts back into the dormant

state. Tasks can be terminated either normally or forcibly, as defined by the service call that terminates the task. Note

that a terminated task’s priority, wakeup request number, and suspend request number are initialized to the values set

when the task was created.

4.5.1 Normal termination

When a task has completed processing and no longer needs to be subject to scheduling, it issues the service call

ext_tsk or exd_tsk and self-terminates. Task termination via ext_tsk or exd_tsk is commonly known as normal

termination. Note that ext_tsk effects termination only, whereas exd_tsk both terminates and deletes the task. If the

task is locking any mutexes, these locks are released when the task terminates.

4.5.2 Forcible termination

If necessary, a task can be urgently terminated by issuing the service call ter_tsk. A task that receives this service

call shifts into the dormant state and terminates, regardless of the state it was in at that time. This processing is

known as forcible termination.

If the task is locking any mutexes, these locks are released when the task is forcibly terminated.

4.5.3 Reactivating terminated tasks
In µITRON4.0, the activation request for a task can be retained, and that task can be reactivated as soon as it

terminates (whether normally or forcibly). In other words, the task is shifted immediately from the dormant state back

to the ready state upon termination.

Note, however, that the activation request for a task that was terminated by exd_tsk is ignored, and the task is

shifted to the non-existent state.

CHAPTER 4 TASK MANAGEMENT

User’s Manual U14833EJ2V0UM36

4.6 Task States

The task changes its state according to how resources required to execute the processing are acquired, whether

an event occurs, and so on. Task states are always managed by the kernel, which performs the processing required

according to that state. The seven states applicable to tasks are described below.

(1) Non-existent

A task in this state has not been created or has been deleted, and is not registered in the kernel. A task in the

non-existent state is therefore not managed by kernel even though its code is located in memory.

(2) Dormant

A task in this state has just been created or has already completed its processing. A task in the dormant state

is not subject to scheduling by the kernel, even though it is under the kernel’s management.

(3) Ready

A task in this state is ready to perform its processing, but has been waiting to be assigned the right to use the

CPU (execution right) because another task with the same or higher priority is being executed.

A task in the ready state is subject to scheduling by the kernel, and can be shifted to the running state as soon

as it receives the execution right.

(4) Running

A task in this state has been assigned the execution right and is either currently performing its processing or

has had its processing interrupted while an interrupt service routine or handler is being executed.

Within the entire system, only a single task can be in the running state at any one time.

(5) Waiting

A task in this state has been stopped because the requirements for performing its processing, such as the

acquisition of a semaphore or memory block, have not been satisfied. The processing of this task is resumed

from the point at which it was stopped. At this time, the data (context) required to execute the program is

restored to the state it was in immediately before the stoppage. The acquisition status, etc., of resources that

are unrelated to the wait are not affected by the stoppage/resumption of execution.

The waiting state is further divided into the following types of states, according to the wait source. For further

details of these states, refer to the next and subsequent chapters.

Type Waiting for: Service call Causing Wait

Wake-up wait Reception of wake-up request (t)slp_tsk

Time elapse wait Lapse of time dly_tsk

Semaphore wait Acquisition of resource from semaphore (t)wai_sem

Event flag wait Establishment of event flag condition (t)wai_flg

Data transmission wait Completion of data write to buffer (t)snd_dtq

Data reception wait Reception of data (t)rcv_dtq

Message reception wait Reception of a message (t)rcv_mbx

Mutex wait Locking a mutex (t)loc_mtx

Fixed-length memory block wait Acquisition of fixed-length memory block (t)get_mpf

Variable-length memory block wait Acquisition of variable-length memory block (t)get_mpl

CHAPTER 4 TASK MANAGEMENT

User’s Manual U14833EJ2V0UM 37

(6) Suspended

A task in this state has been forcibly stopped by the issuance of the service call (i)sus_tsk. In µITRON3.0,

(i)sus_tsk was only recognized if issued by another task or handler, but in µITRON4.0, a task can issue

sus_tsk to itself.

Because the suspended state can be nested by issuing (i)sus_tsk in multiple (i.e., more than once for the same

task), it is necessary to issue the same number of (i)rsm_tsk service calls, or issue (i)frsm_tsk, to release the

suspended state.

The processing of this task is resumed from the point at which it was stopped; i.e., the point at which it was

preempted by the task or handler that issued (i)sus_tsk. At this time, the data required to execute the program,

such as the register values, is restored to the state it was in immediately before the stoppage. The acquisition

status, etc., of task resources that are unrelated to the wait are not affected by the stoppage/resumption of

execution.

(7) Waiting-suspended

This state is a combination of the waiting and suspended states described in (5) and (6) above.

A task in this state has entered the waiting state upon exiting the suspended state, or has entered the

suspended state upon exiting the waiting state.

Like the suspended state, the waiting-suspended state enables nesting of states through the multiple issuance

of (i)sus_tsk. It is therefore necessary to issue the wait release service call (rel_wai, sig_sem, etc.) and the

same number of (i)rsm_tsk service calls as (i)sus_tsk calls or (i)fsm_tsk to shift a task in the waiting-

suspended state to the ready state (or in some cases, immediately to the running state).

CHAPTER 4 TASK MANAGEMENT

User’s Manual U14833EJ2V0UM38

4.7 Task State Transition

Tasks are repeatedly shifted between the states described in 4.6 Task States by means of service call issuance.

Task states and state transitions are shown in Figure 4-1 below.

Figure 4-1. Task State Transition

Running

Ready

Waiting

Waiting-
suspended

Dispatch
Preempt

Resume Suspend

Release wait

Wait

Suspended

Release wait

Dormant Non-existent

Create

Delete

Activate/resume

Forcibly terminate

Forcibly terminate

Suspend

Terminate/delete

Terminate

Resume

CHAPTER 4 TASK MANAGEMENT

User’s Manual U14833EJ2V0UM 39

4.8 Task Delay and Timeout

Tasks in the waiting state described in 4.6 (5) Waiting above can be released after an arbitrary period of time has

elapsed. It is also possible to delay the execution of a task for a specified amount of time using the service call

dly_tsk. This kind of processing is known as timer operation. For details of timer operation, refer to CHAPTER 7

TIME MANAGEMENT. Timer operation as related to tasks is summarized below.

(1) Timeout

When a task is shifted to the waiting state, the maximum time that task is to stay in the waiting state can be set

by specifying a timeout time. In other words, if the wait release conditions are not met before the specified time

elapses after a service call was issued, the task is forcibly released from the waiting state. This is known as

timeout.

The error code E_TMOUT indicating a timeout is returned as the return value of a service call for tasks in a

timeout state.

(2) Time elapse wait

A task can be made to stay in the waiting state for only a specified time by issuing the service call dly_tsk. In

other words, a task is subject to waiting for a specified time, after the elapse of which the task is released.

4.9 Task Priority Order

A task has three values related to its priority: its initial priority, its current priority, and its base priority. In the

RX4000, the lower the value of the priority assigned to a task, the higher the priority.

(1) Initial priority

This is the priority of a task immediately after activation. This value can only be specified when the task is

created, and cannot be subsequently changed. When a task terminates and is reactivated, its priority is

initialized to this value.

(2) Current priority

This value indicates the priority of the task after it has been activated. The task execution order or the place of

a task in the task queue is determined by its current priority value. The current priorities of tasks can be

dynamically changed by the service call chg_pri (ichg_pri) and can be obtained by the service call get_pri

(iget_pri).

(3) Base priority

When a task is not participating in mutex-based synchronization, the base priority is always the same as the

current priority. When the task is synchronized using a mutex, the current priority of the task may change,

depending on the priority control protocol of the target mutex. At this time, the priority order to which the task

returns after releasing the mutex lock is known as the base priority.

CHAPTER 4 TASK MANAGEMENT

User’s Manual U14833EJ2V0UM40

4.10 Task Context

The environment in which the program operates is generally known as the context. In other words, the context

indicates the stack area (space) used by the CPU operation mode or program and the statuses (registers) saved to

the stack during program execution.

In the same way, the environment in which tasks operate is known as the task context. Therefore, when processing

such as service call issuance from a task is performed, it is sometimes called “performing processing from a task

context”. Moreover, when task switching, such as shifting a task to the waiting state, occurs, the value of the register

of when the task was being executed is saved to (or restored from) the stack area. This register value saved in the

stack area is called the task context.

For details of the types of registers that include task contexts and the structures used when contexts are written to

the memory, refer to the RX4000 (µµµµITRON4.0) Technical User’s Manual (U14835E).

4.11 PID

If PID (Position Independent Data) is used for the code created when the task program is compiled or assembled,

the address that is to be the base of a task when it is created must be assigned as a parameter (gp of the task

creation packet T_CTSK). The assigned address is set in the gp register when the task is activated and saved to or

restored from the context when the task is switched.

Note that this base address is unconditionally set in the gp register regardless of its attribute, etc., and therefore

must be set for programs that reference the gp register. If the gp register is not referenced, set NULL = 0.

4.12 Obtaining Task Information

Task information such as the task status can be obtained by using the service calls ref_tsk, iref_tsk, ref_tst, and

iref_tst. For details of each service call, refer to CHAPTER 13.

4.13 Coprocessor

When a task is assigned the attribute TA_COP at creation, thus specifying use of the FPU (coprocessor 1), FCR31

(control/status register of FPU) at activation has the same value as FCR31 of the task executed immediately before

this task is activated. If it is necessary to use FCR31 of the task to be activated, to generalize the processing and

reduce the overhead, instead of using the kernel to perform the processing that sets FCR31, this processing must be

described in the prolog section of the function described as a task.

Also, the number of FPU registers that can be used by tasks with the attribute TA_COP is determined uniformly for

the entire system, and therefore specified according to the configuration of the system (CF definition file). The status

registers required for task execution (CU, FR) are set by the kernel according to the TA_COP attribute and

configuration specifications.

In addition, the FCR31 and FPU registers are included in the context of tasks to which the TA_COP attribute has

been assigned, and are saved/restored when those tasks are switched.

CHAPTER 4 TASK MANAGEMENT

User’s Manual U14833EJ2V0UM 41

4.14 Task Exceptions

4.14.1 Task exception processing routines

A task exception processing routine is a routine that is activated when an event exceptional to a task occurs.

Because tasks can be divided into task main processing and task exception processing routines, the task exception

processing routine is actually a part of a task and therefore operates on the same context as the task main processing

routine.

In other words, when a task exception processing routine is activated, the applied parameters, such as the stack to

be used, the priority order, the status of interrupts (enabled/disabled), and the use of the coprocessor, are identical to

those of the task, or task main processing routine with which the exception processing routine is paired.

Note that task exception processing routines are described as void type functions with FLGPTN and VP_INT type

arguments. The bit pattern of the exception source that triggers activation of the task exception processing routine

(described later) and the extended data held by the tasks are passed for these arguments.

Example)

void task_exception(FLGPTN texptn, VP_INT exinf)

{

...

return;

}

4.14.2 Defining task exception processing routines

A task exception processing routine is defined by issuing def_tex. Equivalent processing to def_tex can also be

realized by specifying the static API DEF_TEX when the system is activated up.

def_tex specifies a task ID number (or the ID number of the task (task main processing routine) with which it is

paired) as its parameter. Note that if def_tex is issued for a task for which a task exception processing routine has

already been defined, the previous definition is deleted, and the new exception processing routine definition becomes

valid.

4.14.3 Canceling task exception processing routine definitions

A task exception processing routine definition is canceled by issuing def_tex with NULL specified in the definition

packet address of the exception processing routine.

CHAPTER 4 TASK MANAGEMENT

User’s Manual U14833EJ2V0UM42

4.14.4 Task exception enabled/disabled states

Tasks have two states related to task exception processing: a task exception enabled state and a task exception

disabled state. In the latter state, task exception processing requests are held pending, and the task exception

processing routine is not activated. The conditions under which the enabled/disabled state changes are summarized

below.

Task exceptions become disabled when:

• A task is activated

• def_tex is issued and a new exception processing routine is defined

• def_tex is issued and an exception processing routine is redefined in the task exception disabled state

(continuance of disabled state)

• def_tex is issued and an exception processing routine is canceled

• dis_tex is issued

• A task exception processing routine is activated

Task exceptions become enabled when:

• ena_tex is issued

• Processing shifts from a task exception processing routine to a task (except when dis_tex is issued in an

exception processing routine)

• def_tex is issued and an exception processing routine is redefined in the task exception enabled state

(continuance of enabled state)

4.14.5 Task exception processing requests

When some kind of event exceptional to a task occurs, (i)ras_tex is issued and a task exception processing

execution request is sent to that task. To issue (i)ras_tex, a 32-bit bit string (TEXPTN type), which is held as the

exception source when the exception processing routine is activated (pending exception source), is specified. If

(i)ras_tex is issued more than once before the task exception processing routine is actually activated, the activation

source is updated with the logical sum of the values specified by the multiple (i)ras_tex service calls.

When a task exception processing routine is activated, the pending exception source is passed as the parameter of

the task exception processing routine, and then cleared to 0. Although it is possible to request exception processing

for the same task by issuing iras_tex from an interrupt servicing routine or cyclic handler activated while the task

exception processing routine is being executed, in this case, the pending exception source will only be updated, and

there will be no effect on the exception source of the task exception processing routine being processed.

CHAPTER 4 TASK MANAGEMENT

User’s Manual U14833EJ2V0UM 43

4.14.6 Activating task exception processing routines

A task exception processing routine is activated by the kernel when all of the following four conditions are met.

• Task exceptions are in the enabled state

• The pending exception source is not 0

• The task is in the running state

• The non task context of an interrupt service routine or a cyclic handler is not under execution

In other words, the conditions for tasks when task exceptions are enabled are:

(1) The task has been put in the running state by the issuance of a dispatch and the pending exception source is

not 0 at that time

(2) The pending interrupt source is not 0 when interrupt processing has finished and processing returns to the task

(3) ras_tex has been issued by a task to itself

(4) The pending interrupt source is not 0 when the task exception processing routine has finished

In the above cases, the task exception processing routine is activated immediately before control is shifted to the

task (main processing routine). The processing flow when a task exception processing routine is activated is shown

below.

Figure 4-2. Example of Task Exception Processing Routine Activation (1)

Time

Task B

Task A

Task A’
(Exception processing routine)

Pending exception
source of task A

Other than 0 0

Figure 4-3. Example of Task Exception Processing Routine Activation (2)

Time

Task A

Task A’
(Exception processing routine)

Pending exception
source of task A

Other than 0 0

Interrupt service
routine

iras_tex

0

CHAPTER 4 TASK MANAGEMENT

User’s Manual U14833EJ2V0UM44

Figure 4-4. Example of Task Exception Processing Routine Activation (3)

Time

Task A

Task A’
(Exception processing routine)

Pending exception
source of task A

0

ras_tex

0

Figure 4-5. Example of Task Exception Processing Routine Activation (4)

Time

Task A

Task A’
(Exception processing routine)

Pending exception
source of task A

Other than 0 0

Interrupt service
routine

iras_tex

0

End

Note that in case (3), “the task itself” includes tasks undergoing task exception processing. In other words, if task

exceptions have been enabled by the issuance of ena_tex during task exception processing, multiple task exception

processing routines may be activated by the exception request issued from interrupt processing, etc. However, be

aware that in this case, an unlimited number of task exception processing routines may be inadvertently activated.

The exception source and extended data held by the task can be received as parameters for activated task

exception processing routines.

4.14.7 Terminating task exception processing routines

C language return or equivalent processing is carried out to terminate a task exception processing routine. Once a

task exception processing routine is terminated, the kernel rechecks the pending exception source, and if it is not 0,

reactivates the task exception processing routine. If the pending exception source is 0, the task exception disabled

state of the task is released (except for cases when dis_tex has been issued during task exception processing), and

control is returned to the task main processing routine.

CHAPTER 4 TASK MANAGEMENT

User’s Manual U14833EJ2V0UM 45

4.14.8 Issuing service calls from task exception processing routines

All the service calls that can be issued from a task can be issued from a task exception processing routine. In

other words, there is no difference between the service calls that can be issued from the task’s main processing and

exception processing routines. Therefore, if a service call that transfers a task to a waiting state, such as slp_tsk, or a

service call that terminates a task, such as ext_tsk or exd_tsk, is issued from a task exception processing routine, the

processing that is subsequently carried out is the same as if the service call was issued from the task main processing

routine.

4.14.9 Obtaining task exception processing routine information

Information on the task exception processing routine can be obtained by using the service calls sns_tex, ref_tex,

and iref_tex. For details of each service call, refer to CHAPTER 13.

User’s Manual U14833EJ2V0UM46

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

This chapter describes the synchronous communication management performed by the RX4000.

5.1 Overview

In an environment where multiple tasks are executed concurrently (multitasking), the result produced by a certain

task may determine the next task to be executed or affect the processing performed by the subsequent task. In other

words, it may happen that some task execution conditions vary with the processing performed by another task, or that

the processing performed by some tasks is related.

Liaison functions are therefore required between tasks so that task execution will be suspended to await the result

output by another task. These functions are known as synchronization and communication functions, and in the

RX4000 the synchronization and communication functions provided include semaphores, event flags, data queues,

mailboxes, and mutexes. These functions are described in the following sections.

5.2 Semaphores

The elements required to execute tasks are known as resources, which include all the hardware components, such

as the processor, memory, and I/O devices, and software components, such as the files and programs.

Because it is often impossible for multiple tasks to simultaneously use the same resource, a multitasking

environment requires a function to prevent possible resource contention. As a means of realizing the exclusive control

of resources that would prevent this kind of contention, the RX4000 provides non-negative counter-type semaphores.

Semaphores contain counters for controlling the number of resources, and by treating semaphores as abstract

resources, it becomes possible to perform exclusive control between tasks.

5.2.1 Creating semaphores

Semaphores can be created either by issuing the service call (a)cre_sem, or by specifying the static

APICRE_SEM, which performs equivalent processing to (a)cre_sem when the system is initialized.

If (a)cre_sem is issued, the attribute, initial counter value, and maximum counter value (etc.) are stored in the block

corresponding to the ID number that specifies the semaphore control block area secured as an array, and that control

block is then initialized.

The semaphore ID number consists of a unique number of a value 1 or higher. The maximum value that can be

specified is the one defined in the system information table, up to a maximum of 0x7fff numbers. Any value of 0 or

higher can be specified for a semaphore’s initial counter value, and any value of 1 or higher for the maximum counter

value, but the former cannot exceed the latter. The maximum specifiable value is 0x7ffffff.

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM 47

5.2.2 Deleting semaphores

A semaphore is deleted by issuing the del_sem service call. In other words, once del_sem is issued, the kernel

invalidates the specified semaphore control block and puts the target semaphore in the non-existent state.

Even if a task exists that has acquired a resource for the deleted semaphore, that semaphore will still be deleted.

In this case, all the waiting tasks are released from the waiting state and the error code E_DLT indicating that the

semaphore has been deleted is returned as the return value of the service calls wai_sem and twai_sem. Note,

however, that tasks that have already acquired a semaphore will not be notified of that semaphore’s deletion.

After a semaphore is deleted, a semaphore with the same ID number as the deleted semaphore can be newly

created.

5.2.3 Acquiring resources

Resources are acquired from semaphores by issuing one of the service calls wai_sem, twai_sem, or pol_sem.

If there is a request to acquire a resource, the kernel checks the value of the resource counter of the target

semaphore and assigns the resource to the task if the counter is 1 or higher (decrementing the counter by 1), or

carries out the processing corresponding to the issued service call if the counter is 0. In other words, a task is put in

the resource acquisition waiting state by the service calls wai_sem and twai_sem, and waits until the resource has

been acquired, in the case of wai_sem, or until either the resource has been acquired or a specified time has elapsed,

in the case of twai_sem. The issuance of pol_sem results in a service call error, and the task is informed that

resource acquisition failed.

Tasks in the resource acquisition waiting state are registered in the waiting task queue of the specified semaphore.

It is therefore possible to have multiple tasks waiting for the same semaphore, in which case a request for resource

acquisition sent to a semaphore for which tasks are already waiting will not result in an error; the task will simply be

put in the resource acquisition waiting state.

Tasks can be registered in the waiting task queue of a semaphore by two methods, depending on the attribute

specified when the semaphore was created. One method is registering tasks in the queue in the order of their

priorities, which is used for semaphores with the attribute TA_TPRI. The other method is registering tasks in the

queue in the order in which they requested resources, which is used for semaphores with the attribute TA_TFIFO. If

waiting tasks are released by the issuance of the service call (i)sig_sem, the tasks are always released in order from

the top of the queue.

5.2.4 Returning resources

A resource is returned to a semaphore by issuing the service call (i)sig_sem.

When (i)sig_sem is issued, the kernel checks the waiting queue of the target semaphore and if there are tasks

registered in the queue, it immediately assigns the task at the top of the queue the resource and releases it from the

waiting state. At this time, the value of the resource counter remains unchanged. If there are no tasks registered in

the waiting queue, the resource counter value is incremented by 1. Note that because only one resource can be

manipulated per service call, multiple tasks are never released simultaneously by one issuance of (i)sig_sem.

5.2.5 Obtaining semaphore information

Semaphore information such as the number of resources can be obtained by using the service calls ref_sem and

iref_sem. For details of each service call, refer to CHAPTER 13.

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM48

5.2.6 Examples of exclusive control using semaphores

Some examples of exclusive control using semaphores are shown below.

(1) cre_sem is issued creating a semaphore. The value of the initial counter is 1.

(2) For task A to use a resource, wai_sem is issued and a resource is acquired from the semaphore.

Count = 1

Semaphore X

Task A
Request for resource

Acquisition successful

Count = 0

Semaphore X
Task A

Running state

Running state

SEM

wai_sem

(3) For task B to use a resource, wai_sem is issued and an attempt is made to acquire a resource from a

semaphore. However, because the value of the semaphore resource counter is 0, task B is put in the waiting

state and is registered in the semaphore’s waiting task queue.

Task B
Request for resource

Acquisition impossible

Count = 0

Semaphore X

Task B

Running state

Waiting state

Count = 0

Semaphore X

Registration

wai_sem

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM 49

(4) When task A has finished using the resource, sig_sem is issued and the resource is returned to the

semaphore. Task B acquires the resource and is subsequently released from the resource acquisition waiting

state, and removed from the semaphore’s waiting task queue.

Task AReturn of resource

Resource returned

Count = 0

Semaphore X

Running state

Waiting state

Count = 0

Semaphore X

Registration

Task B

SEM

Ready state

Task B

Task A

Running state

SEM

sig_sem

(5) When task B has finished using the resource, sig_sem is issued and the resource is returned to the

semaphore. The semaphore’s resource counter is subsequently incremented by 1.

Task BReturn of resource

Resource returned

Count = 1

Semaphore X

Running state

Running state

Count = 0

Semaphore X

Task B

SEM
sig_sem

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM50

5.3 Event Flags

In multitask processing, an intertask wait function is required in which other tasks wait to resume execution of

processing until execution of a given task is complete. To support this function, event flags are provided in the

RX4000 to allow other tasks to judge whether or not the “processing complete” event has occurred.

An event flag is a set of data consisting of 1-bit flags that indicate whether a particular event has occurred. The

event flags used in the RX4000 are 32 bits, which are handled as a set of information with each bit or a combination of

bits having a specific meaning.

5.3.1 Creating event flags

Event flags can be created either by issuing the service call (a)cre_flg, or by specifying the static API CRE_FLG,

which performs equivalent processing to (a)cre_flg when the system is initialized.

If (a)cre_flg is issued, the attribute, initial counter value, and maximum counter value (etc.) are stored in the block

corresponding to the ID number that specifies the event flag control block area secured as an array, and that control

block is then initialized.

The event flag ID number consists of a unique number of a value 1 or higher. The maximum value that can be

specified is the one defined in the system information table, up to a maximum of 0x7fff numbers.

Any 32-bit value can be specified for an event flag’s initial bit pattern.

5.3.2 Deleting event flags

An event flag is deleted by issuing the service call del_flg. When del_flg is issued, the kernel invalidates the

specified event flag control block and puts the target event flag in the non-existent state.

Even if a task exists that has satisfied the wait release conditions for the deleted event flag, that event flag will still

be deleted. In this case, all the waiting tasks are released from the waiting state and the error code E_DLT indicating

that the event flag has been deleted is returned as the return value of the service calls wai_flg and twai_flg.

After an event flag is deleted, an event flag with the same ID number as the deleted event flag can be newly

created.

5.3.3 Waiting for events

To wait for the establishment of an event using an event flag, the required bit pattern is specified for either wai_flg,

twai_flg, or (i)pol_flg, which is then issued.

When one of these service calls is issued, the kernel compares the bit pattern of the event flag when the service

call was issued with the specified bit pattern, and determines whether an event has been established based on the

wait conditions described later.

If an event has already been established, the service call is immediately terminated normally, allowing task

processing to continue. If an event is not established, wai_flg and twai_flg make the task wait: until the event flag

satisfies the wait release conditions in the case of the former, and until either the event flag satisfies the wait release

conditions or a specified time has elapsed in the case of the latter. The issuance of (i)pol_flg results in a service call

error, and the task is informed that an event was not established.

Note that event flags have two attributes: TA_WSGL and TA_WMUL, and those with the former attribute cannot be

simultaneously held by multiple tasks (whereas those with the latter attribute can). Accordingly, if wai_flg, twai_flg, or

(i)pol_flg is issued for an event flag with the attribute TA_WSGL already being held by a waiting task, an error occurs

unconditionally, regardless of whether an event was established or not, and the error code E_OBJ is returned.

Because event flags with the attribute TA_WMUL can be held by multiple tasks, waiting tasks with event flags are

registered in the waiting task queue, either in FIFO or priority order (TA_TFIFO and TA_TPRI attribute respectively). If

(i)set_flg is issued, the kernel determines the wait release conditions of the tasks in the order of this waiting task

queue.

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM 51

5.3.4 Setting event flags

The value of an event flag is set by issuing either (i)set_flg or (i)clr_flg.

(i)set_flg is issued when any bit of the event flag is set to 1. When (i)set_flg is issued, the bit pattern of the event

flag when the service call was issued is ORed with the specified bit pattern and set to the event flag as a new bit

pattern. (i)clr_flg is issued when any bit of the event flag is set to 0. When (i)clr_flg is issued, the bit pattern of the

event flag when the service call was issued is ANDed with the specified bit pattern and set to the event flag as a new

bit pattern.

When there is a task waiting for an event flag, if (i)set_flg is issued and the event flag is updated, wait release

condition judgement processing is carried out. This judgement processing is carried out either until a wait release

condition is first satisfied (for event flags with the attribute TA_CLR), or for all the event flags. When (i)clr_flg is issued,

only event flag update processing is carried out. This is because the judgement concerning the establishment of an

event is made by checking whether all or any one of the specified bits are 1, as described in 5.3.5 Wait conditions,

making it impossible for a condition to be established by issuing (i)clr_flg.

5.3.5 Wait conditions

One of the following judgement methods can be specified as a wait condition for wai_flg, twai_flg, and (i)pol_flg

when determining whether an event has been established.

(1) AND wait (TWF_ANDW)

The waiting state continues until all bits to be set to 1 in the required bit pattern have been set in the relevant

event flag. In other words, if the specified bit pattern is waiptn and the bit pattern of the event flag is curptn, the

event establishment condition is as follows.

curptn & waiptn == waiptn

(2) OR wait (TWF_ORW)

The wait state continues until any bit to be set to 1 in the required bit pattern has been set in the relevant event

flag. The event establishment condition is therefore as follows.

curptn & waiptn != 0

5.3.6 Event flag clear attribute

If an event flag has the attribute TA_CLR, it is cleared to 0 when the required condition is satisfied. An event flag

with the attribute TA_WMUL held by multiple waiting tasks is cleared to 0 as soon as the first task is released from the

waiting state. Accordingly, because the bit pattern subject to condition judgement is 0, wait release condition

judgement is not performed for tasks registered behind this task in the waiting task queue.

5.3.7 Obtaining event flag information

Task information such as the bit pattern of an event flag can be obtained by using the service calls ref_flg and

iref_flg. For details of each service call, refer to CHAPTER 13.

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM52

5.3.8 Examples of wait function using event flags

Some examples of wait processing using event flags are shown below.

The numbers in the diagrams indicate the current bit pattern of the event flag and the bit pattern required by the

task. All these numbers are in binary. Note that although the bit width of event flags is usually 32 bits, for

simplification purposes, this has been reduced to 8 bits in the examples.

(1) cre_flg is issued creating an event flag. TA_CLR is specified for the event flag attribute and the initial bit

pattern is 00000000.

(2) wai_flg is issued to make task A wait. At this time, the required bit pattern is 00000011 and the wait mode is

TWF_ANDW.

Because the current bit pattern of the event flag is 0, the condition is not established, and task A enters the

waiting state and is registered in the event flag’s waiting task queue.

00000000

Event flag X
Task A

00000011

Waiting
Condition not established

Task A

00000011

Running state

Waiting state

Event flag X

00000000

Registration

wai_flg

(3) set_flg is issued to make task B wait for task A and the value of event flag X is updated to 00000001. However,

because the bit pattern required by task A is 00000011 and the wait mode is TWF_ANDW, not all the required

bits have been set in event flag X, so task A continues waiting.

Condition not established

Task A

00000011

Waiting state

Event flag X

00000000

Registration

Task B

Running state
Setting

00000001

Task A

00000011

Waiting state

Event flag X

00000001

Registration
set_flg

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM 53

(4) set_flg is issued to make task C wait for task A and the value of event flag X is set to 00000110. The value of

the flag before set_flg was issued, 00000001, and the newly set value, 00000110, are ORed, and event flag X

is updated with the resulting value, 00000111, which satisfies the wait release condition of task A.

Task A is therefore released from the waiting state and the bit pattern of when task A was released from

waiting, 00000111, is passed to task A as the return parameter. Also, because event flag X has the attribute

TA_CLR, it is cleared to 0 after task A is released from waiting.

Condition established

Task A

00000011

Waiting state

Event flag X

00000001

Registration

Task C

Running state

Setting

00000110

Task A

Ready state

Event flag X

00000000

Task C

Running state

00000111

Bit pattern when
condition established

set_flg

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM54

5.4 Data Queues

In a multitasking environment, when multiple tasks operate together to perform a specified processing, an intertask

communication function is required to inform other tasks of the execution results of a certain task. In the RX4000,

data queues and mailboxes are provided as a means of realizing this function. For a data queue, transmit data is fixed

to 4 bytes and there is a limit to the total amount of data that can be stored. For a mailbox on the other hand, data of

any format can be transmitted, and there is no limit to the total amount of storable data. Users can therefore select

and use whichever of these has the features that accord with their system configuration. This section describes data

queues, which consist of a ring buffer in which the data to be communicated is stored and a waiting task queue in

which waiting tasks are registered. Data queues not only enable communication between tasks, but also make it

possible to have tasks wait in response to data.

5.4.1 Creating data queues

Data queues can be created either by issuing the service call (a)cre_dtq, or by specifying the static API CRE_DTQ,

which performs equivalent processing to (a)cre_dtq when the system is initialized.

When (a)cre_dtq is issued, firstly the area of the ring buffer to be used by the data queue is secured from the user

pool. After that, the attribute, buffer address, and buffer size (etc.) are stored in the block corresponding to the ID

number that specifies the data queue control block area, and that control block is then initialized.

The data queue ID number consists of a unique number of a value 1 or higher. The maximum value that can be

specified is the one defined in the system information table, up to a maximum of 0x7fff numbers.

Note that data queues without buffers can also be created.

5.4.2 Deleting data queues

A data queue is deleted by issuing the del_dtq service call. When del_dtq is issued, the kernel returns the area of

the ring buffer being used by the specified data queue to the user pool and then invalidates the control block and puts

the target data queue in the non-existent state.

Even if a task exists that has transmit/receive data for the deleted data queue, that data queue will still be deleted.

In this case, all the waiting tasks are released from the waiting state and the error code E_DLT indicating that the data

queue has been deleted is returned as the return value of the service call.

After a data queue is deleted, a data queue with the same ID number as the deleted data queue can be newly

created.

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM 55

5.4.3 Receiving data

Data is received from the data queue by issuing one of the service calls rcv_dtq, trcv_dtq, or (i)prcv_dtq.

If there is a data reception request, the kernel checks whether there is unreceived data in the ring buffer being used

by the data queue. If unreceived data exists, the task receives the data at the top of the ring buffer and continues

processing. The kernel then checks the transmission waiting task queue of the data queue, and if there is a task

waiting in this queue, it stores the transmit data of the waiting task in the space in the ring buffer area made available

by the previous data reception processing, at which point the task is released from the waiting state. Accordingly, a

dispatch occurs when the task that was in the waiting state has a higher priority than the task currently running.

If there is no data stored in the ring buffer, the service calls rcv_dtq and trcv_dtq put the task into a data reception

waiting state: until data is received in the case of the former, and until either data is received or a specified time has

elapsed in the case of the latter. The issuance of (i)prcv_dtq results in a service call error, and the error code

E_TMOUT is returned, indicating that polling failed.

Tasks waiting to receive data are registered in the waiting task queue of the data queue. Because multiple tasks

can be waiting in the waiting task queue of the same data queue, a request for data reception sent to a data queue in

whose waiting task queue tasks are already waiting will not result in an error; the task will simply be put in the data

reception waiting state. Tasks can only be registered in the waiting task queue in FIFO order. Waiting tasks are

therefore registered in the queue in the order in which data reception requests were sent, and released in that order

when data is transmitted by a service call such as snd_dtq.

5.4.4 Obtaining data queue information

Data queue information such as the number of data not received can be obtained by using the service calls ref_dtq

and iref_dtq. For details of each service call, refer to CHAPTER 13.

5.4.5 Transmitting data

Data is transmitted to the data queue by issuing one of the service calls snd_dtq, (i)psnd_dtq, tsnd_dtq, or

(i)fsnd_dtq.

If there is a data transmission request, the kernel checks the reception waiting task queue of the data queue, and if

there is a task waiting in this queue, it assigns data to the task at the top of the queue and releases that task from the

waiting state. Although it is possible for the task that transmitted the data to continue processing, if the task just

released from the waiting state has a higher priority, then the task currently running is dispatched.

If there are no tasks waiting for reception, the kernel checks the ring buffer of the data queue to see if there is any

free space. If there is free space, the transmit data is copied to the buffer and the task continues processing. If there

is no free space, the service calls snd_dtq and tsnd_dtq put the task into a data transmission waiting state and that

task is registered in the waiting task queue of the data queue until the buffer can be written to. At this time, tasks are

registered in the waiting task queue in the order (FIFO or priority order) specified by the attribute assigned when that

data queue was created. In the case of tsnd_dtq, the task is also released when a specified time has elapsed. If

(i)fsnd_dtq is issued, the oldest data in the ring buffer is discarded and transmission is forcibly carried out. The

issuance of (i)psnd_dtq results in an error if the buffer is not empty, and the error code E_TMOUT is returned,

indicating that polling failed.

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM56

5.4.6 Examples of communication using data queues

Some examples of intertask communication and synchronization using data queues are shown below.

(1) cre_dtq is issued creating a data queue. There are 4 buffers.

(2) Task A sends a data reception request to data queue X. However, because there is no data stored in the

buffers of data queue X, task A is put in the data reception waiting state.

Task A

Data request

Data reception failed

Task A

 Running state

 Waiting state

Data queue X

Registration

Data queue X

rcv_dtq

(Reception wait)

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM 57

(3) Task B transmits data to data queue X. Task A therefore receives this data and is released from the waiting

state.

Data reception successful

Task A

Waiting state

Registration

Data queue X

Task B

Running state

data

Transmission

Task A

Ready state

Data queue X

Task B

Running state

data

snd_dtq

(Reception wait)

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM58

(4) Following this, task B transmits five items of data in succession. However, because the data queue can only

store up to four data items in its buffers, task B fails to transmit the fifth data item and is put in the data

transmission waiting state.

Transmission failed

Data queue X

Task B

Running state
data1Transmission

Data queue X

Task B

Waiting state

data4

data3

data2

data1

data4

data3

data2

data5

data5

Registration

snd_dtq

(Transmission wait)

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM 59

(5) Here, task C sends a data reception request, receives the data “data1” from the top buffer, and continues

processing. Task B, which is waiting to transmit data, then completes data transmission, and data5 is stored in

the ring buffer.

Task C

Data reception/transmission successful

Data queue X

Task B

Ready state data1

data4

data3

data2

data5

Data queue X

Task B

Waiting state

data1

data4

data3

data2

data5

Registration

Task C

Running state

Reception request

Running state

rcv_dtq

(Transmission wait)

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM60

5.5 Mailboxes

In the RX4000, data queues and mailboxes are provided as a means of realizing an intertask communication

function. For a data queue, transmit data is fixed to 4 bytes and there is a limit to the total amount of data that can be

stored. For a mailbox on the other hand, data of any format can be transmitted, and there is no limit to the total

amount of storable data. Users can therefore select and use whichever of these has the features that best suit their

system configuration. This section describes mailboxes, which consist of a receive task waiting queue and a transmit

message mail queue. Mailboxes not only enable communication between tasks, but also make it possible to have

tasks wait in response to messages.

5.5.1 Creating mailboxes

Mailboxes can be created either by issuing the service call (a)cre_mbx, or by specifying the static API CRE_MBX,

which performs equivalent processing to (a)cre_mbx when the system is initialized.

When (a)cre_mbx is issued, the attribute, etc., is stored in the block corresponding to the ID number that specifies

the mailbox control block array, and that control block is then initialized.

The mailbox ID number consists of a unique number of a value 1 or higher. The maximum value that can be

specified is the one defined in the system information table, up to a maximum of 0x7fff numbers.

5.5.2 Deleting mailboxes

A mailbox is deleted by issuing the del_mbx service call. When del_mbx is issued, the kernel invalidates the

specified mailbox control block and puts the target mailbox in the non-existent state.

Even if a task exists that has a receive message for the deleted mailbox, that mailbox will still be deleted. In this

case, all the waiting tasks are released from the waiting state and the error code E_DLT indicating that the mailbox

has been deleted is returned as the return value of the service call. Similarly, even if there is a message that has

been registered as waiting for reception, the mailbox will still be deleted. However, in this case, even if the message is

a memory block acquired from the memory pool, it will not be returned to the memory pool.

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM 61

5.5.3 Messages

All items of data (memory) exchanged between tasks via mailboxes are called “messages.” Using a mailbox, an

arbitrary task, handler, or processing routine can access the data, or messages, stored in the memory. In the

RX4000, however, the address of a message is only passed to the receiving side; the contents of the message are not

copied to any other area.

(1) Allocating message areas

Any memory area, such as a variable-length memory block, a fixed-length memory block, or a statically

secured area, can be used for messages. However, to transmit messages, an area is required for the kernel to

perform message management (message header), for which the top 4 bytes of the area is used (or the top 6

bytes in the case of messages with a specified priority). Accordingly, an area larger than 4 (or 6) bytes must be

secured for the message area.

The top address of the message area is passed to the mailbox when a message is transmitted. This address

must be a value that is an integral multiple of 4 (an integral multiple of 8 is recommended); otherwise operation

cannot be guaranteed.

For further details of the structure of the message header, refer to the RX4000 (µµµµITRON4.0) Technical User’s

Manual (U14835E).

(2) Contents of messages

The length and composition of messages to be transmitted to mailboxes are not prescribed in the RX4000;

rather they are determined by the tasks, handlers, and processing routines that communicate with each other

(i.e., by protocols).

(3) Message priority order

In the RX4000, if there are no tasks waiting for message reception when a message is transmitted, the

transmitted message is registered in the message queue of the mailbox. The order in which messages are

registered can be specified by the attribute of the mailbox, so for mailboxes with the attribute TA_MPRI,

messages are registered in order of priority. Values from 1 to 255 can be used to assign priority: the smaller

the value the higher the priority.

The priority of a message is stored in the 2 bytes following the 4th byte from the top of the message area.

Therefore when messages are communicated via a mailbox with the attribute TA_MPRI, the essence of the

message activates after the 6th byte from the top of the message area.

5.5.4 Transmitting messages

Messages are transmitted by issuing the service call snd_mbx.

If there is a message transmission request, the kernel checks the message reception waiting task queue of the

mailbox, and if there is a task waiting in this queue, it releases that task from the waiting state, at which point the task

receives the message. If there are no tasks waiting, messages are registered in the message queue of the mailbox in

the order specified by the attribute assigned when that mailbox was created (FIFO or priority order), and are saved for

the next message reception request.

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM62

5.5.5 Receiving messages

Messages are received by issuing one of the service calls rcv_mbx, trcv_mbx, or (i)prcv_mbx.

If there is a message reception request, the kernel checks the message queue of the mailbox. If there are

unreceived messages registered in the queue, the message at the top of the queue is released and passed to the task

with that address. If there are no messages registered in the queue, when the service calls rcv_mbx and trcv_mbx

are issued, the task is put into a mail reception waiting state: until mail is received in the case of the former, and until

either mail is received or a specified time has elapsed in the case of the latter. The issuance of (i)prcv_mbx results in

message reception failure, and the error code E_TMOUT is returned, indicating that polling failed.

Tasks waiting to receive messages are registered in the waiting task queue of the mailbox. Because multiple tasks

can be waiting in the waiting task queue of the same mailbox, a request for message reception sent to a mailbox in

whose waiting task queue tasks are already waiting will not result in an error; the task will simply be put in the

message reception waiting state.

Tasks can be registered in the waiting task queue of the mailbox in two ways. In the case of mailboxes with an

attribute of TA_TPRI, tasks are registered in the queue in order of their respective priorities, and in the case of

mailboxes with an attribute of TA_TFIFO, tasks are registered in the order in which message reception requests were

sent. Tasks are released from waiting in order activation from the top of the queue.

5.5.6 Obtaining mailbox information

Mailbox information such as the presence or absence of a waiting task can be obtained by using the service calls

ref_mbx and iref_mbx. For details of each service call, refer to CHAPTER 13.

5.5.7 Examples of message communication using mailboxes

Some examples of communication using mailboxes are shown below.

(1) cre_mbx is issued creating a mailbox.

(2) Task A issues rcv_mbx to receive a message and a message reception request is sent to mailbox X. However,

because no messages have been sent to mailbox X, task A is put in the message reception waiting state.

Task A
Reception request

Message reception impossible

Task A

Running state

Waiting state

Mailbox X

Registration

Mailbox X

rcv_mbx

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM 63

(3) Task B prepares a message for transmission. A memory block or any memory area is used for the message.

The first 4 bytes of the message area are reserved for kernel management and therefore cannot store

message contents. The following 2 bytes store the message’s priority. However, if the destination of the

message is a mailbox with the attribute TA_MFIFO, these 2 bytes can be used as message area. Users can

store data in any format from the 6th byte of the message area. For further details, refer to the RX4000
(µµµµITRON4.0) Technical User’s Manual (U14835E).

(4) Task B transmits a message to mailbox X, at which point task A receives the message and is released from the

waiting state.

Task BTransmission

Message reception (task A)

Task A

Running state

Waiting state

Mailbox X

Registration

Mailbox X

Task A

Ready state

Task B

Running state

snd_mbx
Message

Message

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM64

(5) Following this, task B transmits another message to mailbox X. However, because there are no longer any

tasks in mailbox X waiting to receive messages, the message is registered in the mailbox and waits to be

received.

Task BTransmission

Transmission

Running state

Mailbox X

Mailbox X

Task B

Running state

Registration

snd_mbx
Message

Message

(6) Here, task A sends another reception request to mailbox X. Because there is a receivable message registered

in mailbox X, task A immediately receives that message and continues processing.

Task A

Reception (task A)

Running state

Mailbox X

Mailbox X

Task A

Running state

Registration

rcv_mbx

Message

Reception request

Message

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM 65

5.6 Mutexes

Mutexes are objects used to perform exclusive control between tasks when common resources are used, and

support the priority inheritance and priority ceiling protocols as mechanisms for preventing the inversion of an

unlimited priority order that accompanies exclusive control.

5.6.1 Creating mutexes

Mutexes can be created either by issuing the service call (a)cre_mtx, or by specifying the static API CRE_MTX,

which performs equivalent processing to (a)cre_mtx when the system is initialized.

When (a)cre_mtx is issued, the attribute, priority order limit, etc., is stored in the block corresponding to the ID

number that specifies the mutex control block array, and that control block is then initialized.

The mutex ID number consists of a unique number of a value 1 or higher. The maximum value that can be

specified is the one defined in the system information table, up to a maximum of 0x7fff numbers.

5.6.2 Deleting mutexes

A mutex is deleted by issuing the service call del_mtx. When del_mtx is issued, the kernel invalidates the specified

mutex control block and puts the target mutex in the non-existent state.

Even if a task exists that is waiting to lock the mutex to be deleted, that mutex will still be deleted. In this case, all

the waiting tasks are released from the waiting state and the error code E_DLT indicating that the mutex has been

deleted is returned as the return value of the service call (loc_mtx, tloc_mtx).

Also, even if the target mutex has been locked by a task, the mutex will still be deleted. However, the task locking

the mutex will not be informed of its deletion. It is therefore necessary to inform this task of the mutex deletion by

performing processing such as issuing the service call unl_mtx to check for the return of the error code E_NOEXS or

E_ILUSE. Note also that if the current priority of the task locking the mutex has been raised via the priority inheritance

or priority ceiling protocol, the priority may be returned to the base priority by deletion of the locked mutex.

5.6.3 Priority inheritance protocol

The priority inheritance protocol is a mutex priority control protocol used to prevent the inversion of an unlimited

priority order. When processing related to a mutex with the TA_INHERIT attribute occurs, this protocol changes the

current priority value of the task locking the mutex to whichever is the highest of the following.

• The task’s base priority value

• The same priority value as the task with the highest priority among tasks waiting to lock a mutex with the attribute

TA_INHERIT

5.6.4 Priority ceiling protocol

The priority ceiling protocol is a mutex priority control protocol used to prevent the inversion of an unlimited priority

order. When a task locks a mutex with the attribute TA_CEILING, the priority of that task is changed to the top priority

value of the mutexes. Note that a task with a priority higher than this top priority cannot lock a mutex with the attribute

TA_CEILING.

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM66

5.6.5 Simplified priority order control rules

In the µITRON4.0 Specification, two kinds of priority control rules related to mutexes are prescribed: detailed rules

and simplified rules, of which the latter are used in the RX4000.

The priority order of tasks that use mutexes to perform synchronization is therefore as follows.

(When mutex is locked)

Whichever has the highest priority among the following.

• The task’s base priority value

• The same priority value as the task with the highest priority among tasks waiting to lock a locked mutex with

the attribute TA_INHERIT

• The highest top priority among locked mutexes with the attribute TA_CEILING.

(After mutex lock is released)

When all the locked mutexes are released, a task’s current priority changes to its base priority.

5.6.6 Locking mutexes

A mutex is locked by issuing one of the service calls loc_mtx, tloc_mtx, or ploc_mtx.

If there is a mutex lock request, the kernel checks whether that mutex is already locked by another task. If the

mutex is not locked by another task, the mutex can be locked by the requesting task. At this time, if the target mutex

has the attribute TA_CEILING, the current priority value of the task is raised to the top priority value of the mutexes. If

the mutex is locked by another task, the requesting task is put in the waiting state and registered in the waiting task

queue of the mutex. The order in which tasks are registered in this queue is FIFO order if the target mutex has the

attribute TA_TFIFO, and priority order if the mutex has one of the other attributes TA_TPRI, TA_INHERIT, or

TA_CEILING. Also, if the mutex has the attribute TA_INHERIT and the current priority of the waiting task is higher

than that of the task locking the mutex, the latter task’s priority is changed.

Note that when tloc_mtx is issued, the is released from waiting if the mutex cannot be locked within a specified

time. Note also that a mutex cannot be locked by processing units other than tasks.

5.6.7 Releasing mutex locks

A mutex lock is released by issuing the service call unl_mtx.

If a mutex lock is released when there are tasks waiting, the task at the top of the waiting task queue locks that

mutex. At this time, if the mutex has the attribute TA_CEILING, the priority value of the task newly locking the mutex is

changed to the top priority value of the mutexes. If the mutex has the attribute TA_INHERIT, because the task queue

has already been sorted into priority order, the priority of the task newly locking the mutex remains unchanged.

Note that if all mutexes being locked by a task are released, the task’s priority changes to its base priority.

5.6.8 Obtaining mutex information

Mutex information such as the ID number of a locked task can be obtained by using the service calls ref_mtx and

iref_mtx. For details of each service call, refer to CHAPTER 13.

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM 67

5.6.9 Examples of synchronization using mutexes

Some examples of mutex priority control using a mutex with the attribute TA_INHERIT are shown below.

(1) cre_mtx is issued creating a mutex.

(2) In order to use a resource that needs to be exclusively controlled by a mutex, task C locks mutex X.

Time

Higher priority

Task C

Task A

Task B

Locks mutex X

(3) Task C activates task A, which has a higher priority. Task A then activates task B, which has a priority lower

than task A but higher than task C.

Time

Higher priority

Task C

Task A

Task B

Activates task A

Activates task B

CHAPTER 5 SYNCHRONOUS COMMUNICATION MANAGEMENT

User’s Manual U14833EJ2V0UM68

(4) In order to use a resource, task A attempts to lock mutex X. At this time, if the mutex does not support the

priority inheritance protocol, task A will fail to lock the mutex, and enter the waiting state, at which point

processing will shift to task B. Because task C cannot be executed until the processing of task B is complete,

task A must wait for task B, which has a lower priority than itself, to be executed (despite the fact task B is not

locking a mutex).

Time

Higher priority

Task C

Task A

Task B

Locks mutex X → Enters the waiting state

Resumption of task A execution occurs at
impossible to predict priority inversion period

In actual fact, however, as soon as task A enters the waiting state after failing to lock the mutex, priority

inheritance occurs and task C’s priority is raised to that of task A. Consequently, because the processing of

task C, which is locking the mutex, now has a higher priority than that of task B, the period in which a task with

a lower priority than task A is being executed is minimized.

Time

Higher priority

Task C

Task A

Task B

Locks mutex X → Enters the waiting state

Mutex lock released

Inherits the priority of task A End of inheritance

User’s Manual U14833EJ2V0UM 69

CHAPTER 6 MEMORY MANAGEMENT

This chapter describes memory management in the RX4000.

6.1 Overview

The RX4000 does not support the virtual memory function provided in the target VR Series processors. The kernel

must therefore assume that all the programs included in the kernel are operating in 32-bit kernel mode. Also, because

TLB-related processing is not performed, the entire program and data area is expected to be located in the range of

physical addresses 0x00000000 to 0x1fffffff.

The kernel divides the memory into heap areas known as pools, which it controls, and other areas. The types of

pools and types of objects located in pools are shown in the table below.

Note that the size and address of a pool is determined at configuration, and that area is initialized at system

initialization.

Table 6-1. Memory Area

Area Located Objects

System pool System base table

Ready queue

Object control block

Stack pool Stack area for tasks

Stack area for interrupts

User pool Main body of fixed-length memory pool

Main body of variable-length memory pool

Ring buffer for data queue

Other than above Program code

Area for global variables

Heap area controlled by user, etc.

6.2 System Pool

The system base table, ready queue, and object control blocks are located in the system pool. The size of this

area is determined by the maximum size data of the objects assigned from the configurator based on the CF definition

file. The system pool is created as an area in which dynamic addition and deletion does not occur at system

initialization.

A large part of the data directly related to kernel operations is stored in the system pool. Consequently, if the

system pool is illegally overwritten and made impossible to reference, the kernel will no longer be able to operate.

CHAPTER 6 MEMORY MANAGEMENT

User’s Manual U14833EJ2V0UM70

6.3 Stack Pool

The stack pool is used to secure the interrupt stack area used by interrupt service routines, etc., and the task stack

area provided for each task.

Dynamic creation/deletion of the interrupt stack is assumed not to occur during system operation, and because the

stack size is determined according to a description in the CF definition file, the interrupt stack area is statically secured

as an undeletable area at kernel initialization.

Sections from the stack pool other than the area for the interrupt stack are initialized as a single large variable-

length memory pool controlled by the kernel. When a task is created, a memory block secured from this memory pool

is assigned to the task as a stack. When a task is deleted, the stack area is returned to this memory pool.

Note that this memory pool cannot be directly accessed from a task or handler processing program via a service

call.

6.4 User Pool

The user pool is used to secure the main body of the fixed-length and variable-length memory pools and the ring

buffer area used for the data queue.

The user pool is initialized as a single large variable-length memory pool from which memory blocks are secured in

memory pool or ring buffer sized portions when a fixed-length memory pool, variable-length memory pool, or data

queue is created. The secured memory blocks are assigned to objects created as the main body of a fixed-length

memory pool.

Note that this memory pool (user pool) cannot be directly accessed from a task or handler processing program via

a service call.

6.5 Fixed-Length Memory Pools

These are memory pools from which memory blocks can be repeatedly acquired and returned by a task or handler

processing program via a service call. Unlike a variable-length memory pool, the size of the memory blocks that can

be acquired is fixed for each memory pool, enabling more simple and faster access by the processing.

6.5.1 Creating fixed-length memory pools

A fixed-length memory pool is created by issuing the service call (a)cre_mpf. When acre_mpf is issued, the ID

number of the memory pool can be assigned by the kernel. Also, specifying the static API CRE_MPF allows

processing equivalent to cre_mpf to be carried out at kernel initialization.

When (a)cre_mpf is issued, an area of the specified size is secured from the user pool and becomes the memory

pool main body. If this area is successfully secured, data such as the attribute and the address of the memory pool

main body area is stored in the fixed-length memory control block corresponding to the specified ID number, and the

area is initialized.

6.5.2 Deleting fixed-length memory pools

A fixed-length memory pool is deleted by issuing the service call del_mpf. When del_mpf is issued, the kernel

returns the area of the memory pool main body to the user pool and then invalidates the control block. At this time, if

there is a task waiting to acquire a memory block from the fixed-length memory pool to be deleted, all tasks are

released from the waiting state. For tasks released from waiting, the error code E_DLT is returned indicating that the

memory pool was deleted.

Note that even if there are parts of memory blocks in the target fixed-length memory pool that have not been

returned, the fixed-length memory pool will still be deleted. Care is required at this time because the task or handler

that had acquired that memory block is not informed of the deletion of the memory pool.

CHAPTER 6 MEMORY MANAGEMENT

User’s Manual U14833EJ2V0UM 71

6.5.3 Fixed-length memory blocks

A fixed-length memory pool is made up of memory blocks all with the same size. The size of the memory blocks in

a particular memory pool is specified by the user, and does not include a header area for managing the block. Note

that the memory block size must be an integral multiple of 8. If a value that is not an integral multiple of 8 is assigned

as the memory block size parameter when a fixed-length memory pool is created, the kernel will automatically round

the size to an integral multiple of 8. The structure of a fixed-length memory block is shown below.

Figure 6-1. Fixed-Length Memory Block

Memory block

Address passed as
memory block address

Requested
acquisition size

6.5.4 Structure of fixed-length memory pool

A fixed-length memory pool has a structure in which fixed-size memory blocks are joined together in a queue. If

there is a request to acquire a memory block, memory blocks are distributed from the top of the queue, and when

returned are placed at the bottom of the queue. Therefore memory blocks are not necessarily queued in the order of

their addresses, as shown in the figure below.

Figure 6-2. Fixed-Length Memory Pool

Fixed-length memory
pool control block

:
:

System pool User pool

MPF

Top of queue

Size per specified memory block

The specified number of memory
blocks are queued together
immediately after memory pool creation

(−1)

Memory block acquired next by get_mpf,
(i)pget_mpf, tget_mpf

Bottom of queue

The returned memory block is
queued after this block

CHAPTER 6 MEMORY MANAGEMENT

User’s Manual U14833EJ2V0UM72

6.5.5 Acquiring fixed-length memory blocks

A memory block is acquired from a fixed-length memory pool by issuing one of the service calls get_mpf,

(i)pget_mpf, or tget_mpf.

If there is a request to acquire a memory block, the kernel checks the memory block queue of the target memory

pool. If the queue has memory blocks queued in it, the task is assigned the memory block at the top of the queue. If

there are no queued memory blocks, the task is put in the memory block acquisition waiting state, and waits until a

memory block has been acquired, in the case of get_mpf, or until either a memory block has been acquired or a

specified time has elapsed, in the case of tget_mpf. The issuance of (i)pget_mpf results in an error, and the error

code E_TMOUT is returned, indicating that polling failed.

Tasks in the memory block acquisition waiting state are registered in the waiting task queue of the memory pool.

The waiting order at this time depends on the attribute of the memory pool: in FIFO order if the attribute is TA_TFIFO

or in priority order if the attribute is TA_TPRI, and if (i)rel_mpf is issued, memory blocks are acquired in the order they

are queued, and the task is released from waiting.

Note that because 0 is stored in the top four bytes of the acquired memory block, when this memory block is

transmitted to a mailbox as a message, because no value other than 0 is stored in this area (which is used by the

kernel to manage the message), it is possible to check whether a memory block has been registered in the mailbox by

checking the top four bytes.

6.5.6 Returning fixed-length memory blocks

A memory block is returned to a fixed-length memory pool by issuing the service call (i)rel_mpf.

If there is a request to return a memory block, the kernel checks the waiting task queue of the target memory pool,

and if there are tasks registered in the queue, it immediately assigns the task at the top of the queue the returned

memory block and releases it from the waiting state. If there are no tasks registered in the waiting queue, the memory

block is returned to the bottom of the memory pool’s free memory block queue.

Note that memory blocks must be returned to the same memory pool from which they were acquired. If a different

memory pool is specified and (i)rel_mpf is issued, operation cannot be guaranteed. Neither can operation be

guaranteed if areas other than fixed-length memory blocks, such as variable-length memory blocks or statically

secured areas, are registered together in a mailbox as messages and (i)rel_mpf is issued.

6.5.7 Obtaining fixed-length memory pool information

Fixed-length memory pool information such as the presence or absence of a waiting task can be obtained by using

the service calls ref_mpf and iref_mpf. For details of each service call, refer to CHAPTER 13.

CHAPTER 6 MEMORY MANAGEMENT

User’s Manual U14833EJ2V0UM 73

6.5.8 Examples of acquiring memory blocks from fixed-length memory pools

Some examples of what occurs when memory blocks are acquired from fixed-length memory pools are shown

below.

(1) cre_mpf is issued creating a fixed-length memory pool. This pool contains 4 memory blocks.

(2) Task A issues get_mpf and requests acquisition of a memory block from MPF. Because there are memory

blocks queued in MPF’s memory block queue, task A immediately acquires one memory block.

MPF

Task A

Acquisition
request

Acquisition successful

MPF

Task A

Running

Running

get_mpf

(3) Task B issues get_mpf and requests acquisition of a memory block from MPF. However, because other tasks

have in the meantime acquired memory blocks from MPF leaving no available memory blocks, task B fails to

acquire a memory block and is put is the waiting state.

MPF

Task B

Acquisition
request

Acquisition failed Task B

MPF Registered in waiting task queue
Running

Waiting

get_mpf

CHAPTER 6 MEMORY MANAGEMENT

User’s Manual U14833EJ2V0UM74

(4) Task A returns a memory block to MPF. The returned memory block is immediately acquired by task B, which

is then released from the waiting state.

Return/acquisition successful

Task B

MPF Task A

Memory block
returned

MPF

Task B

Task A

Wait released

Waiting

Running

Running

Ready

rel_mpf

(5) Task B has finished using the memory block, issues rel_mpf and returns the memory block to MPF. Because

there are no tasks waiting for a memory block in MPF, the memory block joins the MPF’s memory block queue.

Return successful

MPF Task B

Memory block
returned

MPF Task B

Running Running

CHAPTER 6 MEMORY MANAGEMENT

User’s Manual U14833EJ2V0UM 75

6.6 Variable-Length Memory Pools

Like fixed-length memory pools, these are memory pools from which memory blocks can be repeatedly acquired

and returned by a task or handler processing program via a service call. Unlike a fixed-length memory pool, however,

the size of the memory blocks that can be acquired can be specified when an acquisition request is sent.

6.6.1 Creating variable-length memory pools

A variable-length memory pool is created by issuing the service call (a)cre_mpl. When acre_mpl is issued, the ID

number of the memory pool can be assigned by the kernel. Also, specifying the static API CRE_MPL allows

processing equivalent to cre_mpl to be carried out at kernel initialization.

When (a)cre_mpl is issued, the kernel secures an area of the specified size from the user pool and makes it the

memory pool main body. If this area is successfully secured, data such as the attribute and the address of the

memory pool main body area is stored in the variable-length memory control block corresponding to the specified ID

number, and the control block is initialized.

6.6.2 Deleting variable-length memory pools

A variable-length memory pool is deleted by issuing the service call del_mpl. When del_mpl is issued, the kernel

returns the area of the memory pool main body to the user pool and then invalidates the control block. At this time, if

there is a task waiting to acquire a memory block from the variable-length memory pool to be deleted, all tasks are

released from the waiting state. For tasks released from waiting, the error code E_DLT is returned indicating that the

memory pool was deleted.

Note that even if there are parts of memory blocks in the target variable-length memory pool that have not been

returned, the variable-length memory pool will still be deleted. Care is required at this time because the task or

handler that had acquired that memory block is not informed of the deletion of the memory pool.

6.6.3 Variable-length memory blocks

A variable-length memory pool is made up of memory blocks without fixed sizes. Also, to maintain a state in which

the largest possible blocks can be acquired, processing is performed to join together memory blocks to form

connected areas upon return. A header for block management (16 bytes) is therefore included in the memory block,

making the size of the area actually removed from memory pool when a memory block is acquired larger than the

specified size. Note that the specified memory block size must be an integral multiple of 8. If a value that is not an

integral multiple of 8 is specified when a memory block is acquired, the kernel will automatically round the size to an

integral multiple of 8.

The structure of a variable-length memory block is shown below.

Figure 6-3. Variable-Length Memory Block

Memory block

Address passed as
memory block address

Requested
acquisition size

Header 16 bytes

CHAPTER 6 MEMORY MANAGEMENT

User’s Manual U14833EJ2V0UM76

6.6.4 Structure of variable-length memory pool

Immediately after creation, a variable-length memory pool consists of a single large memory block. If memory

blocks are repeatedly acquired, this block becomes gradually smaller, and if acquisition and return repeatedly occur,

the area of the memory pool may become divided into islands. For further details, refer to the RX4000 (µµµµITRON4.0)

Technical User’s Manual (U14835E).

Figure 6-4. Variable-Length Memory Pool Structure (Immediately After Creation)

Size

Variable-length memory
pool control block

System pool User pool

MPL

(−1)

Header

Memory pool size
specified at creation

Figure 6-5. Variable-Length Memory Pool Structure (After Memory Block Acquisition)

Size

Variable-length memory
pool control block

MPL

(−1)

Acqui-
sition

Acqui-
sition

CHAPTER 6 MEMORY MANAGEMENT

User’s Manual U14833EJ2V0UM 77

Figure 6-6. Variable-Length Memory Pool Structure (When Area Divided into Islands)

Variable-length memory
pool control block

MPL

(−1)

Return

Acqui-
sition

6.6.5 Acquiring variable-length memory blocks

A memory block is acquired from a variable-length memory pool by issuing one of the service calls get_mpl,

(i)pget_mpl, or tget_mpl.

If there is a request to acquire a memory block, the kernel checks the memory block queue of the target memory

pool. If the queue contains a memory space large enough for acquisition, a memory block of the requested size is

removed from the memory pool and assigned to the task. Note, however, that because a header for block

management is added to the memory block, the size of the area actually removed from memory pool when a memory

block is acquired is larger than the requested size (see Figure 6-7).

Figure 6-7. Memory Block Acquisition

Header

Header

Requested size
Acquisition

16 bytes

CHAPTER 6 MEMORY MANAGEMENT

User’s Manual U14833EJ2V0UM78

If the queue does not contain a memory space large enough for acquisition, the task is put in the memory block

acquisition waiting state, and waits until a memory block has been acquired, in the case of get_mpl or until either a

memory block has been acquired or a specified time has elapsed, in the case of tget_mpl. The issuance of

(i)pget_mpl results in an error, and the error code E_TMOUT is returned, indicating that polling failed.

Tasks in the memory block acquisition waiting state are registered in the waiting task queue of the memory pool.

The waiting order at this time depends on the attribute of the memory pool: in FIFO order if the attribute is TA_TFIFO

or in priority order if the attribute is TA_TPRI, and if (i)rel_mpl is issued and there is sufficient memory space in the

memory pool, memory blocks are acquired in the order they are queued, and the task is released from waiting.

Note that because 0 is stored in the top four bytes of the acquired memory block, when this memory block is

transmitted to a mailbox as a message, because no value other than 0 is stored in this area (which is used by the

kernel to manage the message), it is possible to check whether a memory block has been registered in the mailbox by

checking the top four bytes.

Note also that when there are multiple tasks simultaneously waiting to acquire a memory block from the same

memory pool, if one of those tasks has requested a large-sized memory block, because the memory block acquisition

feasibility check is performed in the order in which the tasks are waiting in the queue, a later task may be blocked and

forced to wait even if there is sufficient memory space for it to acquire the requested memory block (see Figure 6-8).

In other words, if the memory pool has the attribute TA_TFIFO and there are tasks already waiting, a task coming

later will be unable to acquire a memory block, regardless of the requested size, and will be forced to wait, or polling

will fail. If there are tasks waiting in the queue of a memory pool with the attribute TA_TPRI, memory block acquisition

will only be possible if a memory block of the requested size is available and if the priority of the requesting task is

higher than that of the task at the top of the queue. If ipget_mpl is issued for a memory pool with the attribute

TA_TPRI from an interrupt servicing routine, because the interrupt processing has a higher priority than the task

processing, only the check to ascertain whether an acquirable block is available will be made.

Figure 6-8. Case When Task Is Waiting Even Though Sufficient Area Is Available

Header

Total memory pool size

Acquisition complete

Header

Task A Task BWaiting task queue

Size requested by task A

Size requested by task B

Enough space is available, but
task B is blocked by task A and
cannot acquire a memory block

CHAPTER 6 MEMORY MANAGEMENT

User’s Manual U14833EJ2V0UM 79

6.6.6 Returning variable-length memory blocks

Memory blocks are returned to variable-length memory pools by issuing the service call (i)rel_mpl.

If (i)rel_mpl is issued, the memory block is immediately returned to the memory pool, regardless of the existence of

waiting tasks. When a memory block is returned, the kernel checks whether there are any free memory blocks in the

area to which the returned memory block is connected, and if there are, performs processing to link two or three

memory blocks together to form a single large block (see Figures 6-9, 6-10, and 6-11).

Figure 6-9. Memory Block Linking 1

Returned

Free

Free

In use

Free

Free

In use

Linked

Figure 6-10. Memory Block Linking 2

Returned

Free

Free

In use

Free

Free

In use

Linked

CHAPTER 6 MEMORY MANAGEMENT

User’s Manual U14833EJ2V0UM80

Figure 6-11. Memory Block Linking 3

Returned

Free

Free

Linked

Free

When the memory block return processing has finished, the memory pool’s waiting task queue is checked. If there

are tasks waiting, a check is made whether a memory block of the size requested by the task at the top of the queue

can be acquired. If it can, an appropriate memory block is assigned to the task and the task is removed from the

waiting queue and released from the waiting state. This processing is then repeated until the bottom of the queue is

reached or a task is unable to acquire a memory block.

6.6.7 Obtaining variable-length memory pool information

Variable-length memory pool information such as the presence or absence of a waiting task can be obtained by

using the service calls ref_mpl and iref_mpl. For details of each service call, refer to CHAPTER 13.

CHAPTER 6 MEMORY MANAGEMENT

User’s Manual U14833EJ2V0UM 81

6.6.8 Examples of acquiring memory blocks from variable-length memory pools

Some examples of what occurs when memory blocks are acquired from variable-length memory pools are shown

below.

(1) Task A issues get_mpl and acquires a memory block of size a from the memory pool.

Task A

Running state

Free areaFree area

Acquisition request

Memory pool X Memory pool X

Task A

Running state

Control block

Control block

Control block

Free size Free size

a

Acquisition successful

get_mpl

(2) Task B issues get_mpl and acquires a memory block of size b from the memory pool.

Control block

Control block

Task B

Running state

Free areaFree area

Acquisition request

Memory pool X Memory pool X

Task B

Running state

Control block

Control block

Control block

Free size Free size

b

aa

Acquisition successful

get_mpl

CHAPTER 6 MEMORY MANAGEMENT

User’s Manual U14833EJ2V0UM82

(3) Task C issues get_mpl and requests acquisition of a memory block of size c from the memory pool. However,

because the free area is smaller than size c, task C is unable to acquire the requested memory block and is

put into the waiting state.

Control block

Task C

Running state

Free block

Acquisition request

Memory pool X Memory pool X

Task C

Waiting state

Control block

Control block

Free size

Registration

b

a

Acquisition impossible

Control block

Free block

Control block

Control block

Free size

b

a

(4) Task A issues rel_mpl and returns a memory block (of size a) to the memory pool. The total free size of the

memory pool increases accordingly, but because it is divided into two small memory blocks, the connected

area requested by task C cannot be secured. Task C is therefore put into the waiting state.

Control block

Task A

Running state

Free area

Free area

Returned

Memory pool X Memory pool X

Task C

Waiting state

Control block

Control block

a

Free size

b

Control block

Free area

Control block

Control block

Free size

b

a

Task C

Waiting state

Task A

Running state

rel_mpl

CHAPTER 6 MEMORY MANAGEMENT

User’s Manual U14833EJ2V0UM 83

(5) Task B issues rel_mpl and returns a memory block (of size b) to the memory pool. Accordingly, small free

memory blocks are linked together to form a single large memory block. The connected area requested by

task C can therefore be secured, so task C is assigned the requested memory block and released from the

waiting state.

Task B

Running state

Free area

Free area

Returned

Memory pool X Memory pool X

Task C

Ready state

Control block

Control block

Free size

Free size

Control block

Free area

Control block

Control block

Free size

c

b

Task C

Waiting state

Task B

Running state

rel_mpl

(6) Task C issues rel_mpl and returns a memory block (of size c) to the memory pool. Accordingly, all the memory

blocks have been returned, and the memory pool returns to the state it was in at creation.

Task C

Running state

Free area

Returned

Memory pool X Memory pool X

Control block

Control block

Free size

rel_mpl

Free area

Control block

Free size

c

Task C

Running state

User’s Manual U14833EJ2V0UM84

CHAPTER 7 TIME MANAGEMENT

This chapter describes time management in the RX4000.

7.1 Overview

In a real-time system, time-synchronization processing is often used when processing tasks and handlers. In the

RX4000, a software timer is used to trigger timer interrupts issued at periodic intervals, and system clock, task delay

and timeout, and cyclic handler functions are provided.

7.2 System Clock

The system clock indicates the time (system time) upon which systems that incorporate the RX4000 are based.

The system clock consists of a 64-bit counter and is set to 0 as soon as the kernel has completed initialization. The

system clock is reset to 0 when the passage of time causes the 64-bit range of its counter to be exceeded (overflow is

ignored). The system clock operates in units of milliseconds.

7.2.1 Setting the system clock

The system clock can be set to any value during system operation by issuing the service call (i)set_tim. Note,

however, that the difference in time between the previous and new system clock values will not be treated has having

elapsed, leaving task timeouts or cyclic handler activation unaffected by a new system clock setting.

7.2.2 Reading the system clock

The system clock can be read by issuing the service call (i)get_tim. The system clock reading is stored in the

structure SYSTIM expressed by a 64-bit value.

7.2.3 Updating the system clock

The system clock can be updated by issuing the service call isig_tim. If isig_tim is issued, the kernel recognizes

that the unit time defined in the CF definition file has elapsed.

In other words, isig_tim must be issued each time the unit time defined in the CF files elapses, making it necessary

to describe an interrupt service routine that will input the CP0 timer interrupts, etc., of the processor, from which

isig_tim is issued. Processing such as for task timeout or cyclic handler activation is not activated by the issuance of

isig_tim; it is activated when the aforementioned interrupt service routine finishes processing.

Note that if the interval at which isig_tim is issued is undefined, the accuracy of the time until task timeout or the

cyclic handler’s activation interval cannot be guaranteed.

CHAPTER 7 TIME MANAGEMENT

User’s Manual U14833EJ2V0UM 85

7.3 Delaying Tasks

The execution of a task can be delayed by issuing the service call dly_tsk. If dly_tsk is issued, the task is put in the

waiting state and waits until the specified time has elapsed. It is therefore possible to delay the execution of a task for

a specified time. The delay time is specified in units of milliseconds, not in number of interrupt ticks.

7.4 Timeout

When a service call is issued that might put a task into a waiting state, such as waiting for wakeup or to acquire a

resource, it is possible to set the upper limit of this waiting time. The upper limit is known as the timeout time, and

when a task is released from waiting following the elapse of the timeout time, the task is said to have “timed out”.

When a task has timed out, the error code E_TMOUT is returned as the return value of the service call that caused

the task to wait, indicating that a timeout occurred. The timeout time is specified in units of milliseconds, not in

number of interrupt ticks.

Note that the relationship between the timeout time and the time until the task actually times out differs from that

specified in µITRON3.0. That is, because the kernel’s time management involves causing (discrete) interrupts to be

input at a fixed interval, there is a slight difference between the timeout time and the time that actually elapses. Unlike

µITRON3.0 (RX4000 Ver3.0), in which control was performed to prevent the time that actually elapses exceeding the

specified timeout time, in µITRON4.0, because the timeout time is taken as the “minimum time that should elapse”,

timeout-specified tasks in the waiting state are timed out at the occurrence of the first time event (isig_tim) following

the elapse of the specified time, so that the time that actually elapses is never less than the timeout time.

The service calls that can make a timeout specification are shown in the table below.

Table 7-1. Service calls That Can Specify Timeout

Service call Function

tslp_tsk Waiting for reception of wakeup request

twai_sem Acquiring a resource from a semaphore

twai_flg Waiting for establishment of an event flag condition

tsnd_dtq Transmitting data to a data queue

trcv_dtq Receiving data from a data queue

trcv_mbx Receiving mail from a mailbox

tloc_mtx Locking a mutex

tget_mpf Acquiring a memory block from a fixed-length memory pool

tget_mpl Acquiring a memory block from a variable-length memory pool

CHAPTER 7 TIME MANAGEMENT

User’s Manual U14833EJ2V0UM86

7.5 Cyclic Handlers

Cyclic handlers are handlers used to execute specific processing at a fixed time interval.

Note that this type of handler was known as a cyclically activated handler in µITRON3.0. The following names and

terminology have accordingly been changed in the µITRON4.0.

Table 7-2. Cyclic Handler Terminology Correspondence Table

µITRON3.0 µITRON4.0

Cyclically activated handler Cyclic handler

Define a cyclically activated handler Create a cyclic handler

Activity state State

TCY_ON (ON) TCYC_STA (STA)

TCY_OFF (OFF) TCYC_STP (STP)

def_cyc cre_cyc

Note that a cyclic handler is described as a void type function with a VP_INT type argument. The extended data

exinf of an activated cyclic handler is passed for this argument.

Example)

void cyclic(VP_INT exinf)
{

...
return;

}

7.5.1 Creating cyclic handlers

Cyclic handlers are created by issuing the service call (a)cre_cyc. When acre_cyc is issued, the ID number of the

cyclic handler can be assigned by the kernel. Also, specifying the static API CRE_CYC allows processing equivalent

to cre_cyc to be carried out at kernel initialization. When cre_cyc is issued, the cyclic handler control block in the

system pool is secured, and initialized based on the cyclic handler creation data passed as a parameter.

The cyclic handler ID number consists of a unique number of a value 1 or higher. The maximum value that can be

specified is the one defined in the system information table.

7.5.2 Deleting cyclic handlers

Cyclic handlers are deleted by issuing the service call del_cyc. If del_cyc is issued, the control block of the target

cyclic handler is invalidated, and a cyclic handler with the same ID number as the deleted cyclic handler can be newly

created.

7.5.3 Cyclic handler states

Cyclic handlers have two states: operating (TCYC_STA) and stopped (TCYC_STP). In the former state, the cyclic

handler is activated after the time that passes when the system clock is updated is counted and the specified

activation interval time has elapsed. In the latter state, only the time is counted, and the handler is not activated, even

after the specified activation interval time has elapsed.

The initial state following creation of a cyclic handler depends on the specification of the attribute TA_STA (when

specified, the handler is created in the operating state). The state of a cyclic handler can be changed after creation by

issuing the service call (i)sta_cyc or (i)stp_cyc.

CHAPTER 7 TIME MANAGEMENT

User’s Manual U14833EJ2V0UM 87

7.5.4 Activating a cyclic handler

A cyclic handler is activated as a subroutine called from the kernel when it performs interrupt end processing at the

completion of an interrupt service routine for which isig_tim was issued. The stack when the cyclic handler is

executed is therefore used as the interrupt stack.

Note that if the next cycle time elapses while a cyclic handler is being executed, the cyclic handler is reactivated

once the current processing has finished. However, because this kind of state raises the cyclic handler’s CPU

occupancy rate to an extremely high level, it is known as an abnormal state.

7.5.5 Terminating cyclic handlers

A cyclic handler is terminated by C language return or equivalent processing. As soon as a cyclic handler is

terminated, the next cyclic handler for which the activation cycle time has elapsed is activated, or processing is

returned from interrupt processing.

7.5.6 Cyclic handler phase

A cyclic handler can be made to have a phase as a means of regulating its activation timing. The cyclic handler

phase is the time from cyclic handler creation to first activation, and is specified independently of the cyclic handler’s

activation interval.

Figure 7-1. Cyclic Handler Phase

System time0

p: cycphs

c: cyctim

p

cre_cyc issuance

Cyclic handler activation

cc

CHAPTER 7 TIME MANAGEMENT

User’s Manual U14833EJ2V0UM88

It is also possible to save this phase using the cyclic handler attribute TA_PHS. Saving a phase involves reckoning

the time from when a cyclic handler is created to when the next cyclic handler is activated [phase + (activation cycle ×
n)] when a cyclic handler is operating due to the issuance of the service call (i)sta_cyc. If phase saving is not

performed, the elapse of one cycle time reckoned from the issuance of (i)sta_cyc becomes the next activation time.

Figure 7-2. Phase Saving

System time0

p: cycphs

c: cyctim

p

cre_cyc issuance

(no TA_STA specification)

Cyclic handler activation

cc c

sta_cyc issuance

With phase saving

Figure 7-3. No Phase Saving

System time0

p: cycphs

c: cyctim

p

cre_cyc issuance

(no TA_STA specification)

Cyclic handler activation

cc c

sta_cyc issuance

Without phase saving

c c

7.5.7 Interrupts during cyclic handler execution

The cyclic handler operates with interrupts managed by the kernel (interrupts for which it is possible to perform

processing in which a kernel service is received, such as interrupt service routine activation) masked. Therefore, to

enable these interrupts during cyclic handler execution, the user must explicitly set interrupts to enabled (by setting the

IM bit of the status register).

Note that because the cyclic handler processing and timer interrupt processing are independent of each other, it is

possible to acknowledge timer interrupts even during cyclic handler execution by enabling interrupts.

CHAPTER 7 TIME MANAGEMENT

User’s Manual U14833EJ2V0UM 89

7.5.8 PID

If the code created when the cyclic handler program was compiled or assembled uses PID (Position Independent

Data), the address that is to be the base of a cyclic handler when it is activated must be assigned as a parameter (gp

of the cyclic handler creation packet T_CCYC). The assigned address is set in the gp register when the cyclic handler

is activated.

Note that this base address is unconditionally set in the gp register regardless of its attribute, etc., and therefore

must be set for programs that reference the gp register. If the gp register is not referenced, set NULL = 0.

7.5.9 Use of coprocessor in cyclic handler

To use the coprocessor in a cyclic handler, the save and restore processing for the registers related to the

coprocessor (FPR0 to FPR31, FCR31) must be described in the cyclic handler’s activate and end sections,

respectively. Furthermore, to assign FCR31 (control/status register) uniquely to the cyclic handler, describe

processing to set this register in the activate section of the cyclic handler.

7.5.10 Issuance of service calls from cyclic handler

The service calls that can be issued from the cyclic handler are the same as those calls that can be issued from

interrupt processing. Therefore, service calls in the form of ixxx_yyy starting with i and service calls in the form of

sns_yyy can be issued. Service calls in the form of xxx_yyy without i can also be issued from the cyclic handler. For

example, even if act_tsk, from which the i of iact_tsk is omitted, is issued, an error does not occur, and the same

processing as that of iact_tsk is performed. For details, refer to 13.8.

7.5.11 Obtaining cyclic handler information

Cyclic handler information such as the activation interval can be obtained by using the service calls ref_cyc and

iref_cyc. For details of each service call, refer to CHAPTER 13.

User’s Manual U14833EJ2V0UM90

CHAPTER 8 INTERRUPT MANAGEMENT

This chapter describes interrupt management in the RX4000.

8.1 Overview

Processing in response to interrupt sources and CPU exceptions can be said to be one of the most important

functions in a system using a real-time OS. This is because, assuming the RX4000 is used embedded in a control

device, the OS can improve the performance of the system as a whole by responding quickly to peripheral devices

such as sensors.

One of the features of a general-purpose OS such as Windows or UNIX is that processing dependent on the

device, such as interrupt processing, is concealed, enabling use of an interface common to multiple applications. It

could be argued, however, that in order to maximize the performance of the CPU or peripheral device, processing

dependent on the device such as interrupt and exception processing should not be concealed, which is why with the

RX4000, users are supplied with a source file as a sample, which can be rewritten to accord with the user’s

application system. This chapter should be read assuming that the source file is in an unmodified state.

8.2 Interrupt Management

The interrupt management performed by the kernel can be divided depending on the contents into interrupt control

and interrupt processing management. Interrupt control refers to interrupt enable/disable processing, which includes

not only an explicit enable/disable function via service calls, but also a function whereby the kernel enables or disables

interrupts in order to preserve the integrity of the data while it is performing processing.

Interrupt processing management refers to the function of registering and executing processing routines in order to

carry out processing in response to an acknowledged interrupt.

8.2.1 Interrupt control

The RX4000 disables interrupts in the target processor (VR4100 Series or VR5000 Series) by manipulating the IE

or IM bit of the status register. Interrupts can also be enabled/disabled via control from an external interrupt controller.

The service calls provided by the RX4000 to control interrupts are (i)loc_cpu, (i)unl_cpu, which enable/disable

interrupts by manipulating the IE bit, (i)chg_ims, which uses the IM bit, and dis_int, ena_int, which use an external

interrupt controller.

dis_int and ena_int also set the variable cpusts, which determines whether interrupts are enabled or disabled in the

OS.

The kernel also uses the IM bit of the status register to disable interrupts while it is performing processing.

In this way interrupts can always be acknowledged in interrupt processing in which service calls provided by the

kernel are not used.

CHAPTER 8 INTERRUPT MANAGEMENT

User’s Manual U14833EJ2V0UM 91

8.2.2 Interrupt processing management

When using the source file provided as a sample without modification, the interrupt processing flow is as shown

below. This flow is also shown in diagram form in Figure 8-1.

(1) An interrupt is generated and control shifts to a CPU interrupt/exception vector.

(2) At the interrupt/exception vector, in the sample, processing only branches to the interrupt/exception

processing main body.

(3) Because control shifts to a single vector for all (general) exceptions/interrupts in the VR4100 Series or VR5000

Series, the exception source is determined by the initial section of the interrupt/exception processing, which

then divides. CPU and service call exceptions are not taken into consideration here.

(4) Registers that may be corrupted by interrupt processing, such as temporary registers set up by the C

compiler, are saved in the initial section of the interrupt processing.

(v0 to v1, a0 to a3, t0 to t9, ra, epc, sr)

(5) After these registers have been saved, the kernel’s internal function “_kernel_int_handle” is called, which

notifies the kernel of the activation of interrupt processing. Note that in order to call the above function, the

values of the epc, cause, and status registers must be assigned as parameters when an interrupt is

generated.

(6) Once the kernel has received notification of the activation of interrupt processing, the interrupt service routine

enters a state in which it can be activated (service calls can be issued). After the state has shifted, the kernel

calls back the function “_user_int_handle” described by the user (function name fixed). Before calling the

function “_user_int_handle”, the kernel switches the stack to the interrupt stack so that all the subsequent

processing is performed on the interrupt stack. It is therefore necessary to add the size of the stack

consumed by interrupt processing to the stack of each task.

(7) After the interrupt source has been determined by “_user_int_handle”, ivsta_isr is issued, activating an

interrupt service routine in response to the generated interrupt source.

(8) The required interrupt processing is performed by the interrupt servicing routine.

(9) “_user_int_handle” is then terminated by C language return or equivalent processing. At this time, if an event

in generated in the interrupt processing that requires scheduling, the kernel activates the scheduler and

switches tasks.

(10) If scheduling is not required in (9) above, or if the interrupted task is re-dispatched after scheduling, control

returns to the point at which “_kernel_int_handle” was called.

(11) The registers saved in (4) are restored, via the eret instruction, to the point where the interrupt was generated.

CHAPTER 8 INTERRUPT MANAGEMENT

User’s Manual U14833EJ2V0UM92

Figure 8-1. Interrupt Processing Flow

Task, etc.

Interrupt
generation

Interrupt/exception vector

Interrupt/exception main processing

Exception source determination Exception processing/service call entry

CPU exception/SYSCALL exception

Interrupt generation notification

Interrupt exception

Registers saved

Registers restoredRestoration
from interrupt

Kernel

_user_int_handle

_kernel_int_handle

ivsta_isr

Preprocessing

ISR

Postprocessing
Scheduler

CHAPTER 8 INTERRUPT MANAGEMENT

User’s Manual U14833EJ2V0UM 93

8.3 Saving/Restoring Registers

Registers are saved in the initial section of the interrupt processing in accordance with the function call conventions

of the VR Series C compiler from either Green Hills Software, Inc. or Metrowerks Corp. When the interrupt processing

involves the execution of processing described in C language, because the function call conventions stipulate that the

preprocessing and postprocessing values stored in the save register (s0 to s7) must be the same, there is no

particular need to save this register. The kernel will save and restore the gp, fp, and sp registers as required. For

other registers (at, v0 to v1, t0 to t9, ra, epc, status), operation after being restored from an interrupt is not guaranteed

unless their values are saved when the interrupt is generated and then returned to their original values when restored

from interrupt processing.

Note that the size of stack consumed when these registers are saved is not included in the size of the stack

automatically augmented by the kernel when a task is created.

8.4 Interrupt Generation Notification

In order to utilize the services provided by the kernel, such as issuing service calls via interrupt processing carried

out when an interrupt is generated, the kernel must be notified of the activation of interrupt processing. However,

there may also be cases when it is desirable to terminate interrupt processing without receiving services from the

kernel in order to speed up the processing. Cautions to be observed when using these two types of processing are

outlined below.

(1) Terminating interrupt processing without using kernel’s services

In this case, it is unnecessary to inform the kernel of the activation of interrupt processing. However, the user

must describe the entire processing, from activate to finish. Because the kernel cannot participate at all,

service call issuance and multiple interrupt acknowledgement are completely disabled in the processing. Note

also that if the interrupt processing consumes the stack, unless stack switching is specified, operations will be

carried out on the task stack, making it imperative that the entire task stack be augmented by the size of the

stack consumed by this processing. It is therefore recommended to employ this type of processing only for

very light processing, such as simple reading and writing data from/to I/O.

(2) Using kernel’s services in interrupt processing

The kernel can be notified of the activation of interrupt processing by describing the kernel’s internal function

“_kernel_int_handle” in the initial section of the interrupt processing. Once notified, the kernel performs

processing such as switching the stack to the interrupt stack, and putting the service calls described later into

an activation enabled state. Interrupt processing performed by the user is enabled when the function

“_user_int_handle” is called back from the kernel.

In this function, issuance of service calls activation with i and multiple interrupt acknowledgement are enabled,

allowing execution of the main body of interrupt processing that uses the kernel’s services (without necessarily

having to activate an interrupt service routine).

CHAPTER 8 INTERRUPT MANAGEMENT

User’s Manual U14833EJ2V0UM94

8.5 Interrupt Service Routines

The routine that is activated when an interrupt is generated and performs processing in response to the interrupt

source is known as an interrupt service routine (ISR).

An interrupt service routine is described as a void type function with one VP_INT type argument. The extended

data exinf of the activated interrupt service routine is passed for this argument.

Example)

void int_serial(VP_INT exinf)

{

...

return;

}

8.5.1 Interrupt service routine ID number and interrupt number

As with other objects, an interrupt service routine has a unique ID number to identify its routine. However, with

interrupt service routines, it is also necessary to specify an interrupt number in order to identify the interrupt source

corresponding to a particular service routine.

The same interrupt number can be specified for more than one interrupt service routine.

8.5.2 Creating interrupt service routines

Interrupt service routines can be created either by issuing the service call (a)cre_isr, or by specifying the static API

CRE_ISR, which performs equivalent processing to acre_isr when the system is initialized.

If (a)cre_isr is issued, the kernel stores data such as the attribute and the interrupt number in the interrupt service

routine control block corresponding to the specified ID number and then initializes that block.

A queue for managing routines with the same interrupt number (interrupt table) is also controlled from the system

base table, where processing is performed to register control blocks in a queue corresponding to the number held by

the routine.

8.5.3 Deleting interrupt service routines

An interrupt service routine is deleted by issuing the del_isr service call.

When del_isr is issued, the kernel invalidates the specified interrupt servicing routine control block and deletes the

control block from the interrupt table controlled by the system base table.

After an interrupt service routine is deleted, an interrupt service routine with the same ID number as the deleted

routine can be newly created.

8.5.4 Activating interrupt service routines

An interrupt service routine is activated after an interrupt has been acknowledged and the source of the interrupt

determined. The interrupt service routine is activated by specifying the interrupt source number for ivsta_isr (ivsta_isr

does not cause a service call exception). If there is more than one routine for the same interrupt source number,

ivsta_isr causes all the interrupt service routines to be activated. The order of activation at this time is the order in

which the routines were created.

CHAPTER 8 INTERRUPT MANAGEMENT

User’s Manual U14833EJ2V0UM 95

8.5.5 Terminating interrupt service routines

An interrupt service routine is terminated by C language return or equivalent processing. A return value is not

required. Control therefore returns to either the next interrupt service routine to be activated or to the point at which

ivsta_isr was issued.

8.5.6 PID

If PID (Position Independent Data) is used for the code created when the interrupt service routine program is

compiled or assembled, the address that is to be the base of an interrupt service routine when it is created must be

assigned as a parameter (gp of the interrupt service routine creation packet T_CISR). The assigned address is set in

the gp register when the interrupt service routine is activated.

Note that this base address is unconditionally set in the gp register regardless of its attribute, etc., and therefore

must be set for programs that reference the gp register. If the gp register is not referenced, set NULL = 0.

8.5.7 Use of coprocessor in interrupt service routine

To use the coprocessor in an interrupt service routine, the save and restore processing for the registers related to

the coprocessor (FPR0 to FPR31, FRC31) must be described in the interrupt service routine’s activate and end

sections, respectively. Furthermore, to assign FCR31 (control/status register) uniquely to the interrupt service routine,

describe processing to set this register in the activate section of the interrupt service routine.

8.5.8 Issuance of service calls from interrupt service routines

Service calls in the form of ixxx_yyy starting with i and service calls in the form of sns_yyy can be issued from an

interrupt service routine. Service calls in the form of xxx_yyy without i can also be issued from an interrupt service

routine. For example, even if act_tsk, from which the i of iact_tsk is omitted, is issued, an error does not occur, and

the same processing as that of iact_tsk is performed. For details, refer to 13.8.

User’s Manual U14833EJ2V0UM96

CHAPTER 9 SYSTEM CONFIGURATION MANAGEMENT

This chapter describes system configuration management in the RX4000.

9.1 Overview

System configuration management includes the following functions.

• Defining and activating a CPU exception handler to be called when the CPU detects an exception

• Defining and activating an initialization routine to be called at system initialization

• Defining and activating an idle routine for when there are no tasks in the running or ready states (refer to

CHAPTER 1 for details of idle routines)

9.2 Exception Processing

If the CPU detects an exception such as 0 remainder, the kernel activates a corresponding exception handler. The

exception processing and CPU exception handlers provided in the RX4000 are described below. Note that as with

interrupt processing, a source file is also provided as a sample, allowing users to describe exception processing that

best suits their system.

9.2.1 Exception processing flow

The assumed exception processing flow of the RX4000 is shown below. This flow is also shown in diagram form in

Figure 9-1.

(1) An exception occurs and control shifts to a CPU interrupt/exception vector.

(2) At the interrupt/exception vector, in the sample, processing only branches to the exception processing main

body.

(3) Because control shifts to a single vector for all exceptions/interrupts in the VR4100 Series or VR5000 Series,

the exception source is determined by the initial section of the interrupt/exception processing, which then

divides.

(4) If the exception that occurred is a service call exception, control shifts to the initial processing section of the

service call. Also, if a device such as a monitor for debugging is being used, be aware that control may have

to be passed to the debug side, depending on the type of exception.

(5) All registers used are saved to the stack in the initial section of the exception processing.

(6) After these registers have been saved, the kernel’s internal function “_kernel_exc_handle” is called, which

notifies the kernel of the activation of exception processing. Note that in order to call the above function, the

values of the epc, cause, and status registers and the top address of the register save area must be assigned

as parameters when an exception occurs.

CHAPTER 9 SYSTEM CONFIGURATION MANAGEMENT

User’s Manual U14833EJ2V0UM 97

(7) Once the kernel has received notification of the activation of exception processing, the CPU exception

handlers enter a state in which they can be activated (service calls can be issued). After the state has shifted,

the kernel calls back the function “_user_exc_handle” described by the user (function name fixed).

(8) After the exception source has been determined by “_user_exc_handle”, ivsta_exc is issued, activating a CPU

exception handler corresponding to source of the exception that occurred.

(9) The required exception processing is performed by the CPU exception handler.

(10) “_user_exc_handle” is then terminated by C language return or equivalent processing. At this time, if an event

in generated in the exception processing that requires scheduling, the kernel activates the scheduler and

switches tasks.

(11) If scheduling is not required in (10) above, or if the task that caused the exception is re-dispatched after

scheduling, control returns to the point at which “_kernel_exc_handle” was called.

(12) The registers saved in (5) are restored, via the eret instruction, to the point where the exception occurred.

Note that in cases when restoring the saved epc register to its indicated address inadvertently causes the

reoccurrence of an exception, the value of epc must be changed to an appropriate value.

CHAPTER 9 SYSTEM CONFIGURATION MANAGEMENT

User’s Manual U14833EJ2V0UM98

Figure 9-1. Exception Processing Flow

Task, etc.

Exception
occurrence

Interrupt/exception vector

Interrupt/exception main processing

Exception source determination Interrupt servicing/service call entry

Exception occurrence notification

Registers saved

Registers restoredRestoration
from exception

Kernel

_user_exc_handle

_kernel_exc_handle

ivsta_exc

Preprocessing

CPU exception handler

Postprocessing
Scheduler

CHAPTER 9 SYSTEM CONFIGURATION MANAGEMENT

User’s Manual U14833EJ2V0UM 99

9.2.2 Saving/restoring registers

All registers including FPU registers are saved in the initial section of the exception processing. This is because by

informing the exception main processing of the address of this save area, the state in which an exception occurs can

be ascertained during exception processing. When it is not necessary to save all the registers, registers can be saved

in accordance with the function call conventions of the VR Series C compiler from Green Hills Software, Inc. When the

exception processing involves the execution of processing described in C language, because the function call

conventions stipulate that the preprocessing and postprocessing values stored in the save register (s0 to s7) must be

the same, there is no particular need to save this register. The kernel will save and restore the gp, fp, sp, and FPU

registers as required.

In either case, for other registers (at, v0 to v1, t0 to t9, ra, epc, status), operation after being restored from an

exception is not guaranteed unless their values are saved when the exception occurred and then returned to their

original values when restored from exception processing.

Note that the size of stack consumed when these registers are saved is not included in the size of the stack

automatically augmented by the kernel when a task is created.

9.2.3 Exception occurrence notification

In order to utilize the services provided by the kernel, such as issuing service calls via exception processing carried

out when an exception occurs, the kernel must be notified of the activation of exception processing. However, there

may also be cases when it is desirable to terminate exception processing without receiving services from the kernel in

order to speed up the processing. Cautions to be observed when using these two types of processing are outlined

below.

(1) Terminating exception processing without using kernel’s services

In this case, it is unnecessary to inform the kernel of the activation of exception processing. However, the user

must describe the entire processing, from activate to finish. Because the kernel cannot participate at all,

service call issuance is completely disabled in the processing.

(2) Using kernel’s services in exception processing

The kernel can be notified of the activation of exception processing by describing the kernel’s internal function

“_kernel_exc_handle” in the initial section of the exception processing. Once notified, the kernel puts the CPU

exception handlers into an activation-enabled state. Exception processing performed by the user is enabled

when the function “_user_exc_handle” is called back from the kernel.

In this function, issuance of service calls activation with i is enabled, allowing the kernel’s services to be

received (without necessarily having to activate a CPU exception handler).

9.2.4 CPU exception handlers

A CPU exception handler is a handler that is activated when an exception occurs. A CPU exception handler

operates using the identical context (stack) to the location of the exception. The service calls that can be issued are

the same as those that can be issued for an interrupt service routine. The description format of a CPU handler is

shown below. Note, however, that this format can be changed arbitrarily by the user by changing the source file. The

address where the data of registers saved when an exception occurred is stored is passed as a parameter for the

source file provided as a sample.

Example)

void exchdr(VP fp)

{

...

return;

}

CHAPTER 9 SYSTEM CONFIGURATION MANAGEMENT

User’s Manual U14833EJ2V0UM100

(1) Exception handler number

A number known as the exception handler number is used to identify the CPU exception handler. Any number

0 or greater but less than the maximum number of exception handlers can be used. However, the relationship

between the exception handler number and the exception source must be determined by the user (by the type

of processing performed by the CPU exception handler).

It is assumed that the value of the ExcCode field of the cause register in the source file provided as a sample

will be used for the exception handler number.

(2) Defining/deleting CPU exception handlers

CPU exception handlers can be defined either by issuing the service call def_exc, or by specifying the static

API DEF_EXC, which performs equivalent processing to def_exc when the system is initialized.

If def_exc is issued, the kernel secures a control block in which it stores data such as the attribute and

activation address of the CPU exception handler, and then initializes that block.

A CPU exception handler definition is deleted by issuing the def_exc service call with the address of the CPU

exception handler definition packet set as NULL.

(3) Activating/terminating CPU exception handlers

A CPU exception handler is activated after an exception has occurred and the source of the exception

determined. A CPU exception handler is activated by specifying the exception handler number for vsta_exc,

and terminated by C language return or equivalent processing.

(4) PID

If PID (Position Independent Data) is used for the code created when the CPU exception handler program is

compiled or assembled, the address that is to be the base of a CPU exception handler when it is defined must

be assigned as a parameter (gp of the CPU exception handler definition packet T_DEXC). The assigned

address is set in the gp register when the CPU exception handler is activated.

Note that this base address is unconditionally set in the gp register regardless of its attribute, etc., and

therefore must be set for programs that reference the gp register. If the gp register is not referenced, set NULL

= 0.

(5) Use of coprocessor in CPU exception handler

To use the coprocessor in a CPU exception handler, the save and restore processing for the registers related

to the coprocessor (FPR0 to FPR31, FRC31) must be described in the CPU exception handler’s activate and

end sections, respectively. Furthermore, to assign FCR31 (control/status register) uniquely to the CPU

exception handler, describe processing to set this register in the activate section of the CPU exception handler.

(6) Issuance of service calls from CPU exception handler

The service calls that can be issued from a CPU exception handler are the same as those that can be issued

from an interrupt service routine: all service calls activation with i in the ixxx_yyy format.

CHAPTER 9 SYSTEM CONFIGURATION MANAGEMENT

User’s Manual U14833EJ2V0UM 101

9.3 Initialization Routines

An initialization routine is a processing routine for initialization called between kernel activation and when the first

task is executed (scheduler activated). An initialization routine is only activated at system initialization and unlike other

objects does not have a control block.

Service calls can be issued from an initialization routine. These service calls include all those that can be issued

from tasks, except ext_tsk and exd_tsk. Note that depending on the service call, the result of the processing may be

meaningless (i.e., in the case of the service call sns_ctx).

The description format of an initialization routine is shown below. Extended data is passed as the parameter.

Example)

void inirtn(VP_INT exinf)

{

...

return;

}

9.3.1 Defining initialization routines

An initialization routine is defined using the static API ATT_INI in the CF definition file; it cannot be defined via a

service call while the system is operating.

9.3.2 Activating initialization routines

An initialization routine is incorporated as a subroutine called by the kernel after the kernel is initialized. Note that

all processing corresponding to static API is carried out as an initialization routine created by the configurator.

9.3.3 Terminating initialization routines

An initialization routine is terminated by C language return or equivalent processing. Control then shifts to either

the next initialization routine to be activated, or to the scheduler. Note that if the state of the system is changed due to

the issuance of loc_cpu or dis_dsp, these service calls will be forcibly cancelled when the initialization routine is

complete.

User’s Manual U14833EJ2V0UM102

CHAPTER 10 SERVICE CALL MANAGEMENT

10.1 Overview

Service call management is a function used to register functions described by users in the system as service calls.

The registered service calls are known as extended service call routines.

10.2 Extended Service call Routines

User-described functions that are registered in the system as service calls are known as extended service call

routines. Extended service call routines each have a number, or extended function code, that identifies the routine,

the specification of which together with the issuance of the service call (i)cal_svc calls the corresponding routine.

An extended service call routine operates as the extension of the task or handler that issued (i)cal_svc. Therefore,

although standard service calls can be issued from a service call routine, the service calls that can be issued and the

processing after issuance depend on the place (context) where (i)cal_svc was issued. Also, if a task exception

processing request is sent to a task that issued an extended service call routine from interrupt processing that

occurred while the extended service call routine was being executed, because the extended service call routine is

assumed to be task processing, the task exception processing routine will be activated before the extended service

call routine resumes processing.

The description format of an extended service call routine is shown below. Note, however, that the parameter types

and names are defined by the user. In the example below, arg1 corresponds to the (i)cal_svc parameter arg 1.

Example)

ER svcrtn(VW arg1, VW arg2, VW arg3)

{

...

return E_OK;

}

10.2.1 Defining extended service call routines

Extended service call routines are defined and deleted by issuing the service call def_svc. Items such as the

routine’s address and extended function code are specified as the parameters when defining the routine.

10.2.2 Activating and terminating extended service call routines

An extended service call routine is activated by specifying the extended function code and parameters passed to

the service call for (i)cal_svc and then issuing this service call. An extended service call routine is terminated by C

language return or equivalent processing. At this time, an error code corresponding to the processing contents of the

service call is returned as the return value.

When starting an extended service call routine using (i)cal_svc, only up to three parameters can be passed. To

pass four or more parameters, the user must describe an interface library for the extended service call routine. For

describing an interface library for the extended service call routine, refer to RX4000 (µµµµITRON4.0) Installation System

Specification.

CHAPTER 10 SERVICE CALL MANAGEMENT

User’s Manual U14833EJ2V0UM 103

10.2.3 PID

If PID (Position Independent Data) is used for the code created when the extended service call routine program is

compiled or assembled, the address that is to be the base of an extended service call routine when it is defined must

be assigned as a parameter (gp of the extended service call routine definition packet T_DSVC). The assigned

address is set in the gp register when the extended service call routine is activated.

Note that this base address is unconditionally set in the gp register regardless of its attribute, etc., and therefore

must be set for programs that reference the gp register. If the gp register is not referenced, set NULL = 0.

10.2.4 Use of coprocessor in extended service call routine

To use the coprocessor in an extended service call routine, the coprocessor must be in a state whereby it can be

used by the task or interrupt service routine that called the extended service call routine. In other words, only tasks

with the attribute TA_COP can call an extended service call routine in which the coprocessor is used. When issuing

an extended service call routine from an interrupt service routine, the save and restore processing for the registers

related to the coprocessor (FPR20 to FPR31) must be described in the extended service call routine to be issued.

User’s Manual U14833EJ2V0UM104

CHAPTER 11 INITIALIZATION PROCESSING

This chapter describes the initialization processing that is carried out by the kernel when the system is activated.

For further details, refer to the RX4000 (µµµµITRON4.0) Installation User’s Manual (U14834E).

11.1 Overview

Initialization processing consists of initializing the hardware operated by the RX4000, initializing the kernel, and

initializing the software.

Figure 11-1 shows the initialization processing flow.

Figure 11-1. Initialization Processing Flow

KernelBoot processing
block

VR Series
reset entry

Scheduler

Initialization
routine

Kernel initialization
block

Tasks

11.2 Boot Processing Block

The boot processing block performs the initialization processing that must be complete before the kernel is

activated. This processing involves initializing the peripheral hardware and copying data from ROM to RAM.

CHAPTER 11 INITIALIZATION PROCESSING

User’s Manual U14833EJ2V0UM 105

11.3 Kernel Initialization Block

In the kernel initialization block, the system information table that is based on the CF definition file and is output by

the configurator is referenced, and the kernel itself is initialized. The system can receive no service calls from the

kernel until this processing is complete. Processing in the kernel initialization block involves the following.

• Interrupt initialization

• Pool creation and initialization

• Management object creation and initialization

11.3.1 Interrupt initialization

This processing includes initializing interrupts and setting the values of interrupt masks for operation when the

kernel has disabled interrupts. Because interrupt processing is dependent upon the execution environment of the

user, a user own coding block (such as _kernel_ini_custom) is used. For details, refer to RX4000 (µµµµITRON4.0)

Installation System Specification.

11.3.2 Pool creation and initialization

This processing involves creating and initializing the system, user, and stack pools based on the memory data

specified in the CF definition file.

11.3.3 Management object creation and initialization

(1) Creation of system base table

This processing involves creating and initializing the system base table based on the system data specified in

the CF definition file.

(2) Creation of ready queue

This processing involves creating and initializing the ready queue based on the system data specified in the CF

definition file.

(3) Creation of objects

Objects are created by static API described in the CF definition file based on object creation data. Also, if

specified, activation processing (for tasks) and operation state shift processing (for cyclic handlers) is also

carried out.

11.4 Initialization Routines

Initialization routines are processing routines used to perform initialization called between when kernel initialization

is complete and when the first task is executed. Initialization routines are registered by describing ATT_INI in the CF

definition file. Additional modules may also be added implicitly as initialization routines using the configurator in case

of future kernel function expansion.

Initialization routines are used to perform initialization after the kernel is activated, such as setting the initial status

of tasks. Refer to CHAPTER 1 for further details.

User’s Manual U14833EJ2V0UM106

CHAPTER 12 INTERFACE LIBRARY

This chapter describes the interface library function. For further details, refer to the RX4000 (µµµµITRON4.0)

Installation User’s Manual (U14834E).

12.1 Overview

When an application program is written in C, and a service call is issued, the service call is described in an external

function format. The format in which the service call is actually issued, however, differs from the external function

format. An interface library is therefore required to translate a service call issued in external function format into the

kernel issuance format and thus act as an agent between application programs and the kernel. The interface library

provided in the RX4000 supports the C compiler package for the VR Series from Green Hills Software, Inc.

There are two types of interface libraries: one is for service calls and the other is for extended service calls that

must be described by the user. For the interface library for extended service calls, refer to 10.2.

12.2 Function and Position of Interface Library

The interface library is an interface program used to translate service calls issued from the application program in

an external function format into the issuance format of the kernel, and is thus positioned between the application

program and the kernel.

The interface library contains a function to shift control to the kernel once it has made the parameter and other

settings required by the kernel to perform processing. The position of the interface library is shown below.

Figure 12-1. Position of Interface Library

Kernel

External
function format

Kernel
issuance
format

Service call issuance
Interface processing

Service call processing

Interface library
Task

User’s Manual U14833EJ2V0UM 107

CHAPTER 13 SERVICE CALLS

This chapter describes the service calls provided in the RX4000.

13.1 Overview

Service calls are provided to enable manipulation of a variety of objects from the user’s processing program (task,

interrupt handler, etc.), and operate by calling the service routines of the kernel. By issuing service calls, users can

indirectly manipulate objects managed by the kernel via synchronous communication or interrupt servicing.

13.2 Types of Functions

The service call (vatt_idl) provided in the RX4000 include those that comply with the µITRON4.0 Specification (165

types), and those that are unique to the RX4000 (3 types). These service calls are further divided into 10 groups,

according to their function, as shown below.

(1) Task management function service calls (20 types)

These service calls are used for functions such as direct manipulation of task states and referencing.

cre_tsk acre_tsk del_tsk act_tsk iact_tsk

can_act ican_act sta_tsk ista_tsk ext_tsk

exd_tsk ter_tsk chg_pri ichg_pri get_pri

iget_pri ref_tsk iref_tsk ref_tst iref_tst

(2) Task-associated synchronization function service calls (15 types)

These service calls are used for synchronization functions associated with tasks that are not dependent on

other resources such as semaphores.

slp_tsk tslp_tsk wup_tsk iwup_tsk can_wup

ican_wup rel_wai irel_wai sus_tsk isus_tsk

rsm_tsk irsm_tsk frsm_tsk ifrsm_tsk dly_tsk

(3) Task exception processing function service calls (8 types)

These service calls are used for functions related to task exception processing.

def_tex ras_tex iras_tex dis_tex ena_tex

sns_tex ref_tex iref_tex

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM108

(4) Synchronous communication management function service calls (59 types)

These service calls are used for synchronous communication functions that are independent of tasks, i.e.,

functions related to semaphores, event flags, data queues, mailboxes, and mutex.
cre_sem acre_sem del_sem sig_sem isig_sem

wai_sem pol_sem ipol_sem twai_sem ref_sem

iref_sem cre_flg acre_flg del_flg set_flg

iset_flg clr_flg iclr_flg wai_flg pol_flg

ipol_flg twai_flg ref_flg iref_flg cre_dtq

acre_dtq del_dtq snd_dtq psnd_dtq ipsnd_dtq

tsnd_dtq fsnd_dtq ifsnd_dtq rcv_dtq prcv_dtq

iprcv_dtq trcv_dtq ref_dtq iref_dtq cre_mbx

acre_mbx del_mbx snd_mbx isnd_mbx rcv_mbx

prcv_mbx iprcv_mbx trcv_mbx ref_mbx iref_mbx

cre_mtx acre_mtx del_mtx loc_mtx ploc_mtx

tloc_mtx unl_mtx ref_mtx iref_mtx

(5) Memory pool management function service calls (22 types)

These service calls are used for functions related to fixed- and variable-length memory pools.
cre_mpf acre_mpf del_mpf get_mpf pget_mpf

ipget_mpf tget_mpf rel_mpf irel_mpf ref_mpf

iref_mpf cre_mpl acre_mpl del_mpl get_mpl

pget_mpl ipget_mpl tget_mpl rel_mpl irel_mpl

ref_mpl iref_mpl

(6) Time management function service calls (14 types)

These service calls are used to perform processing related to time.
set_tim iset_tim get_tim iget_tim isig_tim

cre_cyc acre_cyc del_cyc sta_cyc ista_cyc

stp_cyc istp_cyc ref_cyc iref_cyc

(7) System status management function service calls (14 types)

These service calls are used for functions related to the status of the entire system, such as disabling dispatch.
rot_rdq irot_rdq get_tid iget_tid loc_cpu

iloc_cpu unl_cpu iunl_cpu dis_dsp ena_dsp

sns_ctx sns_loc sns_dsp sns_dpn

(8) Interrupt management function service calls (10 types)

These service calls are used for functions related to interrupt servicing.
cre_isr acre_isr del_isr dis_int ena_int

chg_ims ichg_ims get_ims iget_ims

(9) System configuration management function service calls (3 types)

These include service calls related to CPU exception handlers and initialization routines.
def_exc vatt_idl

(10)Service call management function service calls (3 types)

These service calls are used for functions related to extended service call routines.
def_svc cal_svc ical_svc

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 109

13.3 Return Values (Error Codes)

The service calls provided in the RX4000 return error codes or return values that are prescribed in the µITRON4.0

Specification. The names of symbols used for error codes can be used by including the header file kernel.h. The

return values that can be returned by service calls are listed below.

Table 13-1. Error Code List

Symbol Value Meaning

E_OK 0 Normal termination

E_NOSPT −9 Reserved function code

E_RSFN −10 Unsupported function

E_RSATR −11 Illegal attribute

E_PAR −17 Illegal parameter

E_ID −18 Specified ID number exceeds range

E_CTX −25 Context error

E_ILUSE −28 Illegal use of service call

E_NOMEM −33 Insufficient memory

E_NOID −34 ID number cannot be assigned

E_OBJ −41 Target object in illegal state

E_NOEXS −42 Target object does not exist

E_QOVR −43 Queuing overflow

E_RLWAI −49 Waiting forcibly released by (i)rel_wai

E_TMOUT −50 Timeout, polling failure

E_DLT −51 Target resource deleted while being waited for

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM110

13.4 Data Types

The parameters or error codes of the service calls provided in the RX4000 are defined and declared based on data

types that conform to the µITRON4.0 Specification. The data types used in the RX4000 are shown below. Note that

these data types can be used by including the header file kernel.h.

13.4.1 General data types

The data types listed below are general data types prescribed by µITRON4.0.

typedef char B; … Signed 8-bit integer

typedef short H; … Signed 16-bit integer

typedef long W; … Signed 32-bit integer

typedef unsigned char UB; … Unsigned 8-bit integer

typedef unsigned short UH; … Unsigned 16-bit integer

typedef unsigned long UW; … Unsigned 32-bit integer

typedef char VB; … Variable data type value (8 bits)

typedef short VH; … Variable data type value (16 bits)

typedef long VW; … Variable data type value (32 bits)

typedef void *VP; … Variable data type value (pointer)

typedef void (*FP) (); … Program activate address

typedef int INT; … Signed integer (processor width)

typedef unsigned int UINT; … Unsigned integer (processor width)

typedef int VP_INT … Variable data type value (pointer) or signed integer
(processor width)

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 111

13.4.2 RX4000 data types

Based on the general data types, dedicated types for data that has a special meaning, such as an ID number, are

declared for the parameters of the service calls provided in the RX4000.

typedef H FN; … Function code

typedef H ID; … Object ID number

typedef W BOOL; … Bool value

typedef UH INTNO; … Interrupt number

typedef H EXCNO; … Exception handler number

typedef UH ATR; … Object attribute

typedef UH STAT; … Object state

typedef W ER; … Error code

typedef W ER_ID; … Error code or object ID number

typedef W ER_BOOL; … Error code or boolean value

typedef INT ER_UNIT; … Error code or unsigned integer
(Signed integer with the same bit width as ER or
UNIT, whichever is greater. The valid number of
bits of an unsigned integer is 1 bit shorter than
UNIT.)

typedef H PRI; … Priority order

typedef UINT TEXPTN; … Task exception source

typedef UINT FLGPTN; … Event flag bit pattern

typedef UH MODE; … Service call operating mode

typedef UW SIZE; … Memory size

typedef W TMO; … Timeout time

typedef UW RELTIM; … Relative time

typedef struct t_systim {

UW ltime;

UW utime;

} SYSTIM; … System time

typedef struct t_cxxx {

Reference of each
service call page

} T_CXXX … Object creation packet

typedef struct t_dxxx {

Reference of each
service call page

} T_DXXX … Object definition packet

typedef struct t_rxxx {

Reference of each
service call page

} T_RXXX … Object data packet

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM112

13.5 Macros

When describing application programs such as tasks or interrupt handlers, the following macros can be treated as

defined constants, and therefore cannot be redefined by the user. These definitions are made in the header file

kernel.h.

For items whose Value column is blank, refer to the page on which that service call is defined. CF in the Value

column indicates that the value is determined by the configurator.

Table 13-2. Macro List (1/2)

Macro Name Value Meaning

TA_XXX Object attribute

TWF_XXX Service call operating mode

TTS_XXX Object state

TSK_SELF 0 Self task specification

TSK_NONE 0 No corresponding task exists

TPRI_SELF 0 Self task base priority specification

TPRI_INI 0 Specification of task priority at activation

MERCD(ER ercd) − Return main error code section of the error code ercd (currently always –1)

SERCD(ER ercd) − Return sub error code section of the error code ercd (value indicated in

error code list)

ERCD(ER mercd, ER sercd) − Generates and returns an error code from main error code mercd and sub-

error code sercd.

TMIN_TPRI 1 Minimum value of task priority order (highest priority)

TMAX_TPRI CF Maximum value of task priority order (lowest priority)

TMIN_MPRI 1 Minimum value of message priority order (highest priority)

TMAX_MPRI 0x7fff Maximum value of message priority order (lowest priority)

TKERNEL_MAKER 0x000d Kernel manufacturer code (NEC Electronics)

TKERNEL_PRID 0x0000 Kernel identification number

TKERNEL_SPVER 0x0400 Version number of µITRON Specification

TKERNEL_PRVER 0x0400 Version number of kernel

TMAX_ACTCNT 127 Maximum queue limit for activation requests

TMAX_WUPCNT 127 Maximum queue limit for wakeup requests

TMAX_SUSCNT 127 Maximum queue limit for suspend requests

TBIT_TEXPTN 32 Number of bits in task exception source

TBIT_FLGPTN 32 Number of bits in event flag

TTIC_NUME CF Numerator of time tick cycle

TTIC_DENO 1 Denominator of time tick cycle

TSZ_DTQ(UINT dtqcnt) cre_dtq page reference

TSZ_MPRIHD cre_mbx page reference

TSZ_MPF cre_mpf page reference

TSZ_MPL cre_mpl page reference

TMAX_MAXSEM 0x7fffffff Maximum value of maximum number of semaphores

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 113

Table 13-2. Macro List (2/2)

Macro Name Value Meaning

E_XXX Error code

NULL 0 Invalid pointer

TRUE 1 True

FALSE 0 False

13.6 Parameter Value Range

Some of the service call parameters supported by the RX4000 have a range of permissible values, while others

allow the use of only specific values reserved by the system. The ranges of parameter values are shown below.

Table 13-3. Parameter Value Ranges

Parameter Type Range

Task ID No. 1 to Notes 1,2

Semaphore ID No. 1 to Note 2

Event flag ID No. 1 to Note 2

Data queue ID No. 1 to Note 2

Mailbox ID No. 1 to Note 2

Mutex ID No. 1 to Note 2

Fixed-length memory pool ID No. 1 to Note 2

Variable-length memory pool ID No. 1 to Note 2

Cyclic handler ID No. 1 to Note 2

Interrupt ID No. 0 to Note 2

Exception handler ID No. 0 to Note 2

Extended function code 1 to Note 2

Task priority 1 to Note 3

Message priority 1 to 0x7fff

Timeout time 1 to 0x7fffffffNote 4

Cycle time 1 to 0xffffffff

Delay time 1 to 0xffffffff

System time 0 to 0xfffffffffffff

User stack size 0 to 0x7fffffff

Memory block size 1 to 0x7fffffff

gp value 0 to 0xffffffffNote 5

Notes 1. 0 is reserved by the system

2. Value specified in the CF definition file (maximum value: 0x7fff)

3. Value specified in the CF definition file (maximum value: 255)

4. 0 and −1 are reserved by the system

5. The operation is not guaranteed if a value other than a multiple of 4 is specified.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM114

13.7 Context From Which Service calls Can Be Issued

A context that can be regarded as a part of task processing is called a task context, and a context that cannot is

called a non-task context. The context in which a CPU exception handler and extended service call routine are issued

is dependent upon the original context that calls these routines.

The following table shows to which context each routine belongs.

Table 13-4. Context That Can Issue Service calls

Routine Name Context

Task Task

Task exception processing routine Task

Interrupt service routine Non-task

Cyclic handler Non-task

Initialization routine Non-task

CPU exception handler Task/non-task

Extended service call routine Task/non-task

Idle routine Non-task

Service calls that start with “i” are issued from a non-task context, and the other service calls are issued from a

task context. However, service calls for a non-task context in the form of ixxx_yyy can be issued from a task context

and service calls without “i” in the form of xxx_yyy can be issued from a non-task context. This is to improve the

ease of using service calls. Note, however, that not all service calls in the form of xxx_yyy can be issued from a non-

task context.

Service calls in the form of sns_yyy can be issued from any context.

Although an idle routine is regarded as a non-task context, all service calls can be issued from an idle routine.

The contexts from which service calls can be issued are listed below.

Table 13-5. Context From Which Service calls Can Be Issued

Service call Form Task Context Non-Task Context

xxx_yyy √ ∆ (Some service calls can

be issued.)

vxxx_yyy √ −

ixxx_yyy √ √

ivxxx_yyy √ √

sns_yyy √ √

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 115

13.8 Explanation of Service calls

This section explains the service calls provided in the RX4000 in accordance with the following format.

Figure 13-1. Service call Description Format

 ()

1

9

8

7

6

5

4

32

[Overview]

[Parameter(s)]

DescriptionParameterI/O

[Explanation]

[Return value(s)]

[C format]

[Differences from µµµµITRON3.0]

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM116

(1) Name

Indicates the name of the service call.

(2) Semantics

Indicates the source of the name of the service call.

(3) Overview

Outlines the functions of the service call.

(4) C format

Indicates the format to be used when describing a service call to be issued in C.

(5) Parameter(s)

Service call parameters are explained in the following format.

I/O Parameter Description

A B C

A. Parameter classification

I ... Input parameter

O ... Output parameter

B. Parameter type and name

C. Description of parameter

(6) Explanation

Explains the function of a service call.

(7) Differences from µµµµITRON3.0

Explains points that differ from the µITRON3.0 Specification or the RX4000 Ver3.x (which complies with the

µITRON3.0 Specification).

(8) Return value

Explains the service call’s return value.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 117

13.8.1 Task management function service calls

This section describes the task management function service calls listed in the following table.

Table 13-6. Task Management Function Service calls

Name Function

cre_tsk Creates a task

acre_tsk Creates a task (automatic assignment of ID No.)

del_tsk Deletes a task

act_tsk/iact_tsk Activates a task

can_act/ican_act Invalidates an activation request

sta_tsk/ista_tsk Activates a task (activation request not retained)

ext_tsk Terminates this task

exd_tsk Terminates and deletes this task

ter_tsk Forcibly terminates another task

chg_pri/ichg_pri Changes the priority level of a task

get_pri/iget_pri Obtains the priority level of a task

ref_tsk/iref_tsk References the state of a task

ref_tst/iref_tst References the state of a task (simple version)

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM118

Create Task

cre_tsk

[Overview]

Creates a task.

[C format]

#include <kernel.h>

ER cre_tsk(ID tskid, T_CTSK *pk_ctsk);

[Parameters]

I/O Parameter Description

I ID tskid ID number of task to be created

I T_CTSK * pk_ctsk Address of task creation packet

Configuration of T_CTSK

typedef struct t_ctsk {

ATR tskatr; /* Task attribute */

VP_INT exinf; /* Extended data */

FP task; /* Activation address */

PRI itskpri; /* Initial priority */

SIZE stksz; /* Stack size */

VP stk; /* Top address of stack area */

VP gp; /* PID base address (gp) */

VP tp; /* Reserved area */

} T_CTSK;

[Explanation]

The task with the ID number specified by tskid is created based on the data stored in the packet pk_ctsk. In other

words, after securing the stack area to be used by the task, data such as the attribute and task activation address is

stored in the task control block of the specified ID number, and that block is then initialized. Accordingly, the task shifts

from the non-existent to the dormant state.

When TA_ACT is specified for the task attribute, however, act_tsk or equivalent processing is performed after

creation and the task is immediately activated. The task therefore shifts straight from the non-existent state to the

ready or running state.

If the same task ID is specified while the task still exists, and if cre_tsk is issued, the task generation request is not

queued. The E_OBJ error is returned.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 119

The task creation packet T_CTSK is described in detail below.

• tskatr

Specifies data such as whether the coprocessor is used or not and whether interrupts are enabled or disabled at

activation as task attributes. Values that can be specified as task attributes are shown below.

Figure 13-2. Task Attributes

tskatr

15 8 7 0

TA_ASM (1): Described in assembly language

TA_HLNG (0): Described in C language

TA_COP (1): Use coprocessor

TA_DISINT (1): Activate task in interrupt disabled state

TA_ENAINT (0): Activate task in interrupt enabled state

TA_ACT (1): Activate immediately after the task creation

Bit 0 is used to specify the task’s description language. TA_HLNG is specified if the task is described in C

language and TA_ASM if assembly language is used. In this version, however, there are no differences in the

processing for these two attributes.

Bit 1 is used to specify whether a task is to be activated after creation. If the attribute TA_STA is assigned to a

task, act_tsk or equivalent processing is performed for that task after it is created.

Bit 12 is used to specify whether interrupts are enabled or disabled immediately after a created task is activated.

If TA_DISINT is set, the task is activated in the interrupt disabled state. If TA_ENAINT is set, the task is activated

in the interrupt enabled state. Note that disabling interrupts means that interrupts that can initiate interrupt

processing in which kernel services are received are masked.

Bit 14 is used to specify whether the created task will use the coprocessor (FPU). If TA_COP is set, the

preprocessing and postprocessing required when the coprocessor is used is performed.

Note that when a combination of these attributes is set, the logical sum of the above values is set for tskatr.

• exinf

Stores user-specific information regarding the creation of tasks. This information can be referenced as

parameters for tasks activated by (i)act_tsk.

• task

Sets the activation address of the task to be created.

• itskpri

Sets the initial priority (task initial priority) of the task to be created. When a task that has been terminated is

reactivated, the priority of that task is determined by the value set in itskpri and not by the value at termination.

The range of the values that can be specified for itskpri is from 0x1 to the maximum priority (specified by the CF

definition file).

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM120

• stksz

Specifies the size of the stack area used by the task. When task creation processing is performed, the kernel

secures a stack area from the stack pool based on this size specification. Failure to secure this area results in an

error, and the error code E_NOMEM is returned.

Note that because the kernel augments this area with items such as context size, the size of the area actually

secured from the stack pool is larger than the specified value. For further details, refer to the RX4000

(µµµµITRON4.0) Instruction User’s Manual (U14834E).

• stk

This field specifies the top address of the stack area used by the task to be created. However, because this

function is not supported in the RX4000, stk should always be set to NULL. Settings other than NULL are

ignored.

• gp

Sets the base address (gp) of the PID (Position Independent Data) used by the task to be created. If PID is not

used by the task, set gp to NULL.

• tp

Reserved area. tp should always be set to NULL. Settings other than NULL are ignored.

[Differences from µµµµITRON3.0]

1. The values of the macros TA_ASM and TA_HLNG used when specifying the task attribute have been reversed

(TA_ASM 0 → 1, TA_HLNG 1 → 0). Caution is therefore required when porting task programs in which values

are directly specified without using a macro from µITRON3.0 to µITRON4.0.

2. TA_ACT has been added to the task attributes.

3. It is no longer necessary to use an attribute to specify the use of PID by a task.

4. stk has been added to the task creation packet (T_CTSK) members.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 cre_tsk is not included in the system

E_RSATR −11 The task attribute is illegal
− TA_COP was specified in the FPU disabled mode

− An attribute that does not exist in the specifications was specified

E_PAR −17 The parameter is illegal
− The initial priority is outside the range

(itskpri ≤ 0, maximum priority value < itskpri)

E_ID −18 The task ID number is outside the range
(tskid ≤ 0, maximum task count < tskid)

E_CTX −25 cre_tsk was issued from a non-task context

cre_tsk was issued in the CPU lock state

E_NOMEM −33 A stack of the requested size cannot be secured

E_OBJ −41 A task with the same ID number already exists

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 121

Create Task with Automatic ID Assignment

acre_tsk

[Overview]

Creates a task (Automatic assignment of ID number)

[C format]

#include <kernel.h>

ER_ID acre_tsk(T_CTSK *pk_ctsk);

[Parameter]

I/O Parameter Description

I T_CTSK * pk_ctsk Address of task creation packet

[Explanation]

A task is created based on the task creation data stored in pk_ctsk and its ID number is returned. In other words, a

usable task control block in the non-existent state is searched, assigned, and initialized, and the stack area is secured.

The ID number of that block is then returned as the return value. If the return value is a negative value, an error

occurs. The correspondence between negative return values and errors is shown in [Return values] below.

Refer to the description of cre_tsk for details of the task creation packet.

[Differences from µµµµITRON3.0]

acre_tsk is a newly created service call equivalent to cre_tsk but with the addition of an automatic ID number

assignment function.

[Return values]

Symbol Value Meaning

(Positive integer) ID number of the created task (normal termination)

E_RSFN −10 acre_tsk is not included in the system

A value other than NULL was specified for the stack area address pk_ctsk.stk

E_RSATR −11 The task attribute is illegal
− TA_COP was specified in the FPU disabled mode

− An attribute that does not exist in the specifications was specified

E_PAR −17 The parameter is illegal
− The initial priority is outside the range (itskpri ≤ 0, maximum priority value < 0)

E_CTX −25 acre_tsk was issued from a non-task context

acre_tsk was issued in the CPU lock state

E_NOMEM −33 A stack of the requested size can not be secured

E_NOID −34 An ID number cannot be assigned (failed to secure TCB)

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM122

Delete Task

del_tsk

[Overview]

Deletes a task.

[C format]

#include <kernel.h>

ER del_tsk(ID tskid);

[Parameter]

I/O Parameter Description

I ID tskid ID number of task to be deleted

[Explanation]

The task specified by tskid is deleted. In other words, the control block being used by the task is invalidated, and

the task is shifted from the dormant state to the non-existent state. The stack area being used by the task is also

returned to the stack pool. After deletion, the ID number of the deleted task can be used for a newly created task.

del_tsk is used for tasks in the dormant state. It is therefore impossible for a task to issue this service call to itself.

Tasks perform self-deletion via the service call exd_tsk. If del_tsk is issued for a task not in the dormant state, an

error occurs, and the error code E_OBJ is returned.

[Differences from µµµµITRON3.0]

None

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 del_tsk is not included in the system

E_ID −18 The task ID number is outside the range (tskid ≤ 0, maximum task count < tskid)

E_CTX −25 del_tsk was issued from a non-task context

del_tsk was issued in the CPU lock state

E_OBJ −41 The target task is not in the dormant state

E_NOEXS −42 The target task does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 123

Activate Task

act_tsk/iact_tsk

[Overview]

Activates a task (Activation request retained)

[C format]

#include <kernel.h>

ER act_tsk(ID tskid);

[Parameter]

I/O Parameter Description

I ID tskid ID number of task to be activated

[Explanation]

The task specified by tskid is activated. In other words, the task is shifted from the dormant state to the ready

state. If the target task has already been activated and is no longer in the dormant state, the activation request is

retained, and the target task is reactivated as soon as it is terminated. An activation request can be retained up to 127

times; if the number of retained activation requests exceeds 127, an error occurs, and the error code E_QOVR is

returned. act_tsk can therefore be issued 128 times in succession for a task in the dormant state.

Note that the extended data exinf set as a parameter when the task was created is passed for tasks activated by

act_tsk. The task can handle this extended data as a function parameter (first argument).

If TSK_SELF (=0) is set for tskid, the task itself is the target of the service call.

When issuing this service call from a non-task block, such as an interrupt service routine, use iact_tsk.

iact_tsk is intended to be issued from a non-task context but it can also be issued from a task context. act_tsk can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

act_tsk/iact_tsk is a newly created service call equivalent to sta_tsk but with the addition of an activation request

retention function. However, unlike sta_tsk, act_tsk passes the extended information from task creation to the task

instead of the task activation code.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM124

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 act_tsk/iact_tsk is not included in the system

E_ID −18 The task ID number is outside the range (tskid < 0, maximum task count < tskid)

TSK_SELF is specified and issued from a non-task context.

E_CTX −25 act_tsk/iact_tsk was issued in the CPU lock state

E_NOEXS −42 The target task does not exist

E_QOVR −43 The number of times the activation request was retained exceeded 127

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 125

Cancel Activation

can_act/ican_act

[Overview]

Invalidates task activation requests

[C format]

#include <kernel.h>

ER_UINT can_act(ID tskid);

[Parameter]

I/O Parameter Description

I ID tskid ID number of task whose activation requests are to be invalidated

[Explanation]

can_act/ican_act invalidates all the activation requests retained for the task specified by tskid and returns the

number of invalidated activation requests. Even when an activation request has not been issued for the target task, 0

is returned without error occurrence. If the return value is a negative value, an error occurs. The correspondence

between negative return values and errors is shown in [Return values] below.

When TSK_SELF (=0) is specified for tskid, the task itself becomes the target of the service call.

ican_act is intended to be issued from a non-task context but it can also be issued from a task context. can_act

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

can_act/ican_act is a newly created service call.

[Return values]

Symbol Value Meaning

(Integer of 0 or greater) Number of invalidated activation requests (normal termination)

E_RSFN −10 can_act/ican_act is not included in the system

E_ID −18 The task ID number is outside the range (tskid < 0, maximum task count < tskid)

TSK_SELF is specified and issued from a non-task context.

E_CTX −25 can_act/ican_act was issued in the CPU lock state

E_OBJ −41 The target task is in the dormant state

E_NOEXS −42 The target task does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM126

Start Task

sta_tsk/ista_tsk

[Overview]

Activates a task (Activation request not retained)

[C format]

#include <kernel.h>

ER sta_tsk(ID tskid, VP_INT stacd);

[Parameters]

I/O Parameter Description

I ID tskid ID number of task to be activated

I VP_INT stacd Task activation code

[Explanation]

The task specified by tskid is activated. In other words, the task is shifted from the dormant state to the ready

state. Also, the value specified by stacd is passed to the task to be activated as the task activation code. The

activated task can handle the task activation code as a function parameter (first argument).

Unlike act_tsk, if sta_tsk is issued when the target task has already been activated and is in a state other than the

dormant state, an error occurs, and the error code E_OBJ is returned.

To issue this service call from a non-task context such as an interrupt service routine, use ista_tsk.

ista_tsk is intended to be issued from a non-task context but it can also be issued from a task context. sta_tsk can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

The type of the task activation code stacd has changed from INT to VP_INT. Note that VP_INT is a new type

defined by µITRON4.0.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 sta_tsk/ista_tsk is not included in the system

E_ID −18 The task ID number is outside the range (tskid ≤ 0, maximum task count < tskid)

E_CTX −25 sta_tsk/ista_tsk was issued from a non-task context

sta_tsk/ista_tsk was issued in the CPU lock state

E_OBJ −41 The target task is not in the dormant state

E_NOEXS −42 The target task does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 127

Exit Task

ext_tsk

[Overview]

Terminates a task

[C format]

#include <kernel.h>

void ext_tsk(void);

[Parameter]

None

[Explanation]

A task terminates itself normally. In other words, a task shifts itself from the running state to the dormant state. All

data specified for the terminated task such as its priority is initialized. However, even if the task had acquired a

resource such as a semaphore or a memory block prior to termination, these will not be released. If the task is locking

a mutex, only the mutex will be released, which may result in tasks waiting to lock a mutex being released from the

waiting state.

If the task is retaining activation requests, after this processing, the activation request counter will be decremented

by 1 and the task will be immediately reactivated.

If ext_tsk is issued in the dispatch disabled state or not issued from a task, operation cannot be guaranteed.

[Differences from µµµµITRON3.0]

The mutex release processing and reactivation processing when activation requests are retained have been added.

[Return value]

None

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM128

Exit and Delete Task

exd_tsk

[Overview]

Terminates and deletes a task

[C format]

#include <kernel.h>

void exd_tsk(void);

[Parameter]

None

[Explanation]

A task terminates itself normally and is simultaneously deleted. In other words, a task shifts itself from the running

state to the non-existent state, and the control block and stack area being used by the task are released. However,

even if the task had acquired a resource such as a semaphore or a memory block prior to termination, these will not

be released. If the task is locking a mutex, only the mutex will be released, which may result in tasks waiting to lock a

mutex being released from the waiting state.

Even if an activation request is retained by the task for which exd_tsk is issued, exd_tsk ignores this request and

deletes the task. The request that was retained automatically becomes invalid.

If exd_tsk is issued in the dispatch disabled state or not issued from a task, operation cannot be guaranteed.

[Differences from µµµµITRON3.0]

The mutex release processing has been added.

[Return value]

None

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 129

Terminate Task

ter_tsk

[Overview]

Forcibly terminates another task

[C format]

#include <kernel.h>

ER ter_tsk(ID tskid);

[Parameter]

I/O Parameter Description

I ID tskid ID number of task to be terminated

[Explanation]

The task specified by tskid is forcibly terminated. In other words, the task with the tskid ID number is forcibly shifted

from the ready or running state to the dormant state. Therefore, all the information of the task that has been

terminated, such as the priority, is initialized. However, even if the task had acquired a resource such as a semaphore

or a memory block prior to termination, these will not be released. If the task is locking a mutex, only the mutex will be

released, which may result in tasks waiting to lock a mutex being released from the waiting state.

If the target task is waiting at the top of the waiting task queue to acquire a memory block from a variable-length

memory pool, the task is removed from the top of the queue and the tasks waiting in the second and subsequent

positions in the queue are released from the memory block acquisition waiting state.

If the task is retaining activation requests, after this processing, the activation request counter will be decremented

by 1 and the task will be immediately reactivated.

[Differences from µµµµITRON3.0]

The mutex release processing and reactivation processing when activation requests are retained have been added.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ter_tsk is not included in the system

E_ID −18 The task ID number is outside the range (tskid ≤ 0, maximum task count < tskid)

E_CTX −25 ter_tsk was issued from a non-task context

ter_tsk was issued in the CPU lock state

E_OBJ −41 The target task is in the dormant state or issued this service call to itself

E_NOEXS −42 The target task does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM130

Change Task Priority

chg_pri/ichg_pri

[Overview]

Changes the priority of a task

[C format]

#include <kernel.h>

ER chg_pri(ID tskid, PRI tskpri);

[Parameters]

I/O Parameter Description

I ID tskid ID number of task whose priority is to be changed

I PRI tskpri Priority after change

[Explanation]

The base priority of the task specified by tskid is changed to the value specified by tskpri. If TSK_SELF = 0 is set

for tskid, the task itself is the target of the service call.

An integer of 1 or higher is specified for tskpri; the lower the value, the higher the priority. The maximum specifiable

value (lowest priority) is the one specified at configuration. By specifying TPRI_INI = 0 for tskpri, it is also possible to

make the base priority after the change the same as the activation priority specified when the task was created.

If the target task is not locking a mutex, the base priority and the current priority are the same, and therefore the

current priority of the target task also changes to tskpri. If the target task is locking a mutex with the attribute

TA_INHERIT or TA_CEILING and a priority lower than the task’s current priority is specified, it is possible that only the

base priority will change (i.e., the current priority will not change). Also if this service call is issued to a task locking a

mutex with the attribute TA_CEILING and the specified priority is higher than the top priority of the mutex, an error

occurs, and the error code E_ILUSE is returned.

If the target task is in the running or ready state, the task shifts to the bottom of the corresponding priority section

of the ready queue. Even if the priority before chg_pri was issued is the same as that after the change, the task is still

moved to the bottom of the ready queue. It is therefore possible to make a task relinquish the right to use the CPU by

making the task itself the target, specifying the same priority as the current one, and issuing chg_pri. Note that if

chg_pri is issued to a task in the running or ready state while dispatch is disabled, ready queue manipulation is the

only processing performed, and the task in the running state continues processing.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 131

If the target task is queuing in a waiting task queue in priority order, issuing chg_pri may change the order of that

queue (or the order in which the tasks are released from waiting). Especially, if chg_pri is issued and changes the

task at the top of a queue for tasks waiting to acquire a memory block from a variable-length memory pool, the task

may acquire a memory block and be released from waiting. Also, if the target task is waiting to lock a mutex with the

attribute TA_INHERIT, priority inheritance processing may occur as a result of the change in the order of the ready

queue.

ichg_pri is intended to be issued from a non-task context but it can also be issued from a task context. chg_pri can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

Processing related to mutex has been added.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 chg_pri/ichg_pri is not included in the system

E_PAR −17 The priority is outside the range (tskpri < 0, maximum priority < tskpri)

E_ID −18 The task ID number is outside the range (tskid < 0, maximum task count < tskid)

TSK_SELF is specified and issued from a non-task context.

E_CTX −25 chg_pri/ichg_pri was issued in the CPU lock state

E_ILUSE −28 The priority after the change is higher than the maximum priority of the mutex

E_OBJ −41 The target task is in the dormant state

E_NOEXS −42 The target task does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM132

Get Task Priority

get_pri/iget_pri

[Overview]

Obtains the priority of a task

[C format]

#include <kernel.h>

ER get_pri(ID tskid, PRI *p_tskpri);

[Parameters]

I/O Parameter Description

I ID tskid ID number of task whose priority is to be obtained

O PRI * p_tskpri Address where priority is stored

[Explanation]

The current priority of the task specified by tskid is obtained and stored at the address specified by p_tskpri. If

TSK_SELF = 0 is set for tskid, the task itself is the target of the service call.

iget_pri is intended to be issued from a non-task context but it can also be issued from a task context. get_pri can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

get_pri/iget_pri is a newly created service call.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 get_pri/iget_pri is not included in the system

E_ID −18 The task ID number is outside the range (tskid < 0, maximum task count < tskid)

TSK_SELF is specified and issued from a non-task context.

E_CTX −25 get_pri/iget_pri was issued in the CPU lock state

E_OBJ −41 The target task is in the dormant state

E_NOEXS −42 The target task does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 133

Refer Task Status

ref_tsk/iref_tsk

[Overview]

Obtains task information

[C format]

#include <kernel.h>

ER ref_tsk(ID tskid, T_RTSK *pk_rtsk);

[Parameters]

I/O Parameter Description

I ID tskid ID number of task whose information is to be obtained

O T_RTSK * pk_rtsk Pointer to task information packet

Configuration of T_RTSK

typedef struct t_rtsk {

STAT tskstat; /* Task state */

PRI tskpri; /* Current priority of task */

PRI tskbpri; /* Base priority of task */

STAT tskwait; /* Wait source */

ID wobjid; /* ID number of object waited for */

TMO lefttmo; /* Time until timeout */

UINT actcnt; /* Number of activation requests */

UINT wupcnt; /* Number of wakeup requests */

UINT suscnt; /* Number of nested suspend requests */

ATR tskatr; /* Task attribute */

PRI itskpri; /* Task priority at activation */

} T_RTSK;

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM134

[Explanation]

Information related to the task specified by tskid is stored in the packet specified by pk_rtsk. If TSK_SELF = 0 is

set for tskid, the task itself is the target of the service call. The task information packet T_RTSK is described in detail

below.

• tskstat

The value indicating the current state of the task is stored. The corresponding values are as follows.

Table 13-7. Task Status

Symbol Value Meaning

TTS_RUN 0x0001 Running state

TTS_RDY 0x0002 Ready state

TTS_WAI 0x0004 Waiting state

TTS_SUS 0x0008 Suspended state

TTS_WAS 0x000c Waiting-suspended state

TTS_DMT 0x0010 Dormant state

• tskpri

The current priority of the target task is stored.

• tskbpri

The base priority of the target task is stored.

• tskwait

When the target task is in the waiting state, the value indicating the wait source is stored. The corresponding

values are as follows.

Table 13-8. Wait Source

Symbol Value Meaning

TTW_NONE 0x0000 Not in waiting state

TTW_SLP 0x0001 Waiting due to slp_tsk/tslp_tsk

TTW_DLY 0x0002 Waiting due to dly_tsk

TTW_SEM 0x0004 Waiting due to wai_sem/twai_sem

TTW_FLG 0x0008 Waiting due to wai_flg/twai_flg

TTW_SDTQ 0x0010 Waiting due to snd_dtq/tsnd_dtq

TTW_RDTQ 0x0020 Waiting due to rcv_dtq/trcv_dtq

TTW_MBX 0x0040 Waiting due to rcv_mbx/trcv_mbx

TTW_MTX 0x0080 Waiting due to loc_mtx/tloc_mtx

TTW_MPF 0x2000 Waiting due to get_mpf/tget_mpf

TTW_MPL 0x4000 Waiting due to get_mpl/tget_mpl

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 135

• wobjid

When the target task is in the waiting state, the ID number of the target object is stored.

• lefttmo

When the target task has a timeout function and is in the waiting state, the time left before the timeout is stored.

• actcnt

The number of activation requests retained by the target task is stored.

• wupcnt

The number of wakeup requests retained by the target task is stored.

• suscnt

The number of suspend requests retained by the target task is stored.

• tskatr

The target task attributes are stored. The values stored have the meanings described in cre_tsk.

• itskpri

The initial priority of the target task is stored.

iref_tsk is intended to be issued from a non-task context but it can also be issued from a task context. ref_tsk can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

1. The order of the parameters has changed.

ref_tsk (T_RTSK *pk_rtsk, ID tskid); → ref_tsk (ID tskid, T_RTSK *pk_rtsk);

2. The members of the task information packet T_RTSK have changed.

(Deleted) Extended data exinf

(Added) Base priority tskbpri, time left before timeout lefttmo, number of activation requests actcnt, task

attributes tskatr, initial priority of task itskpri

3. The values for a task’s wait sources have changed due to the addition of functions such as data queues.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ref_tsk/iref_tsk is not included in the system

E_ID −18 The task ID number is outside the range (tskid < 0, maximum task count < tskid)

TSK_SELF is specified and issued from a non-task context.

E_CTX −25 ref_tsk/iref_tsk was issued in the CPU lock state

E_NOEXS −42 The target task does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM136

Refer Task Status

ref_tst/iref_tst

[Overview]

Obtains task information (Simplified version)

[C format]

#include <kernel.h>

ER ref_tst(ID tskid, T_RTST *pk_rtst);

[Parameters]

I/O Parameter Description

I ID tskid ID number of task whose information is to be obtained

O T_RTST * pk_rtst Pointer to task information packet

Configuration of T_RTST

typedef struct t_rtst {

STAT tskstat; /* Task state */

STAT tskwait; /* Wait source */

} T_RTST;

[Explanation]

The states and wait sources of the task specified by tskid are stored in the packet specified by pk_rtst. If

TSK_SELF = 0 is set for tskid, the task itself is the target of the service call.

The values obtained by the task state tskstat and wait source tskwait are the same as the values obtained by

ref_tsk. For details, refer to the description of ref_tsk.

iref_tst is intended to be issued from a non-task context but it can also be issued from a task context. ref_tst can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

ref_tst/iref_tst is a newly created service call that restricts the information obtained by ref_tsk to realize high-speed

processing.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 137

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ref_tst/iref_tst is not included in the system

E_ID −18 The task ID number is outside the range (tskid < 0, maximum task count < tskid)

TSK_SELF is specified and issued from a non-task context.

E_CTX −25 ref_tst/iref_tst was issued in the CPU lock state

E_NOEXS −42 The target task does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM138

13.8.2 Task-associated synchronization function service calls

This section describes the task-associated synchronization function service calls listed in the following table.

Table 13-9. Task-Associated Synchronization Function Service calls

Name Function

slp_tsk Places a task in the wakeup waiting state

tslp_tsk Places a task in wakeup waiting state (with timeout)

wup_tsk/iwup_tsk Wakes up a task

can_wup/ican_wup Invalidates a wakeup request

rel_wai/irel_wai Forcibly releases a task from waiting

sus_tsk/isus_tsk Forcibly places a task in the waiting state

rsm_tsk/irsm_tsk Releases the forcible waiting state of a task

frsm_tsk/ifrsm_tsk Releases the forcible waiting states of all tasks

dly_tsk Places the task in the time lapse waiting state

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 139

Sleep Task

slp_tsk

[Overview]

Places a task in the wakeup waiting state

[C format]

#include <kernel.h>

ER slp_tsk(void);

[Parameter]

None

[Explanation]

A task shifts itself from the running state to the waiting (wakeup waiting) state. Tasks in the wakeup waiting state

are released from waiting by the issuance of a wakeup request via wup_tsk. However, a task that has already issued

a wakeup request to itself is not returned to the waiting state; the counter that retains the wakeup requests is merely

decremented by 1. Therefore to place a task with retained wakeup requests in the wakeup waiting state, it is

necessary to either issue (i)can_wup before issuing (t)slp_tsk, or to issue (t)slp_tsk (number of retained wakeup

requests + 1) times.

Tasks placed in the waiting state due to slp_tsk are released from waiting by one of the following occurrences.

1. Reception of wakeup request via (i)wup_tsk (E_OK)

2. Forcible release of waiting state by (i)rel_wai (E_RLWAI)

[Differences from µµµµITRON3.0]

None

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 slp_tsk is not included in the system

E_CTX −25 slp_tsk was issued from a non-task context

slp_tsk was issued in the CPU lock state

slp_tsk was issued in the dispatch disabled state

E_RLWAI −49 The waiting state is forcibly released by (i)rel_wai

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM140

Sleep Task with Timeout

tslp_tsk

[Overview]

Places a task in the wakeup waiting state (with timeout)

[C format]

#include <kernel.h>

ER tslp_tsk(TMO tmout);

[Parameter]

I/O Parameter Description

I TMO tmout Timeout time [ms]

[Explanation]

A task shifts itself from the running state to the waiting (wakeup waiting) state for only the amount of time specified

by tmout. A task in the wakeup waiting state is released from waiting either by the issuance of a wakeup request via

wup_tsk, or when a timeout occurs due to the elapse of the specified time.

However, a task that has already issued a wakeup request to itself is not returned to the waiting state; the counter

that retains the wakeup requests is merely decremented by 1. Therefore to place a task with retained wakeup

requests in the wakeup waiting state, it is necessary to either issue (i)can_wup before issuing (t)slp_tsk, or to issue

(t)slp_tsk (number of retained wakeup requests + 1) times.

Note that if TMO_POL = 0 is specified for tmout, it means that 0 has been specified for the timeout time, resulting in

the invalidation of one wakeup request. If TMO_FEVR = −1 is specified for tmout, it means that an unlimited timeout

time has been specified for tmout, resulting in the same operation as slp_tsk.

Tasks placed in the waiting state due to tslp_tsk are released from waiting by one of the following occurrences.

1. Reception of wakeup request via (i)wup_tsk (E_OK)

2. Timeout due to elapse of specified time (E_TMOUT)

3. Forcible release of waiting state by (i)rel_wai (E_RLWAI)

[Differences from µµµµITRON3.0]

None

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 141

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 tslp_tsk is not included in the system

E_PAR −17 The timeout time is illegal (tmout < TMO_FEVR)

E_CTX −25 tslp_tsk was issued from a non-task context

tslp_tsk was issued in the CPU lock state

tslp_tsk was issued in the dispatch disabled state

E_RLWAI −49 The waiting state was forcibly released by (i)rel_wai

E_TMOUT −50 Timeout

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM142

Wakeup Task

wup_tsk/iwup_tsk

[Overview]

Wakes up a task

[C format]

#include <kernel.h>

ER wup_tsk(ID tskid);

[Parameter]

I/O Parameter Description

I ID tskid ID number of task to be woken up

[Explanation]

A wakeup request is sent to the task specified by tskid and that task is woken up from the wakeup waiting state. If

the target task is not in the wakeup waiting state, the wakeup request is retained. If TSK_SELF = 0 is set for tskid, the

task itself is the target of the service call.

A task with retained wakeup requests is not placed in the wakeup waiting state unless either (i)can_wup is issued

before (t)slp_tsk, or (t)slp_tsk is issued (number of retained wakeup requests + 1) times. Wakeup requests can be

retained a maximum of 127 times. If wup_tsk is issued causing more than 127 wakeup requests to be retained, an

error occurs and the error code E_QOVR is returned.

iwup_tsk is intended to be issued from a non-task context but it can also be issued from a task context. wup_tsk

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

None

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 wup_tsk/iwup_tsk is not included in the system

E_ID −18 The task ID number is outside the range (tskid < 0, maximum task count < tskid)

TSK_SELF is specified and issued from a non-task context.

E_CTX −25 wup_tsk/iwup_tsk was issued in the CPU lock state

E_OBJ −41 The target task is in the dormant state.

E_NOEXS −42 The target task does not exist

E_QOVR −43 The number of wakeup requests retained exceeds 127

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 143

Cancel Wakeup Task

can_wup/ican_wup

[Overview]

Invalidates wakeup requests

[C format]

#include <kernel.h>

ER_UINT can_wup(ID tskid);

[Parameter]

I/O Parameter Description

I ID tskid ID number of task whose wakeup requests are to be invalidated

[Explanation]

The wakeup requests retained for the task specified by tskid are invalidated, and the number of invalidated

requests is returned. Even if no wakeup requests are being retained for the target task, 0 is returned without error

occurrence. If the return value is a negative value, an error occurs. The correspondence between negative return

values and errors is shown in [Return values] below. If TSK_SELF = 0 is set for tskid, the task itself is the target of

the service call.

ican_wup is intended to be issued from a non-task context but it can also be issued from a task context. can_wup

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

The interface has changed to a method in which the number of wakeup requests is returned not by the pointer but

by the return value.

[Return values]

Symbol Value Meaning

(Integer of 0 or greater) Number of invalidated wakeup requests (normal termination)

E_RSFN −10 can_wup/ican_wup is not included in the system

E_ID −18 The task ID number is outside the range (tskid < 0, maximum task count < tskid)

TSK_SELF is specified and issued from a non-task context.

E_CTX −25 can_wup/ican_wup was issued in the CPU lock state

E_OBJ −41 The target task is in the dormant state

E_NOEXS −42 The target task does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM144

Release Wait

rel_wai/irel_wai

[Overview]

Forcibly releases the waiting state of another task

[C format]

#include <kernel.h>

ER rel_wai(ID tskid);

[Parameter]

I/O Parameter Description

I ID tskid ID number of task to be released from waiting state

[Explanation]

The task specified by tskid is forcibly released from the waiting state. E_RLWAI is returned to the task released

from waiting as the error code of the service call that caused the wait. If the target task is not in the waiting state, an

error occurs, and the error code E_OBJ is returned.

A task cannot be released from the suspended state using rel_wai. If the target task is in the waiting-suspended

state, it is only released from the waiting state, and therefore shifts to the suspended state. If it is necessary to also

release the task from the suspended state, use the frsm_tsk service call in combination with this one.

If the target task is waiting at the top of the waiting task queue to acquire a memory block from a variable-length

memory pool, issuing rel_wai may cause the tasks waiting in the second and subsequent positions in the queue to be

released from the memory block acquisition waiting state.

irel_wai is intended to be issued from a non-task context but it can also be issued from a task context. rel_wai can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

None

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 rel_wai/irel_wai is not included in the system

E_ID −18 The task ID number is outside the range (tskid ≤ 0, maximum task count < tskid)

E_CTX −25 rel_wai/irel_wai was issued in the CPU lock state

E_OBJ −41 The target task is not in the waiting state

E_NOEXS −42 The target task does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 145

Suspend Task

sus_tsk/isus_tsk

[Overview]

Forcibly places a task in a waiting state

[C format]

#include <kernel.h>

ER sus_tsk(ID tskid);

[Parameter]

I/O Parameter Description

I ID tskid ID number of task to be forcibly placed in waiting state

[Explanation]

The task specified by tskid is forcibly placed in a waiting state and becomes suspended. If the target task is in the

waiting state, it enters the waiting-suspended state, which is a combination of the waiting and suspended states. A

task in this state has entered the suspended state upon release from the waiting state, or has entered the waiting

state upon release from the suspended state.

If (i)sus_tsk is issued more than once for the same task, the task enters a multiplexed suspended state. It is

therefore necessary to issue the same number of (i)rsm_tsk service calls as (i)sus_tsk calls or (i)frsm_tsk to release a

task from the suspended state. In other words, suspend requests sent by issuing (i)sus_tsk can be nested, up to 127

times. (i)sus_tsk can therefore be issued up to 127 times in succession for a task not in the suspended state. If the

number of nested suspend requests exceeds 127, an error occurs, and the error code E_QOVR is returned.

Note that if TSK_SELF = 0 is set for tskid, the task itself is the target of the service call. However, if a task issues

this service call to itself in the dispatch disabled state, an error occurs, and the error code E_CTX is returned.

isus_tsk is intended to be issued from a non-task context but it can also be issued from a task context. sus_tsk can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

It is now possible for a task to issue sus_tsk to itself without causing an error. TSK_SELF can therefore be used as

the constant that specifies self-issuance. However, an error occurs if self-issuance is specified in the dispatch

disabled state.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM146

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 sus_tsk/isus_tsk is not included in the system

E_ID −18 The task ID number is outside the range (tskid < 0, maximum task count < tskid)

TSK_SELF is specified and issued from a non-task context.

E_CTX −25 sus_tsk/isus_tsk was issued in the CPU lock state

Self-issuance was specified in the dispatch disabled state

E_OBJ −41 The target task is in the dormant state

E_NOEXS −42 The target task does not exist

E_QOVR −43 The number of nested suspend requests exceeds 127

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 147

Resume Task

rsm_tsk/irsm_tsk

[Overview]

Resumes operation of a task in the suspended state

[C format]

#include <kernel.h>

ER rsm_tsk(ID tskid);

[Parameter]

I/O Parameter Description

I ID tskid ID number of task whose operation is to be resumed

[Explanation]

The task specified by tskid is released from the suspended state and resumes operation. If the target task is in the

waiting-suspended state, it is only released from the suspended state, and therefore shifts into the waiting state.

If (i)sus_tsk was issued more than once for the target task and there are nested suspend requests, only one

suspend request is released. In this case therefore, even if (i)rsm_tsk is issued, the suspended or waiting-suspended

state will continue. To release all the suspend requests, either issue (i)rsm_tsk the same number of times as

(i)sus_tsk was issued, or issue (i)frsm_tsk.

irsm_tsk is intended to be issued from a non-task context but it can also be issued from a task context. rsm_tsk

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

None

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 rsm_tsk/irsm_tsk is not included in the system

E_ID −18 The task ID number is illegal (tskid ≤ 0, maximum task count < tskid)

E_CTX −25 rsm_tsk/irsm_tsk was issued in the CPU lock state

E_OBJ −41 The target task is not in the suspended state

E_NOEXS −42 The target task does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM148

Force Resume Task

frsm_tsk/ifrsm_tsk

[Overview]

Forcibly resumes operation of a task in the suspended state

[C format]

#include <kernel.h>

ER frsm_tsk(ID tskid);

[Parameter]

I/O Parameter Description

I ID tskid ID number of task whose operation is to be resumed

[Explanation]

The task specified by tskid is forcibly released from the suspended state and resumes operation. If the target task

is in the waiting-suspended state, only the suspended state is released and the task therefore shifts to the waiting

state. Unlike (i)rsm_tsk, even if multiple (i)sus_tsk service calls have been issued to the target task, issuance of this

service call causes the suspended state to be unconditionally released.

ifrsm_tsk is intended to be issued from a non-task context but it can also be issued from a task context. frsm_tsk

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

None

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 frsm_tsk/ifrsm_tsk is not included in the system

E_ID −18 The task ID number is outside the range (tskid ≤ 0, maximum task count < tskid)

E_CTX −25 frsm_tsk/ifrsm_tsk was issued in the CPU lock state

E_OBJ −41 The target task is not in the suspended state

E_NOEXS −42 The target task does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 149

Delay Task

dly_tsk

[Overview]

Places a task in the time lapse waiting state

[C format]

#include <kernel.h>

ER dly_tsk(RELTIM dlytim);

[Parameter]

I/O Parameter Description

I RELTIM dlytim Delay time [ms]

[Explanation]

A task places itself in a state whereby it is waiting for the time specified by dlytim to elapse. Compared with

tslp_tsk, which causes a task to terminate normally and then remain in the waiting state until a wakeup request is

received, dly_tsk causes a task to terminate normally and then remain in the waiting state until a specified amount of

time has elapsed. Therefore, even if (i)wup_tsk is issued to a task in the time lapse waiting state, a wakeup request is

sent, but the task is not released from the waiting state. The time lapse waiting state is released when another task

issues (i)rel_wai.

Note that for service calls that shift tasks into waiting states with timeout functions, such as tslp_tsk, a waiting

timeout time of 0 means polling activates, whereas for dly_tsk, even if the delay time is 0, the waiting state continues.

At this time, waiting is released at the occurrence of the first time event (issuance of isig_tim) after the issuance of

dly_tsk.

Tasks in the waiting state due to the issuance of dly_tsk are released from waiting by one of the following

occurrences.

1. Elapse of specified time (E_OK)

2. Forcible release of waiting by (i)rel_wai (E_RLWAI)

[Differences from µµµµITRON3.0]

The type of the delay time dlytim has changed from DLYTIME to RELTIM.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM150

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 dly_tsk is not included in the system

E_CTX −25 dly_tsk/idly_tsk was issued from a non-task context

dly_tsk/idly_tsk was issued in the CPU lock state

dly_tsk/idly_tsk was issued in the dispatch disabled state

E_RLWAI −49 The waiting state was forcibly released by (i)rel_wai

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 151

13.8.3 Task exception processing function service calls

This section describes the task exception processing function service calls listed in the following table.

Table 13-10. Task Exception Processing Function Service calls

Name Function

def_tex Defines a task exception processing routine

ras_tex/iras_tex Requests a task exception processing routine

dis_tex Disables task exception processing

ena_tex Enables task exception processing

sns_tex References the task exception processing disabled status

ref_tex/iref_tex Obtains the task exception processing routine status

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM152

Define Task Exception Routine

def_tex

[Overview]

Defines a task exception processing routine

[C format]

#include <kernel.h>

ER def_tex(ID tskid, T_DTEX *pk_dtex);

[Parameters]

I/O Parameter Description

I ID tskid ID number of task for which task exception processing routine is to be

defined.

I T_DTEX * pk_dtex Address of a task exception processing routine definition packet.

Configuration of T_DTEX

typedef struct t_dtex {

ATR texatr; /* Task exception processing routine attribute */

FP texrtn; /* Activate address of task exception processing routine */

} T_DTEX;

[Explanation]

A task exception processing routine that belongs to a task specified as tskid is defined based on the information

stored in the task exception processing routine definition packet pk_dtex. If TSK_SELF = 0 is set for tskid, the task

itself is the target of the service call.

If def_tex is issued again to a task for which an exception processing routine has been already defined, the old

definition is canceled and a new exception processing routine is defined. To cancel the definition of an exception

processing routine, specify NULL as pk_dtex.

Task exceptions are disabled and the source of a pending exception is also cleared if a new exception processing

routine is defined or if the definition of an exception processing routine is canceled. If an exception processing routine

is defined again, the task disabling/enabling status and pending exception source remain unchanged.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 153

The task exception processing routine definition information is explained in detail below.

• texatr

This is the attribute of a task exception processing routine that specifies a language in which the task exception

processing routine is described. If the routine is described in C, specify TA_HLNG. If it is described in an

assembly language, specify TA_ASM. Regardless of which of these two is described, there are no differences in

the processing of the kernel of the current version.

Figure 13-3. Task Exception Processing Routine Attribute

texatr

15 8 7 0

TA_ASM (1): Described in assembly language

TA_HLNG (0): Described in C language

• texrtn

This is the activate address of the task exception processing routine to be defined.

If the task exception processing routine uses PID (Position Independent Data), it is assumed that its base address

gp is the same as that of the task. The exception processing routine takes over the value of the gp register of the task.

The same execution context (stack) of the task exception processing routine as the task is used.

[Differences from µµµµITRON3.0]

def_tex is a newly created service call.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 def_tex is not included in the system

E_RSATR −11 The task exception processing routine attribute is illegal

E_ID −18 The task ID number is outside the range (tskid < 0, maximum task count < tskid)

E_CTX −25 def_tex was issued from a non-task context

def_tex was issued in the CPU lock state

E_NOEXS −42 The target task does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM154

Raise Task Exception Routine

ras_tex/iras_tex

[Overview]

Issues a task exception processing request

[C format]

#include <kernel.h>

ER ras_tex(ID tskid, TEXPTN rasptn);

[Parameters]

I/O Parameter Description

I ID tskid ID number of task to which exception processing routine to be activated

belongs

I TEXPTN rasptn Task exception processing routine activation source

[Explanation]

A request is issued to the task specified by tskid to activate an exception processing routine. If TSK_SELF = 0 is

set for tskid the task itself becomes the target of the service call.

A task exception processing routine is activated when the task enters the running state if the activation request is

retained. If ras_tex is issued to the task itself, the exception processing routine is immediately activated. A task

exception processing routine that has been activated can receive the bit pattern specified by rasptn as the activation

source. If (i)ras_tex is issued more than once to the same task, the exception processing routine can receive the

logical sum of the activation sources specified by each (i)ras_tex as the activation source.

iras_tex is intended to be issued from a non-task context but it can also be issued from a task context. ras_tex can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

ras_tex/iras_tex is a newly created service call.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 155

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ras_tex/iras_tex is not included in the system

E_PAR −17 The activation source is 0 (rasptn = 0)

E_ID −18 The task ID number is outside the range (tskid < 0, maximum task count < tskid)

TSK_SELF is specified and issued from a non-task context.

E_CTX −25 ras_tex/iras_tex was issued in the CPU lock state

E_OBJ −41 The target task is in the dormant state

No exception processing routine is defined for the target task

E_NOEXS −42 The target task does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM156

Disable Task Exception

dis_tex

[Overview]

Disables activation of a task exception processing routine

[C format]

#include <kernel.h>

ER dis_tex(void);

[Parameter]

None

[Explanation]

Activation of the task exception processing routine of the task itself, i.e., the task that has issued this service call is

disabled. Consequently, the task exception processing routine will not be activated until ena_tex is issued, and all

activation requests issued by (i)ras_tex in the meantime are held pending.

Even if dis_tex is issued again while the task exception processing routine is disabled, the disabled status merely

continues and no error occurs. Even if dis_tex is issued two times or more, however, disabling the activation of the

task exception processing routine is canceled by issuing ena_tex only once.

[Differences from µµµµITRON3.0]

dis_tex is a newly created service call.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 dis_tex is not included in the system

E_CTX −25 dis_tex was issued from a non-task context

dis_tex was issued in the CPU lock state

E_OBJ −41 No task exception processing routine is defined

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 157

Enable Task Exception

ena_tex

[Overview]

Enables activation of a task exception processing routine

[C format]

#include <kernel.h>

ER ena_tex(void);

[Parameter]

None

[Explanation]

Activation of the task exception processing routine of the task itself, i.e., the task that has issued this service call is

enabled. Consequently, the task exception processing routine is immediately activated if a request to activate the task

exception processing routine is retained by the task itself.

Even if ena_tex is issued again while the task exception processing routine is disabled, the enabled status merely

continues and no error occurs. Even if ena_tex is issued more than once, however, activation of the task exception

processing routine is prohibited by issuing dis_tex once.

[Differences from µµµµITRON3.0]

ena_tex is a newly created service call.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ena_tex is not included in the system

E_CTX −25 ena_tex was issued from a non-task context

ena_tex was issued in the CPU lock state

E_OBJ −41 No task exception processing routine is defined

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM158

Sense Task Exception Routine Status

sns_tex

[Overview]

References the status of a task exception processing routine

[C format]

#include <kernel.h>

BOOL sns_tex(void);

[Parameter]

None

[Explanation]

The value of TRUE or FALSE is returned depending on the status of the task exception processing routine of the

task in the running state, i.e., the task currently under execution (the issuing task), or of the task that is interrupted by

an exception during execution.

For the meaning of the value returned, refer to [Return values] below. The type of the return value is BOOL.

Usually, TRUE(1) or FALSE(0) is returned. If sns_tex is not included in the system, however, E_RSFN (−10) may be

returned as an exception.

sns_tex can be always issued regardless of the status of the context.

[Differences from µµµµITRON3.0]

sns_tex is a newly created service call.

[Return values]

Symbol Value Meaning

TRUE 1 Task exception processing is disabled

No task exception processing routine is defined

No task is in the running state

FALSE 0 Task exception processing is enabled

E_RSFN −10 sns_tex is not included in the system

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 159

Refer Task Exception Routine Status

ref_tex/iref_tex

[Overview]

Obtains task exception processing routine information

[C format]

#include <kernel.h>

ER ref_tex(ID tskid, T_RTEX *pk_rtex);

[Parameters]

I/O Parameter Description

I ID tskid ID number of task from which exception processing routine information is

obtained

O T_RTEX * pk_rtex Address of task exception processing routine information packet

Configuration of T_RTEX

typedef struct t_rtex {

STAT texstat; /* Status of task exception processing routine */

TEXPTN pndptn; /* Pending exception source */

ATR texatr; /* Task exception processing routine attribute */

} T_RTEX;

[Explanation]

Information on the task exception processing routine of the task specified as tskid is obtained and stored in the

packet specified by pk_rtex. If TSK_SELF = 0 is set for taskid the task itself becomes the target of the service call.

The task exception processing routine information is described in detail below.

• texstat

Indicates the current status of the task exception processing routine (i.e., whether the routine is enabled or

disabled). The routine is disabled if TTEX_DIS is stored for this parameter and enabled if TTEX_ENA is stored.

• pndptn

Stores the exception source of the pending task exception processing routine.

• texatr

Stores the attribute of the task exception processing routine. For the meaning of the value stored, refer to the

description of def_tex.

iref_tex is intended to be issued from a non-task context but it can also be issued from a task context. ref_tex can

be issued from a non-task context.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM160

[Differences from µµµµITRON3.0]

ref_tex/iref_tex is a newly created service call.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ref_tex/iref_tex is not included in the system

E_ID −18 The task ID number is outside the range (tskid < 0, maximum task count < tskid)

TSK_SELF is specified and issued from a non-task context.

E_CTX −25 ref_tex/iref_tex was issued in the CPU lock state

E_OBJ −41 The target task is in the dormant state

No exception processing routine is defined for the target task

E_NOEXS −42 The target task does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 161

13.8.4 Synchronization/communication management function service calls

This section describes the synchronization/communication management function service calls listed in the following

table.

Table 13-11. Synchronization/Communication Management Function Service calls (1/2)

Name Function

cre_sem Creates a semaphore

acre_sem Creates a semaphore (automatic assignment of ID No.)

del_sem Deletes a semaphore

sig_sem/isig_sem Returns resources

wai_sem Acquires resources

pol_sem/ipol_sem Acquires resources (polling)

twai_sem Acquires resources from a semaphore (with timeout)

ref_sem/iref_sem Obtains semaphore information

cre_flg Creates an event flag

acre_flg Creates an event flag (automatic assignment of ID No.)

del_flg Deletes an event flag

set_flg/iset_flg Sets an event flag

clr_flg/iclr_flg Clears an event flag

wai_flg Waits for satisfaction of condition

pol_flg/ipol_flg Waits for satisfaction of condition (polling)

twai_flg Waits for satisfaction of condition (with timeout)

ref_flg/iref_flg Obtains event flag information

cre_dtq Creates a data queue

acre_dtq Creates a data queue (automatic assignment of ID No.)

del_dtq Deletes a data queue

snd_dtq Sends data

psnd_dtq/ipsnd_dtq Sends data (polling)

tsnd_dtq Sends data (with timeout)

fsnd_dtq/ifsnd_dtq Forcibly sends data

rcv_dtq Receives data

prcv_dtq/iprcv_dtq Receives data (polling)

trcv_dtq Receives data (with timeout)

ref_dtq/iref_dtq Obtains data queue information

cre_mbx Creates a mailbox

acre_mbx Creates a mailbox (automatic assignment of ID No.)

del_mbx Deletes a mailbox

snd_mbx/isnd_mbx Sends mail

rcv_mbx Receives mail

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM162

Table 13-11. Synchronization/Communication Management Function Service calls (2/2)

Name Function

prcv_mbx/iprcv_mbx Receives mail (polling)

trcv_mbx Receives mail (with timeout)

ref_mbx/iref_mbx Obtains mailbox information

cre_mtx Creates a mutex

acre_mtx Creates a mutex (automatic assignment of ID No.)

del_mtx Deletes a mutex

loc_mtx Locks a mutex

ploc_mtx Locks a mutex (polling)

tloc_mtx Locks a mutex (with timeout)

unl_mtx Unlocks a mutex

ref_mtx/iref_mtx Obtains mutex information

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 163

Create Semaphore

cre_sem

[Overview]

Creates a semaphore

[C format]

#include <kernel.h>

ER cre_sem(ID semid, T_CSEM *pk_csem);

[Parameters]

I/O Parameter Description

I ID semid ID number of semaphore to be created

I T_CSEM * pk_csem Address of semaphore creation packet

Configuration of T_CSEM

typedef struct t_csem {

ATR sematr; /* Semaphore attribute */

UINT isemcnt; /* Default value of semaphore */

UINT maxsem; /* Maximum value of semaphore */

} T_CSEM;

[Explanation]

A semaphore with the ID number specified by semid is created based on the information stored in the packet

pk_csem. In other words, a control block is assigned to the semaphore to be created, and the semaphore is

initiarized.

The semaphore creation packet T_CSEM is explained in detail below.

• sematr

Specifies the order in which a task waits for the resources of a semaphore as the attribute of the semaphore.

The values that can be specified as the semaphore attribute are as follows:

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM164

Figure 13-4. Semaphore Attribute

sematr

15 8 7 0

TA_TFIFO (0): Task is waiting on FIFO basis

TA_TPRI (1): Task is waiting in priority order

To bit 0 of sematr, specify the order in which a task waits for the resources from the semaphore to be created. If

TA_TFIFO is specified, the task waits on an FIFO basis. If TA_TPRI is specified, the task waits in the order of

priority.

• isemcnt

Specifies the default value of the resource counter of the semaphore as an integer of 0 or more. The maximum

value that can be specified is TMAX_MAXSEM (0x7fffffff). However, the value of maxsem explained below must

not be exceeded. If a value greater than maxsem is specified, an error occurs and the error code E_PAR is

returned.

• maxsem

Specifies the maximum value of the resource counter of the semaphore as an integer of 1 or more. The

maximum value that can be specified is TMAX_MAXSEM (0x7fffffff). If the resource counter issues (i)sig_sem

that exceeds this value, an error occurs.

[Differences from µµµµITRON3.0]

1. The extended data exinf has been deleted from the members of the semaphore creation packet T_CSEM.

2. The type of the default value of the resource counter, isemcnt, and the maximum value of the resource counter,

maxsem, has been changed from INT to UINT.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 cre_sem is not included in the system

E_RSATR −11 The semaphore attribute is illegal

E_PAR −17 The parameter is illegal
− The default value of the semaphore is outside the range (maxsem < isemcnt)

− The maximum value of the semaphore is outside the range (maxsem = 0)

E_ID −18 The semaphore ID number is outside the range
(semid ≤ maximum semaphore count < semid)

E_CTX −25 cre_sem was issued from a non-task context

cre_sem was issued in the CPU lock state

E_OBJ −41 A semaphore with the same ID number already exists

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 165

Create Semaphore with Automatic ID Assignment

acre_sem

[Overview]

Creates a semaphore (Automatic assignment of ID number).

[C format]

#include <kernel.h>

ER_ID acre_sem(T_CSEM *pk_csem);

[Parameter]

I/O Parameter Description

I T_CSEM * pk_csem Address of semaphore creation packet

[Explanation]

A semaphore is created based on the semaphore creation information stored in pk_csem, and the ID number of

the semaphore is returned. In other words, a semaphore control block that is available but is not created is searched,

assigned, and initialized, and its ID number returned. If the return value is negative, an error occurs. For the meaning

of the return value, refer to [Return values] below.

For the details of the semaphore creation packet, refer to the description of cre_sem.

[Differences from µµµµITRON3.0]

acre_sem is a newly created service call that is equivalent to cre_sem, but with the addition of an automatic ID

number assignment function.

[Return values]

Symbol Value Meaning

(Positive integer) ID number of created semaphore (normal termination)

E_RSFN −10 acre_sem is not included in the system

E_RSATR −11 The semaphore attribute is illegal

E_PAR −17 The parameter is illegal
− The default value of the semaphore is outside the range (maxsem < isemcnt)

− The maximum value of the semaphore is outside the range (maxsem = 0)

E_CTX −25 acre_sem was issued from a non-task context

acre_sem was issued in the CPU lock state

E_NOID −34 The ID number cannot be assigned (reserving a control block has failed)

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM166

Delete Semaphore

del_sem

[Overview]

Deletes a semaphore

[C format]

#include <kernel.h>

ER del_sem(ID semid);

[Parameter]

I/O Parameter Description

I ID semid ID number of semaphore to be deleted

[Explanation]

The semaphore for which the semaphore control block specified by semid has been invalidated is deleted. After

deletion, a semaphore can be created using the same ID number.

If tasks are waiting for the semaphore, all the tasks are released from the waiting state. The value E_DLT

indicating that the semaphore has been deleted is returned for the error code of the service call (t)wai_sem that

caused the tasks to be released from the waiting state.

A semaphore can be also deleted even if a task that is waiting for the resource from the semaphore exists. Note

that, at this time, deletion of the semaphore is not reported to the waiting task.

[Differences from µµµµITRON3.0]

None

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 del_sem is not included in the system

E_ID −18 The semaphore ID number is outside the range
(semid ≤ 0, maximum semaphore count < semid)

E_CTX −25 del_sem was issued from a non-task context

del_sem was issued in the CPU lock state

E_NOEXS −42 The target semaphore does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 167

Signal Semaphore

sig_sem/isig_sem

[Overview]

Returns a resource to a semaphore

[C format]

#include <kernel.h>

ER sig_sem(ID semid);

[Parameter]

I/O Parameter Description

I ID semid ID number of semaphore to which resource is to be returned

[Explanation]

A resource is returned to the semaphore specified by semid.

If tasks are waiting for resources from the semaphore, the first task in the waiting task queue is released from the

waiting state. In this case, the value of the resource counter of the semaphore is not changed. If no task is waiting for

resources, the value of the resource counter is incremented by 1. If (i)sig_sem is issued in such a manner that the

value of the counter exceeds the maximum value specified when the semaphore was created, an error occurs and the

error code E_QOVR is returned.

isig_sem is intended to be issued from a non-task context but it can also be issued from a task context. sig_sem

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

None

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 sig_sem/isig_sem is not included in the system

E_ID −18 The semaphore ID number is outside the range
(semid ≤ 0, maximum semaphore count < semid)

E_CTX −25 sig_sem/isig_sem was issued in the CPU lock state

E_NOEXS −42 The target semaphore does not exist

E_QOVR −43 The counter value of the semaphore has exceeded the maximum value

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM168

Wait on Semaphore

wai_sem

[Overview]

Acquires a resource from a semaphore

[C format]

#include <kernel.h>

ER wai_sem(ID semid);

[Parameter]

I/O Parameter Description

I ID semid ID number of semaphore from which resource is to be acquired

[Explanation]

A resource is acquired from the semaphore specified by semid.

If the value of the resource counter of the target semaphore is 1 or greater, the counter value is decremented by 1

and the task continues processing. If the counter value is 0, the task enters the resource waiting state and is

registered to the task queue in the waiting order (on an FIFO basis or according to priority) specified when the

semaphore was created.

Tasks placed in the waiting state due to wai_sem are released from waiting by one of the following occurrences.

1. (i)sig_sem is issued and the task acquires a resource (E_OK).

2. The task is forcibly released from the waiting state by (i)rel_wai (E_RLWAI).

3. del_sem is issued and the semaphore is deleted (E_DLT).

[Differences from µµµµITRON3.0]

None

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 wai_sem is not included in the system

E_ID −18 The semaphore ID number is outside the range
(semid ≤ 0, maximum semaphore count < semid)

E_CTX −25 wai_sem was issued from a non-task context

wai_sem was issued in the CPU lock state

wai_sem was issued in the dispatch disabled state

E_NOEXS −42 The target semaphore does not exist

E_RLWAI −49 The task is released from the waiting state by (i)rel_wai

E_DLT −51 The semaphore is deleted while a task is waiting

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 169

Poll Semaphore

pol_sem/ipol_sem

[Overview]

Acquires a resource from a semaphore (polling)

[C format]

#include <kernel.h>

ER pol_sem(ID semid);

[Parameter]

I/O Parameter Description

I ID semid ID number of semaphore from which resource is to be acquired

[Explanation]

A resource is acquired from the semaphore specified by semid.

If the value of the resource counter of the target semaphore is 1 or greater, the counter value is decremented by 1

and the task continues processing. If the counter value is 0, polling fails and the error code E_TMOUT is returned.

ipol_sem is intended to be issued from a non-task context but it can also be issued from a task context. pol_sem

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

The name of preq_sem has been changed to pol_sem.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 pol_sem/ipol_sem is not included in the system

E_ID −18 The semaphore ID number is outside the range
(semid ≤ 0, maximum semaphore count < semid)

E_CTX −25 pol_sem/ipol_sem was issued in the CPU lock state

E_NOEXS −42 The target semaphore does not exist

E_TMOUT −50 Polling has failed

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM170

Wait on Semaphore with Timeout

twai_sem

[Overview]

Acquires a resource from a semaphore (with timeout)

[C format]

#include <kernel.h>

ER twai_sem(ID semid, TMO tmout);

[Parameters]

I/O Parameter Description

I ID semid ID number of semaphore from which resource is to be acquired

I TMO tmout Timeout time [milliseconds]

[Explanation]

A resource is acquired from the semaphore specified by semid.

If the value of the resource counter of the target semaphore is 1 or greater, the counter value is decremented by 1

and the task continues processing. If the counter value is 0, the task waits for a resource for the time specified as

tmout, and is registered to the task queue in the waiting mode (on an FIFO basis or according to priority) specified

when the semaphore was created.

If TMO_POL = 0 is specified as tmout, 0 is specified as the timeout time and this service call performs the same

operation as pol_sem. If TMO_FEVR = −1 is specified as tmout, the timeout time is specified to be inifite and the

service call performs the same operation as wai_sem.

Tasks placed in the waiting state due to the issuance of twai_sem are released from waiting by one of the following

occurrences.

1. (i)sig_sem is issued and the task acquires a resource (E_OK).

2. The specified time has elapsed (timeout) (E_TMOUT).

3. The task is forcibly released from the waiting state by (i)rel_wai (E_RLWAI).

4. del_sem is issued and the semaphore is deleted (E_DLT).

[Differences from µµµµITRON3.0]

None

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 171

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 twai_sem is not included in the system

E_PAR −17 The timeout time is outside the range (tmout < TMO_FEVR = −1)

E_ID −18 The semaphore ID number is outside the range
(semid ≤ 0, maximum semaphore count < semid)

E_CTX −25 twai_sem was issued from a non-task context

twai_sem was issued in the CPU lock state

twai_sem was issued in the dispatch disabled state

E_NOEXS −42 The target semaphore does not exist

E_RLWAI −49 The task has been released from the waiting state by (i)rel_wai

E_TMOUT −50 The specified time has elapsed

E_DLT −51 The semaphore is deleted while a task is waiting for it

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM172

Refer Semaphore Status

ref_sem/iref_sem

[Overview]

Obtains semaphore information

[C format]

#include <kernel.h>

ER ref_sem(ID semid, T_RSEM *pk_rsem);

[Parameters]

I/O Parameter Description

I ID semid ID number of semaphore whose information is to be obtained

O T_RSEM * pk_rsem Address of semaphore information packet

Configuration of T_RSEM

typedef struct t_rsem {

ID wtskid; /* Presence/absence of waiting task */

UINT semcnt; /* Current number of resources of semaphore */

ATR sematr; /* Semaphore attribute */

UINT maxsem; /* Maximum number of resources of semaphore */

} T_RSEM;

[Explanation]

Information on the semaphore specified by semid is stored in the packet specified by pk_rsem.

wtskid indicates whether there is a task waiting for resources from the target semaphore. If a waiting task exists,

the ID number of the first task in the waiting task queue is stored in wtskid.

If there is no waiting task, TSK_NONE = 0 is stored in wtskid.

semcnt stores the current value of the resource counter of the semaphore.

sematr stores the semaphore attribute. For the meaning of the value stored in sematr, refer to the description of

cre_sem.

maxsem stores the maximum value of the resource counter of the semaphore.

iref_sem is intended to be issued from a non-task context but it can also be issued from a task context. ref_sem

can be issued from a non-task context.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 173

[Differences from µµµµITRON3.0]

1. The order of the parameters has been changed.

2. The extended data exinf has been deleted from the members of the semaphore information packet T_RSEM.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ref_sem/iref_sem is not included in the system

E_ID −18 The semaphore ID number is outside the range
(semid ≤ 0, maximum semaphore count < semid)

E_CTX −25 ref_sem/iref_sem was issued from a non-task context

ref_sem/iref_sem was issued in the CPU lock state

E_NOEXS −42 The target semaphore does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM174

Create Eventflag

cre_flg

[Overview]

Creates an event flag

[C format]

#include <kernel.h>

ER cre_flg(ID flgid, T_CFLG *pk_cflg);

[Parameters]

I/O Parameter Description

I ID flgid ID number of event flag to be created

I T_CFLG * pk_cflg Address of event flag creation packet

Configuration of T_CFLG

typedef struct t_cflg {

ATR flgatr; /* Event flag attribute */

FLGPTN iflgptn; /* Default value of event flag */

} T_CFLG;

[Explanation]

The event flag with the ID number specified by flgid is created, based on the information stored in the packet

pk_cflg. In other words, a control block is assigned to the event flag to be created, and the event flag is initialized.

The event flag creation packet T_CFLG is described in detail below.

• flgatr

Specifies the order in which a task waits for the event flag to be created as the attribute of the event flag. The

values that can be specified as the event flag attribute are as follows:

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 175

Figure 13-5. Event Flag Attribute

flgatr

15 8 7 0

TA_WMUL (1): Permits two or more tasks to wait

TA_WSGL (0): Does not permit two or more tasks to wait

TA_TFIFO (0): Task is waiting on FIFO basis

TA_TPRI (1): Task is waiting in priority order

TA_CLR (1): Clears the event flag when the condition is satisfied

To bit 0 of flgatr, specify the order in which a task waits. If TA_TFIFO is specified, the task waits on an FIFO

basis. If TA_TPRI is specified, the task waits in the order of priority. These attributes, however, are meaningless

if the attribute of the event flag is TA_WSGL, which is explained below.

Bit 1 specifies whether two or more tasks are permitted to wait for the event flag. If TA_WMUL is specified, two

or more tasks can wait for the event flag. If TA_WSGL is specified, two or more tasks cannot wait.

Bit 2 specifies whether the bit pattern is created when the condition of the event flag is satisfied. If attribute

TA_CLR is given, the event flag is cleared to 0 when the condition of the event flag has been satisfied and the

task has been released from the waiting state.

• iflgptn

Stores the default value of the event flag to be created.

[Differences from µµµµITRON3.0]

1. The extended data exinf has been deleted from the members of the event flag creation packet T_CFLG.

2. The type of the default value of the event flag iflgptn has been changed from INT to FLGPTN. FLGPTN is a

type newly defined for µITRON4.0.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 cre_flg is not included in the system

E_RSATR −11 The event flag attribute is illegal

E_ID −18 The event flag ID number is outside the range
(flgid ≤ 0, maximum event flag count < flgid)

E_CTX −25 cre_flg was issued from a non-task context

cre_flg was issued in the CPU lock state

E_OBJ −41 An event flag with the same ID number already exists

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM176

Create Eventflag with Automatic ID Assignment

acre_flg

[Overview]

Creates an event flag (Automatic assignment of ID number)

[C format]

#include <kernel.h>

ER_ID acre_flg(T_CFLG *pk_cflg);

[Parameter]

I/O Parameter Description

I T_CFLG * pk_cflg Address of event flag creation packet

[Explanation]

An event flag is created based on the event flag creation information stored in pk_cflg, and the ID number of the

event flag is returned. In other words, an event flag control block that is available but is not created is searched,

assigned and initialized, and its ID number returned. If the return value is negative, an error occurs. For the meaning

of the return value, refer to [Return values] below.

For the details of the event flag creation packet, refer to the description of cre_flg.

[Differences from µµµµITRON3.0]

acre_flg is a newly created service call that is equivalent to cre_flg, but with the addition of an automatic ID number

assignment function.

[Return values]

Symbol Value Meaning

(Integer of 1 or greater) ID number of created event flag (normal termination)

E_RSFN −10 acre_flg is not included in the system

E_RSATR −11 The event flag attribute is illegal

E_CTX −25 acre_flg was issued from a non-task context

acre_flg was issued in the CPU lock state

E_NOID −34 The ID number cannot be assigned (reserving a control block has failed)

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 177

Delete Eventflag

del_flg

[Overview]

Deletes an event flag

[C format]

#include <kernel.h>

ER del_flg(ID flgid);

[Parameter]

I/O Parameter Description

I ID flgid ID number of event flag to be deleted

[Explanation]

The control block of the event flag specified by flgid is invalidated and the specified event flag is deleted. After

deletion, an event flag can be created by using the same ID number.

If tasks are waiting for the event flag, all the tasks are released from the waiting state. The value E_DLT indicating

that the event flag has been deleted is returned for the error code of the service call (t)wai_flg, which caused the tasks

to be released from the waiting state.

[Differences from µµµµITRON3.0]

None

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 del_flg is not included in the system

E_ID −18 The event flag ID number is outside the range
(flgid ≤ 0, maximum event flag count < flgid)

E_CTX −25 del_flg was issued from a non-task context

del_flg was issued in the CPU lock state

E_NOEXS −42 The target event flag does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM178

Set Eventflag

set_flg/iset_flg

[Overview]

Sets an event flag

[C format]

#include <kernel.h>

ER set_flg(ID flgid, FLGPTN setptn);

[Parameters]

I/O Parameter Description

I ID flgid ID number of event flag to be set

I FLGPTN setptn Bit pattern to be set

[Explanation]

The bit pattern specified by setptn is set to the event flag specified by flgid. After setting, the bit pattern is the

logical sum of the previously set bit pattern and setptn.

If a task waiting for the target event flag exists and the condition for releasing the task from the waiting state is

satisfied by issuance of set_flg, the task is released from the waiting state. For details of the conditions under which a

task is released from the waiting state, refer to the description of wai_flg.

iset_flg is intended to be issued from a non-task context but it can also be issued from a task context. set_flg can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

The type of the bit pattern setptn to be set has been changed from UINT to FLGPTN. FLGPTN is a type newly

defined for µITRON4.0.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 set_flg/iset_flg is not included in the system

E_ID −18 The event flag ID number is outside the range
(flgid ≤ 0, maximum event flag count < flgid)

E_CTX −25 set_flg/iset_flg was issued in the CPU lock state

E_NOEXS −42 The target event flag does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 179

Clear Eventflag

clr_flg/iclr_flg

[Overview]

Clears an event flag

[C format]

#include <kernel.h>

ER clr_flg(ID flgid, FLGPTN clrptn);

[Parameters]

I/O Parameter Description

I ID flgid ID number of event flag to be cleared

I FLGPTN clrptn Bit pattern to be cleared

[Explanation]

The bit specified by clrptn of the event flag specified by flgid is cleared. After clearing, the bit pattern is the logical

sum of the previously set bit pattern and clrptn.

If a task waiting for the target event flag exists, the task waits until the specified bit is set. Therefore, it is not

released from the waiting state even when the condition under which the task is released from the waiting state is

satisfied by issuance of clr_flg.

iclr_flg is intended to be issued from a non-task context but it can also be issued from a task context. clr_flg can be

issued from a non-task context.

[Differences from µµµµITRON3.0]

The type of the bit pattern setptn to be set has been changed from UINT to FLGPTN. FLGPTN is a type newly

defined for µITRON4.0.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 clr_flg/iclr_flg is not included in the system

E_ID −18 The event flag ID number is outside the range
(flgid ≤ 0, maximum event flag count < flgid)

E_CTX −25 clr_flg/iclr_flg was issued from a non-task context

clr_flg/iclr_flg was issued in the CPU lock state

E_NOEXS −42 The target event flag does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM180

Wait Eventflag

wai_flg

[Overview]

Waits until the condition of an event flag is satisfied

[C format]

#include <kernel.h>

ER wai_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

[Parameters]

I/O Parameter Description

I ID flgid ID number of event flag whose condition is to be satisfied

I FLGPTN waiptn Waiting bit pattern

I MODE wfmode Waiting mode

O FLGPTN * p_flgptn Address to which bit pattern is stored when task has been released from

waiting state

[Explanation]

A task is kept waiting in the waiting mode specified by wfmode until the bit pattern specified by waiptn of the event

flag specified by flgid is set. If the bit pattern of the target event flag has already satisfied the condition under which

the task is released from the wait state, the task is not kept waiting but continues processing.

The waiting mode wfmode specifies how the task waits, by the following values:

Name Value Meaning Expression *flgptn = Current Bit Pattern

TWF_ANDW H’0000 AND wait flgptn & waiptn == waiptn

TWF_ORW H’0001 OR wait flgptn & waiptn != 0

If TWF_ANDW is specified, the task waits until all the bits specified by waiptn of the bit pattern of the event flag are

set (AND wait). If TWF_ORW is specified, the task waits until any of the bits specified by waiptn of the bit pattern of

the event flag is set (OR wait).

To address p_flgptn, the bit pattern of the event flag when the condition is satisfied is stored.

Some event flags allow two or more tasks to wait (even flags with the TA_WMUL attribute) while the others do not

(event flags with the TA_WSGL attribute). If wai_flg is issued to an event flag with the TA_WSGL attribute for which a

task is waiting, the service call results in an error regardless of whether the condition is satisfied or not, and the error

code E_OBJ is returned.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 181

For an event flag with the TA_WMUL attribute, the order in which waiting tasks are registered to the queue is

determined by the attribute of the event flag. If the attribute is TA_TFIFO, the tasks wait on an FIFO basis. If the

attribute is TA_TPRI, the tasks wait according to their priorities. When set_flg is issued, however, two or more tasks

may be released from the waiting state all at once because it is checked whether the condition under which the task is

released from the waiting state is satisfied or not. Therefore, the first task in the queue is not always released from the

waiting state first. If two or more tasks are released from the waiting state and if the event flag has the attribute

TA_CLR, the event flag is cleared as soon as the first task has been released from the waiting state. Consequently,

the bit pattern (0) is compared with the waiting bit pattern, and the processing to release the task from the waiting

state is completed as soon as the bit pattern has been compared.

Tasks placed in the waiting state due to wai_flg are released from waiting by one of the following occurrences.

1. (i)set_flg is issued and the event flag satisfies the condition (E_OK).

2. (i)rel_wai is issued and the task is forcibly released from the waiting state (E_RLWAI).

3. del_flg is issued and the event flag is deleted (E_DLT).

[Differences from µµµµITRON3.0]

1. The order of the parameters has been changed.

2. The type of the bit pattern of the event flag has been changed from UINT to FLGPTN.

3. The type of the waiting mode wfmode has been changed from UINT to MODE.

FLGPTN and MODE are types newly defined for µITRON4.0.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 wai_flg is not included in the system

E_PAR −17 The parameter is illegal
− The waiting bit pattern is 0 (waiptn = 0)

− The waiting mode specification is illegal

E_ID −18 The event flag ID number is outside the range
(flgid ≤ 0, maximum event flag count < flgid)

E_CTX −25 wai_flg was issued from a non-task context

wai_flg was issued in the CPU lock state

wai_flg was issued in the dispatch disabled state

E_OBJ −41 A waiting task already exists (when the attribute is TA_WSGL)

E_NOEXS −42 The target event flag does not exist

E_RLWAI −49 The task has been forcibly released from the waiting state by (i)rel_wai

E_DLT −51 The event flag is deleted while the task is waiting

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM182

Poll Eventflag

pol_flg/ipol_flg

[Overview]

Waits until the condition of an event flag is satisfied (Polling)

[C format]

#include <kernel.h>

ER pol_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

[Parameters]

I/O Parameter Description

I ID flgid ID number of event flag whose condition is to be satisfied

I FLGPTN waiptn Waiting bit pattern

I MODE wfmode Waiting mode

O FLGPTN * p_flgptn Address to which bit pattern is stored when task has been released from

waiting state

[Explanation]

The function to place a task in the waiting state is removed from wai_flg. It is completed normally if the target event

flag has already satisfied the condition under which the task is released from the wait state. If the condition is not

satisfied, pol_flg returns the error code E_TMOUT to indicate that polling has failed. For other details, refer to the

description of wai_flg.

A task is not placed in the wait state even if pol_flg is issued. Even if pol_flg is issued to the event flag with the

TA_WSGL attribute for which a task is already waiting, an error occurs and the error code E_OBJ is returned, like

wai_flg, regardless of whether the condition is satisfied or not.

ipol_flg is intended to be issued from a non-task context but it can also be issued from a task context. pol_flg can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

Refer to the description of wai_flg.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 183

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 pol_flg/ipol_flg is not included in the system

E_PAR −17 The parameter is illegal
− The waiting bit pattern is 0 (waiptn = 0)

− The waiting mode specification is illegal

E_ID −18 The event flag ID number is outside the range
(flgid ≤ 0, maximum event flag count < flgid)

E_CTX −25 pol_flg/ipol_flg was issued in the CPU lock state

E_OBJ −41 A waiting task already exists (when the attribute is TA_WSGL)

E_NOEXS −42 The target event flag does not exist

E_TMOUT −50 Polling has failed

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM184

Wait Eventflag with Timeout

twai_flg

[Overview]

Waits until the condition of an event flag is satisfied (with timeout)

[C format]

#include <kernel.h>

ER twai_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn, TMO tmout);

[Parameters]

I/O Parameter Description

I ID flgid ID number of event flag whose condition is to be satisfied

I FLGPTN waiptn Waiting bit pattern

I MODE wfmode Waiting mode

O FLGPTN * p_flgptn Address to which bit pattern is stored when task has been released from

waiting state

I TMO tmout Timeout time [milliseconds]

[Explanation]

twai_flg is a service call that adds a timeout function to wai_flg. It is completed normally if the target event flag has

already satisfied the condition under which the task is released from the waiting state. If the condition is not satisfied,

the task waits for the time specified by tmout. If the specified time has elapsed without the requested bit pattern being

set while the task is waiting, the task is released from the waiting state and the error code E_TMOUT indicating a

timeout is returned.

If TMO_POL = 0 is specified as tmout, 0 is specified as the timeout time and the service call performs the same

operation as pol_flg. If TMO_FEVR = −1 is specified, the timeout time is specified to be inifite, and the service call

performs the same operation as wai_flg.

For other details, refer to the description of wai_flg.

Tasks placed in the waiting state due to twai_flg are released from waiting by one of the following occurrences.

1. (i)set_flg is issued and the event flag satisfies the condition (E_OK).

2. The specified time has elapsed and timeout occurs (E_TMOUT).

3. The task is forcibly released from the waiting state by (i)rel_wai (E_RLWAI).

4. del_flg is issued and the event flag is deleted (E_DLT).

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 185

[Differences from µµµµITRON3.0]

1. The order of the parameters has been changed.

2. The type of the bit pattern of the event flag has been changed from UINT to FLGPTN.

3. The type of the waiting mode wfmode has been changed from UINT to MODE.

FLGPTN and MODE are types newly defined for µITRON4.0.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 twai_flg is not included in the system

E_PAR −17 The parameter is illegal
− The waiting bit pattern is 0 (waiptn = 0)

− The waiting mode specification is illegal

− The timeout time is illegal (tmout < TMO_FEVR)

E_ID −18 The event flag ID number is outside the range
(flgid ≤ 0, maximum event flag count < flgid)

E_CTX −25 twai_flg was issued from a non-task context

twai_flg was issued in the CPU lock state

twai_flg was issued in the dispatch disabled state

E_OBJ −41 A waiting task already exists (when the attribute is TA_WSGL)

E_NOEXS −42 The target event flag does not exist

E_RLWAI −49 The task has been forcibly released from the waiting state by (i)rel_wai

E_TMOUT −50 Timeout

E_DLT −51 The event flag is deleted while the task is waiting

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM186

Refer Eventflag Status

ref_flg/iref_flg

[Overview]

Obtains event flag information

[C format]

#include <kernel.h>

ER ref_flg(ID flgid, T_RFLG *pk_rflg);

[Parameters]

I/O Parameter Description

I ID flgid ID number of event flag whose information is to be obtained

O T_RFLG * pk_rflg Address of event flag information packet

Configuration of T_RFLG

typedef struct t_rflg {

ID wtskid; /* Presence/absence of waiting task */

FLGPTN flgptn; /* Current bit pattern of event flag */

ATR flgatr; /* Event flag attribute */

} T_RFLG;

[Explanation]

Information on the event flag specified by flgid is stored in the packet specified by pk_rflg.

wtskid indicates whether there is a task waiting until the condition of the event flag is satisfied. If a waiting task

exists, the ID number of the first task in the waiting task queue is stored in wtskid. If there is no waiting task,

TSK_NONE = 0 is stored in wtskid. flgptn stores the current bit pattern of the event flag. flgatr stores the attribute of

the event flag. For the meaning of the stored value, refer to the description of cre_flg.

iref_flg is intended to be issued from a non-task context but it can also be issued from a task context. ref_flg can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

1. The extended data exinf has been deleted from the members of the event flag information packet T_RFLG.

2. The attribute flgatr has been added to the members of the event flag information packet T_RFLG.

3. The type of the current bit pattern flgptn has been changed from UINT to FLGPTN.

FLGPTN is a type newly defined for µITRON4.0.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 187

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ref_flg/iref_flg is not included in the system

E_ID −18 The event flag ID number is outside the range
(flgid ≤ 0, maximum event flag count < flgid)

E_CTX −25 ref_flg/iref_flg was issued from a non-task context

ref_flg/iref_flg was issued in the CPU lock state

E_NOEXS −42 The target event flag does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM188

Create Data Queue

cre_dtq

[Overview]

Creates a data queue

[C format]

#include <kernel.h>

ER cre_dtq(ID dtqid, T_CDTQ *pk_cdtq);

[Parameters]

I/O Parameter Description

I ID dtqid ID number of data queue to be created

I T_CDTQ * pk_cdtq Address of data queue creation packet

Configuration of T_CDTQ

typedef struct t_cdtq {

ATR dtqatr; /* Data queue attribute */

UINT dtqcnt; /* Number of ring buffers */

VP dtq; /* Reserved area */

} T_CDTQ;

[Explanation]

The data queue with the ID number specified by dtqid is created based on the information stored in the packet

pk_cdtq. In other words, a control block is assigned to the data queue to be created, and an area of the ring buffer

used by the data queue is reserved from the user pool.

The data queue creation packet T_CDTQ is explained in detail below.

• dtqatr

Specifies how a task is to wait in the data queue as the data queue attribute. The values that can be specified as

the data queue attribute is as follows:

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 189

Figure 13-6. Data Queue Attribute

dtqatr

15 8 7 0

TA_TFIFO (0): The task waits on an FIFO basis

TA_TPRI (1): The task waits according to the priority

Bit 0 specifies how the task waits in the data queue for data transmission. If TA_TFIFO is specified, the task

waits on an FIFO basis. If TA_TPRI is specified, it waits according to the priority. The waiting mode of the task

when it waits for data reception is fixed to the FIFO basis, regardless of the data queue attribute.

• dtqcnt

Specifies the size of the ring buffer used by the data queue to be created by the number of buffers. The size of

one buffer is sizeof (VP_INT), and the size of the area actually reserved from the user pool, including the size of

the header for management, is calculated by the macro TSZ_DTQ (dtqcnt).

By setting dtqcnt to 0, a data queue that executes communication without buffers and by using only task waiting

can be created.

• dtq

This is a reserved area and must be always set to NULL. Even if this is set to other than NULL, it is ignored.

[Differences from µµµµITRON3.0]

cre_dtq is a newly created service call.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 cre_dtq is not included in the system

E_RSATR −11 The data queue attribute is illegal

E_ID −18 The data queue ID number is outside the range
(dtqid ≤ 0, maximum data queue count < dtqid)

E_CTX −25 cre_dtq was issued from a non-task context

cre_dtq was issued in the CPU lock state

E_NOMEM −33 The area of the ring buffer cannot be reserved

E_OBJ −41 A data queue with the same ID number already exists

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM190

Create Data Queue with Automatic ID Assignment

acre_dtq

[Overview]

Creates a data queue (Automatic assignment of ID number)

[C format]

#include <kernel.h>

ER_ID acre_dtq(T_CDTQ *pk_cdtq);

[Parameter]

I/O Parameter Description

I T_CDTQ * pk_cdtq Address of data queue creation packet

[Explanation]

A data queue is created based on the information stored in the packet pk_cdtq and the ID number of the data

queue is returned. In other words, a data queue control block that is available but has not been created yet is

searched, assigned, and initialized, the area of ring buffers is reserved from the user pool, and the ID number of the

data queue is returned. If the return value is negative, an error occurs. For the meaning of the return value, refer to

[Return values] below.

For the details of the data queue creation packet, refer to the description of cre_dtq.

[Differences from µµµµITRON3.0]

acre_dtq is a newly created service call equivalent to cre_dtq, but with the addition of an automatic ID number

assignment function.

[Return values]

Symbol Value Meaning

(Positive integer) ID number of created data queue (normal termination)

E_RSFN −10 acre_dtq is not included in the system

E_RSATR −11 The data queue attribute is illegal

E_CTX −25 acre_dtq was issued from a non-task context

acre_dtq was issued in the CPU lock state

E_NOMEM −33 The area of the ring buffer cannot be reserved

E_NOID −34 The ID number cannot be assigned (reserving the control block has failed)

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 191

Delete Data Queue

del_dtq

[Overview]

Deletes a data queue

[C format]

#include <kernel.h>

ER del_dtq(ID dtqid);

[Parameter]

I/O Parameter Description

I ID dtqid ID number of data queue to be deleted

[Explanation]

The control block of the data queue specified by dtqid is invalidated, the area of the ring buffer used by the data

queue is returned to the user pool, and the data queue is deleted. After deletion, a new data queue can be created by

using the same ID number.

If waiting tasks exist in the specified data queue, all the tasks are released from the waiting state. The value E_DLT

indicating that the data queue has been deleted is returned for the error code of the service calls (t)snd_dtq and

(t)rcv_dtq that caused the tasks to be kept waiting. Because the data queue can be also deleted even if data that has

not been received is stored in the data queue, this data is lost as soon as the data queue has been deleted.

[Differences from µµµµITRON3.0]

del_dtq is a newly created service call.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 del_dtq is not included in the system

E_ID −18 The data queue ID number is outside the range
(dtqid ≤ 0, maximum data queue count < dtqid)

E_CTX −25 del_dtq was issued from a non-task context

del_dtq was issued in the CPU lock state

E_NOEXS −42 The target data queue does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM192

Send Data to Data Queue

snd_dtq

[Overview]

Transmits data to a data queue

[C format]

#include <kernel.h>

ER snd_dtq(ID dtqid, VP_INT data);

[Parameters]

I/O Parameter Description

I ID dtqid ID number of data queue to which data is to be transmitted

I VP_INT data Transmit data

[Explanation]

The data specified by data is transmitted to the data queue specified by dtqid.

If tasks are waiting in the target data queue for data reception, the first task in the queue is allowed to receive the

data and is released from the queue. If no waiting task exists, the data is stored in the ring buffer of the data queue on

a FIFO basis.

If the buffer is already filled with the other data, the task waits for data transmission and remains in the waiting state

until the buffer has a vacancy and data transmission has been completed. At this time, the task is registered to the

waiting task queue of the data queue. Tasks are registered to the queue according to their priority (TA_TPRI attribute)

or on an FIFO basis (TA_TFIFO attribute), depending on the attribute specified when the data queue was created.

Tasks placed in the waiting state due to snd_dtq are released from waiting by one of the following occurrences.

1. (t)rcv_dtq or (i)prcv_dtq is issued and the buffer now has a vacancy (E_OK).

2. (i)rel_wai is issued and the task is forcibly released from the waiting state (E_RLWAI).

3. del_dtq is issued and the data queue is deleted (E_DLT).

[Differences from µµµµITRON3.0]

snd_dtq is a newly created service call.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 193

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 snd_dtq is not included in the system

E_ID −18 The data queue ID number is outside the range
(dtqid ≤ 0, maximum data queue count < dtqid)

E_CTX −25 snd_dtq was issued from a non-task context

snd_dtq was issued in the CPU lock state

snd_dtq was issued in the dispatch disabled state

E_NOEXS −42 The target data queue does not exist

E_RLWAI −49 The task is forcibly released from the waiting state by (i)rel_wai

E_DLT −51 The data queue is deleted while the task is waiting

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM194

Poll and Send Data to Data Queue

psnd_dtq/ipsnd_dtq

[Overview]

Transmits data to a data queue (polling)

[C format]

#include <kernel.h>

ER psnd_dtq(ID dtqid, VP_INT data);

[Parameters]

I/O Parameter Description

I ID dtqid ID number of data queue to which data is to be transmitted

I VP_INT data Transmit data

[Explanation]

The data specified by data is transmitted to the data queue specified by dtqid.

If tasks are waiting in the target data queue for data reception, the first task in the queue is allowed to receive the

data and is released from the queue. If no waiting task exists, the data is stored in the ring buffer of the data queue on

a FIFO basis.

If the buffer is already filled with the other data, an error occurs and the error code E_TMOUT is returned.

ipsnd_dtg is intended to be issued from a non-task context but it can also be issued from a task context. psnd_dtg

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

psnd_dtq/ipsnd_dtq is a newly created service call.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 psnd_dtq/ipsnd_dtq is not included in the system

E_ID −18 The data queue ID number is outside the range
(dtqid ≤ 0, maximum data queue count < dtqid)

E_CTX −25 psnd_dtq/ipsnd_dtq was issued in the CPU lock state

E_NOEXS −42 The target data queue does not exist

E_TMOUT −50 Polling has failed

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 195

Send Data to Data Queue with Timeout

tsnd_dtq

[Overview]

Transmits data to a data queue (with timeout)

[C format]

#include <kernel.h>

ER tsnd_dtq(ID dtqid, VP_INT data, TMO tmout);

[Parameters]

I/O Parameter Description

I ID dtqid ID number of data queue to which data is to be transmitted

I VP_INT data Transmit data

I TMO tmout Timeout time [milliseconds]

[Explanation]

The data specified by data is transmitted to the data queue specified by dtqid.

If tasks are waiting in the target data queue for data reception, the first task in the queue is allowed immediately to

receive the data and is released from the queue. If no waiting task exists, the data is stored in the ring buffer of the

data queue on a FIFO basis.

If the buffer is already filled with the other data, the task waits for data transmission only for the time specified as

tmout, and it is kept waiting until the buffer has a vacancy and data transmission is completed, or until the specified

time has elapsed. At this time, the task is registered to the waiting task queue of the data queue. The task is

registered to the queue according to the priority (TA_TPRI attribute) or on an FIFO basis (TA_TFIFO attribute),

depending on the attribute specified when the data queue was created.

If TMO_POL = 0 is specified as tmout, 0 is specified as the timeout time and tsnd_dtq performs the same operation

as psnd_dtq. If TMO_FEVR = −1 is specified as tmout, the timeout time is specified to be infinite and this service call

performs the same operation as snd_dtq.

Tasks placed in the waiting state due to tsnd_dtq are released from waiting by one of the following occurrences.

1. (t)rcv_dtq or (i)prcv_dtq is issued and the buffer now has a vacancy (E_OK).

2. The specified time has elapsed and therefore timeout has occurred (E_TMOUT).

3. (i)rel_wai is issued and the task is forcibly released from the waiting state (E_RLWAI).

4. del_dtq is issued and the data queue is deleted (E_DLT).

[Differences from µµµµITRON3.0]

tsnd_dtq is a newly created service call.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM196

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 tsnd_dtq is not included in the system

E_PAR −17 The parameter is illegal
− The timeout time is illegal (tmout < TMO_FEVR = −1)

E_ID −18 The data queue ID number is outside the range
(dtqid ≤ 0, maximum data queue count < dtqid)

E_CTX −25 tsnd_dtq wad issued from a non-task context

tsnd_dtq wad issued in the CPU lock state

tsnd_dtq wad issued in the dispatch disabled state

E_NOEXS −42 The target data queue does not exist

E_RLWAI −49 The task is forcibly released from the waiting state by (i)rel_wai

E_TMOUT −50 Timeout

E_DLT −51 The data queue is deleted while the task is waiting

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 197

Force Send Data to Data Queue

fsnd_dtq/ifsnd_dtq

[Overview]

Transmits data to a data queue (overwriting data)

[C format]

#include <kernel.h>

ER fsnd_dtq(ID dtqid, VP_INT data);

[Parameters]

I/O Parameter Description

I ID dtqid ID number of data queue to which data is to be transmitted

I VP_INT data Transmit data

[Explanation]

The data specified by data is transmitted to the data queue specified by dtqid.

If tasks are waiting in the target data queue for data reception, the first task in the queue is immediately allowed to

receive the data and is released from the queue. If no waiting task exists, the data is stored in the ring buffer of the

data queue on a FIFO basis. If the buffer is already filled with the other data, the oldest data is forcibly overwritten.

Overwriting takes place even if a task waiting for data transmission exists.

If fsnd_dtq is issued to a data queue without buffers, an error occurs and the error code E_ILUSE is returned.

ifsnd_dtg is intended to be issued from a non-task context but it can also be issued from a task context. fsnd_dtg

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

fsnd_dtq/ifsnd_dtq is a newly created service call.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 fsnd_dtq/ifsnd_dtq is not included in the system

E_ID −18 The data queue ID number is outside the range
(dtqid ≤ 0, maximum data queue count < dtqid)

E_CTX −25 fsnd_dtq/ifsnd_dtq was issued in the CPU lock state

E_ILUSE −28 fsnd_dtq/ifsnd_dtq was issued to a data queue without buffer

E_NOEXS −42 The target data queue does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM198

Receive Data from Data Queue

rcv_dtq

[Overview]

Receives data from a data queue

[C format]

#include <kernel.h>

ER rcv_dtq(ID dtqid, VP_INT* p_data);

[Parameters]

I/O Parameter Description

I ID dtqid ID number of data queue from which data is to be received

O VP_INT* p_data Address to which received data is to be stored

[Explanation]

Data is received from the data queue specified by dtqid and written to the address specified by p_data. If the buffer

of the data queue is already filled with data and if a task waiting for data transmission exists, the transmission

processing of the waiting task is completed and the task is released from the waiting state.

If no data that has been received exists in the buffer of the target data queue, the task waits for data reception and

is registered to the reception waiting task queue of the data queue. At this time, the task waits only on an FIFO basis.

Tasks placed in the waiting state due to rcv_dtq are released from waiting by one of the following occurrences.

1. (t)snd_dtq, (i)psnd_dtq, or (I)fsnd_dtq is issued and data is received (E_OK).

2. (i)rel_wai is issued and the task is forcibly released from the waiting state (E_RLWAI).

3. del_dtq is issued and the data queue is deleted (E_DLT).

[Differences from µµµµITRON3.0]

rcv_dtq is a newly created service call.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 199

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 rcv_dtq is not included in the system

E_ID −18 The data queue ID number is outside the range
(dtqid ≤ 0, maximum data queue count < dtqid)

E_CTX −25 rcv_dtq was issued from a non-task context

rcv_dtq was issued in the CPU lock state

rcv_dtq was issued in the dispatch disabled state

E_NOEXS −42 The target data queue does not exist

E_RLWAI −49 The task is forcibly released from the waiting state by (i)rel_wai

E_DLT −51 The target data queue does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM200

Poll and Receive Data from Data Queue

prcv_dtq/iprcv_dtq

[Overview]

Receives data from a data queue (polling)

[C format]

#include <kernel.h>

ER prcv_dtq(ID dtqid, VP_INT* p_data);

[Parameters]

I/O Parameter Description

I ID dtqid ID number of data queue from which data is to be received

O VP_INT* p_data Address to which received data is to be stored

[Explanation]

Data is received from the data queue specified by dtqid, and written to the address specified by p_data. If the

buffer of the data queue is already filled with data and if a task waiting for data transmission exists, the transmission

processing of the waiting task is completed and the task is released from the waiting state.

If no data that has been received exists in the buffer of the target data queue, an error occurs and the error code

E_TMOUT is returned.

iprcv_dtg is intended to be issued from a non-task context but it can also be issued from a task context. prcv_dtg

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

prcv_dtq/iprcv_dtq is a newly created service call.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 prcv_dtq/iprcv_dtq is not included in the system

E_ID −18 The data queue ID number is outside the range
(dtqid ≤ 0, maximum data queue count < dtqid)

E_CTX −25 prcv_dtq/iprcv_dtq was issued in the CPU lock state

E_NOEXS −42 The target data queue does not exist

E_TMOUT −50 Polling has failed

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 201

Receive Data from Data Queue with Timeout

trcv_dtq

[Overview]

Receives data from a data queue (with timeout)

[C format]

#include <kernel.h>

ER trcv_dtq(ID dtqid, VP_INT* p_data, TMO tmout);

[Parameters]

I/O Parameter Description

I ID dtqid ID number of data queue from which data is to be received

O VP_INT* p_data Address to which received data is to be stored

I TMO tmout Timeout time [milliseconds]

[Explanation]

Data is received from the data queue specified by dtqid, and written to the address specified by p_data. If the

buffer of the data queue is already filled with data and if a task waiting for data transmission exists, the transmission

processing of the waiting task is completed and the task is released from the waiting state.

If no data that has been received exists in the buffer of the target data queue, the task waits for data reception only

for the time specified as tmout and is registered to the reception waiting task queue of the data queue. At this time,

the task waits only on an FIFO basis.

If TMO_POL = 0 is specified as tmout, 0 is specified as the timeout time and trcv_dtq performs the same operation

as prcv_dtq. If TMO_FEVR = −1 is specified as tmout, the timeout time is specified to be infinite and this service call

performs the same operation as rcv_dtq.

Tasks placed in the waiting state due to trcv_dtq are released from waiting by one of the following occurrences.

1. (t)snd_dtq, (i)psnd_dtq, or (i)fsnd_dtq is issued and data is received (E_OK).

2. The specified time has elapsed and therefore timeout has occurred (E_TMOUT).

3. (i)rel_wai is issued and the task is forcibly released from the waiting state (E_RLWAI).

4. del_dtq is issued and the data queue is deleted (E_DLT).

[Differences from µµµµITRON3.0]

trcv_dtq is a newly created service call.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM202

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 trcv_dtq is not included in the system

E_PAR −17 The parameter is illegal
− The timeout time is illegal (tmout < TMO_FEVR = −1)

E_ID −18 The data queue ID number is outside the range
(dtqid ≤ 0, maximum data queue count < dtqid)

E_CTX −25 trcv_dtq was issued from a non-task context

trcv_dtq was issued in the CPU lock state

trcv_dtq was issued in the dispatch disabled state

E_NOEXS −42 The target data queue does not exist

E_RLWAI −49 The task is forcibly released from the waiting state by (i)rel_wai

E_TMOUT −50 Timeout

E_DLT −51 The data queue is deleted while the task is waiting

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 203

Refer Data Queue Status

ref_dtq/iref_dtq

[Overview]

Obtains data queue information

[C format]

#include <kernel.h>

ER ref_dtq(ID dtqid, T_RDTQ *pk_rdtq);

[Parameters]

I/O Parameter Description

I ID dtqid ID number of data queue whose information is to be obtained

O T_RDTQ * pk_rdtq Address of data queue information packet

Configuration of T_RDTQ

typedef struct t_rdtq {

ID stskid; /* ID number of task waiting for transmission */

ID rtskid; /* ID number of task waiting for reception */

UINT sdtqcnt; /* Number of data not received */

ATR dtqatr; /* Data queue attribute */

UINT dtqcnt; /* Size of ring buffer (number of ring buffers)*/

VP dtq; /* Reserved area */

} T_RDTQ;

[Explanation]

Information is obtained on the data queue specified by dtqid, and stored in the packet specified by pk_rdtq. The

data queue information is described in detail below.

• stskid

Stores the ID number of the first task in the waiting task queue if tasks waiting for data transmission exist in the

target data queue. If no task exists, TSK_NONE = 0 is stored.

• rtskid

Stores the ID number of the first task in the waiting task queue if tasks waiting for data reception exist in the

target data queue. If no task exists, TSK_NONE = 0 is stored.

• sdtqcnt

Indicates the number of data stored in the ring buffer of the specified queue, waiting to be received by a task.

• dtqatr

dtqatr stores the data queue attribute of the target data queue. For the meaning of the value stored, refer to the

description of cre_dtq.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM204

• dtqcnt

Indicates the size of the ring buffer used by the target data queue as the number of ring buffers.

• dtq

This is a reserved area and always stores NULL.

iref_dtg is intended to be issued from a non-task context but it can also be issued from a task context. ref_dtg can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

ref_dtq/iref_dtq is a newly created service call.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ref_dtq/iref_dtq is not included in the system

E_ID −18 The data queue ID number is outside the range
(dtqid ≤ 0, maximum data queue count < dtqid)

E_CTX −25 ref_dtq/iref_dtq was issued in the CPU lock state

E_NOEXS −42 The target data queue does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 205

Create Mailbox

cre_mbx

[Overview]

Creates a mailbox

[C format]

#include <kernel.h>

ER cre_mbx(ID mbxid, T_CMBX *pk_cmbx);

[Parameters]

I/O Parameter Description

I ID mbxid ID number of mailbox to be created

I T_CMBX * pk_cmbx Address of mailbox creation packet

Configuration of T_CMBX

typedef struct t_cmbx {

ATR mbxatr; /* Mailbox attribute */

PRI maxmpri; /* Mail priority range */

VP mprihd; /* Reserved area */

} T_CMBX;

[Explanation]

A mailbox with the ID number specified by mbxid is created based on the information stored in the packet pk_cmbx.

In other words, a control block is assigned to the created mailbox and the control block is initialized.

The mailbox creation packet T_CMBX is described in detail below.

• mbxatr

Specifies how tasks wait in the mailbox created as a mailbox attribute. The value that can be specified as the

mailbox attribute is as follows:

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM206

Figure 13-7. Mailbox Attribute

mbxatr

15 8 7 0

TA_TFIFO (0): The task waits on an FIFO basis

TA_TPRI (1): The task waits according to the priority

TA_MFIFO (0): Mail is registered on an FIFO basis

TA_MPRI (1): Mail is registered according to the priority

Bit 0 specifies how the task waiting for mail reception is registered to the waiting task queue if no mail is

registered to the mailbox. If TA_TFIFO is specified, the task waits on an FIFO basis. If TA_TPRI is specified, it

waits according to the priority.

Bit 1 specifies how mail is registered in the mailbox when it is transmitted, if there is no task waiting for mail

reception. If TA_MFIFO is specified, the mail is registered on an FIFO basis. If TA_MPRI is specified, the priority

of the mail is referenced and the mail is registered according to its priority.

• maxmpri

Specifies the range (maximum value) of the priority of the mail if TA_MPRI is specified as the mailbox attribute.

An integer of 1 or greater and 0x7fff or less can be specified. The lower the value, the higher the priority of the

mail. This value is ignored if TA_MFIFO is specified.

• mprihd

This is a reserved area. Always specify NULL. Anything other than NULL is ignored even if specified.

[Differences from µµµµITRON3.0]

The extended data exinf has been deleted from the members of the mailbox creation packet T_CMBX, and

maxmpri and mprihd have been added.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 cre_mbx is not included in the system

E_RSATR −11 The mailbox attribute is illegal

E_PAR −17 The parameter is illegal
− The priority of the mail is outside the range (maxmpri ≤ 0, 0x7fff < maxmpri)

E_ID −18 The mailbox ID number is outside the range
(mbxid ≤ 0, maximum mailbox count < mbxid)

E_CTX −25 cre_mbx was issued from a non-task context

cre_mbx was issued in the CPU lock state

E_OBJ −41 A mailbox with the same ID number already exists

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 207

Create Mailbox with Automatic ID Assignment

acre_mbx

[Overview]

Creates a mailbox (Automatic assignment of ID number)

[C format]

#include <kernel.h>

ER_ID acre_mbx(T_CMBX *pk_cmbx);

[Parameter]

I/O Parameter Description

I T_CMBX * pk_cmbx Address of mailbox creation packet

[Explanation]

A mailbox is created based on the mailbox creation information stored in pk_cmbx, and the ID number of the

mailbox is returned. In other words, a mailbox control block that is available but has not been created is searched,

assigned, and initialized, and the ID number of the control block is returned. If the return value is negative, an error

occurs. For the meaning of the return value, refer to [Return values] below.

For the details of the mailbox creation packet, refer to the description of cre_mbx.

[Differences from µµµµITRON3.0]

acre_mbx is a newly created service call equivalent to cre_mbx, but with the addition of an automatic ID number

assignment function.

[Return values]

Symbol Value Meaning

(Positive integer) ID number of created mailbox (normal termination)

E_RSFN −10 acre_mbx is not included in the system

E_RSATR −11 The mailbox attribute is illegal

E_PAR −17 The parameter is illegal
− The mail priority is outside the range (maxmpri ≤ 0, 0x7fff < maxmpri)

E_CTX −25 acre_mbx was issued from a non-task context

acre_mbx was issued in the CPU lock state

E_NOID −34 The ID number cannot be assigned (reserving a control block has failed)

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM208

Delete Mailbox

del_mbx

[Overview]

Deletes a mailbox

[C format]

#include <kernel.h>

ER del_mbx(ID mbxid);

[Parameter]

I/O Parameter Description

I ID mbxid ID number of mailbox to be deleted

[Explanation]

The control block of the mailbox specified by mbxid is invalidated and the mailbox is deleted. After deletion, a new

mailbox can be created using the same ID number.

If waiting tasks exist in the target mailbox, all the waiting tasks are released from the waiting state. Value E_DLT

that indicates that the mailbox has been deleted is returned for the error code of service call (t)rcv_mbx that caused

the tasks to wait.

Even if a message waiting to be received is registered to the target mailbox, the mailbox is deleted. Note that, even

if a memory block is registered as a message, the memory block is not returned to the memory pool.

[Differences from µµµµITRON3.0]

The RX4000 V3.x automatically releases a memory block registered as a message to a memory pool when

del_mbx is issued, but the RX4000 V4.0 does not release the memory block.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 del_mbx is not included in the system

E_ID −18 The mailbox ID number is outside the range
(mbxid ≤ 0, maximum mailbox count < mbxid)

E_CTX −25 del_mbx was issued from a non-task context

del_mbx was issued in the CPU lock state

E_NOEXS −42 The target mailbox does not exist.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 209

Send Mail to Mailbox

snd_mbx/isnd_mbx

[Overview]

Transmits a message to a mailbox

[C format]

#include <kernel.h>

ER snd_mbx(ID mbxid, T_MSG* pk_msg);

[Parameters]

I/O Parameter Description

I ID mbxid ID number of mailbox to which message is to be transmitted

I T_MSG * pk_msg Address of message packet

[Explanation]

The message specified by pk_msg is transmitted to the mailbox specified by mbxid.

If waiting tasks exist in the task queue of the target mailbox, the first task in the waiting task queue is released from

the waiting state and is immediately allowed to receive the message. If no waiting task exists, the transmitted

message is registered to the message queue of the mailbox. At this time, the message is registered in the order

specified (on an FIFO basis or according to priority) by an attribute when the message was created. The registered

message is received in the order in which it was registered. To register a priority for a message, use the structure

T_MSG_PRI instead of the structure T_MSG. For details, refer to the RX4000 (µµµµITRON4.0) Technical User’s

Manual (U14835E).

An area where the kernel manages messages (message header) is necessary for a message packet (pk_msg).

The first 4 bytes of this area (6 bytes if the message has a priority) are used. Therefore, the user must write the body

of the message after the message header. For details, refer to 5.5 Mailbox.

A message is transmitted or received not by copying the message itself but by transmitting or receiving its address.

Therefore, it is necessary to prevent the memory area used for the message from being rewritten even after the

message has been transmitted.

isnd_mbx is intended to be issued from a non-task context but it can also be issued from a task context. snd_mbx

can be issued from a non-task context.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM210

[Differences from µµµµITRON3.0]

The name of snd_msg has been changed to snd_mbx. With the RX4000 V3.x, an error occurred if snd_msg was

issued with a message already registered to the mailbox specified. With the RX4000 V4.0, however, no error occurs.

Multiple transmission must be checked by the user.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 snd_mbx/isnd_mbx is not included in the system

E_PAR −17 The parameter is illegal
− The priority of the message is outside the range

(msgpri ≤ 0, maximum priority value < msgpri)

E_ID −18 The mailbox ID number is outside the range
(mbxid ≤ 0, maximum mailbox count < mbxid)

E_CTX −25 snd_mbx/isnd_mbx was issued in the CPU lock state

E_NOEXS −42 The target mailbox does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 211

Receive Mail from Mailbox

rcv_mbx

[Overview]

Receives a message from a mailbox

[C format]

#include <kernel.h>

ER rcv_mbx(ID mbxid, T_MSG** ppk_msg);

[Parameters]

I/O Parameter Description

I ID mbxid ID number of mailbox from which message is to be received

O T_MSG ** ppk_msg Address to store address of receive message packet

[Explanation]

A message is received from the mailbox specified by mbxid, and the first address of the message is stored in the

area specified by ppk_msg.

If no message is registered to the target mailbox and therefore cannot be received, the task waits for message

reception and is registered to the waiting task queue of the mailbox in the sequence (on an FIFO basis or according to

priority) specified when the mailbox was created.

Tasks placed in the waiting state due to rcv_mbx are released from waiting by one of the following occurrences.

1. (i)snd_mbx is issued and the task receives a message (E_OK).

2. (i)rel_wai is issued and the task is forcibly released from the waiting state (E_RLWAI).

3. del_mbx is issued and the mailbox is deleted (E_DLT).

[Differences from µµµµITRON3.0]

The name of rcv_msg has been changed to rcv_mbx. In addition, the order of the parameters has also been

changed.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM212

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 rcv_mbx is not included in the system

E_ID −18 The mailbox ID number is outside the range
(mbxid ≤ 0, maximum mailbox count < mbxid)

E_CTX −25 rcv_mbx was issued from a non-task context

rcv_mbx was issued in the CPU lock state

rcv_mbx was issued in the dispatch disabled state

E_NOEXS −42 The target mailbox does not exist

E_RLWAI −49 The task is forcibly released from the waiting state by (i)rel_wai

E_DLT −51 The mailbox is deleted while a task is waiting

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 213

Poll and Receive Mail from Mailbox

prcv_mbx/iprcv_mbx

[Overview]

Receives a message from a mailbox (polling)

[C format]

#include <kernel.h>

ER prcv_mbx(ID mbxid, T_MSG** ppk_msg);

[Parameters]

I/O Parameter Description

I ID mbxid ID number of mailbox from which message is to be received

O T_MSG ** ppk_msg Address to store address of receive message packet

[Explanation]

A message is received from the mailbox specified by mbxid, and the address of the message is stored in the area

specified by ppk_msg.

If a message is registered to the target mailbox, the task receives the message and continues processing. If no

message is registered, polling fails and the error code E_TMOUT is returned.

iprcv_mbx is intended to be issued from a non-task context but it can also be issued from a task context. prcv_mbx

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

The name of prcv_msg has been changed to prcv_mbx. In addition, the order of the parameters has also been

changed.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 prcv_mbx/iprcv_mbx is not included in the system

E_ID −18 The mailbox ID number is outside the range
(mbxid ≤ 0, maximum mailbox count < mbxid)

E_CTX −25 prcv_mbx/iprcv_mbx was issued in the CPU lock state

E_NOEXS −42 The target mailbox does not exist

E_TMOUT −50 Polling has failed

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM214

Receive Mail from Mailbox with Timeout

trcv_mbx

[Overview]

Receives a message from a mailbox (with timeout)

[C format]

#include <kernel.h>

ER trcv_mbx(ID mbxid, T_MSG** ppk_msg, TMO tmout);

[Parameters]

I/O Parameter Description

I ID mbxid ID number of mailbox from which message is to be received

O T_MSG ** ppk_msg Address to store address of receive message packet

I TMO tmout Timeout time [milliseconds]

[Explanation]

A message is received from the mailbox specified by mbxid, and the address of the message is stored in the area

specified by ppk_msg.

If a message is registered to the target mailbox, the task receives the message and continues processing. If no

message is registered to the mailbox, the task waits only for the time specified by tmout. The task is registered to the

waiting task queue of the mailbox in the order (on an FIFO basis or according to priority) specified by the attribute

when the mailbox was created.

If TMO_POL = 0 is specified as tmout, 0 is specified as the timeout time and trcv_mbx performs the same

operation as prcv_mbx. If TMO_FEVR = −1 is specified as tmout, the timeout time is specified to be infinite and this

service call performs the same operation as rcv_mbx.

Tasks placed in the waiting state due to trcv_mbx are released from waiting by one of the following occurrences.

1. (i)snd_mbx is issued and the task receives a message (E_OK).

2. The specified time elapses and timeout occurs (E_TMOUT).

3. (i)rel_wai is issued and the task is forcibly released from the waiting state (E_RLWAI).

4. del_mbx is issued and the mailbox is deleted (E_DLT).

[Differences from µµµµITRON3.0]

The name of trcv_msg has been changed to trcv_mbx. In addition, the order of the parameters has also been

changed.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 215

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 trcv_mbx is not included in the system

E_PAR −17 The timeout time is illegal (tmout < TMO_FEVR = −1)

E_ID −18 The mailbox ID number is outside the range
(mbxid ≤ 0, maximum mailbox count < mbxid)

E_CTX −25 trcv_mbx was issued from a non-task context

trcv_mbx was issued in the CPU lock state

trcv_mbx was issued in the dispatch disabled state

E_NOEXS −42 The target mailbox does not exist

E_RLWAI −49 The task is forcibly released from the waiting state by (i)rel_wai

E_TMOUT −50 Timeout

E_DLT −51 The mailbox is deleted while a task is waiting

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM216

Refer Mailbox Status

ref_mbx/iref_mbx

[Overview]

Obtains mailbox information

[C format]

#include <kernel.h>

ER ref_mbx(ID mbxid, T_RMBX *pk_rmbx);

[Parameters]

I/O Parameter Description

I ID mbxid ID number of mailbox whose information is to be obtained

O T_RMBX * pk_rmbx Address of mailbox information packet

Configuration of T_RMBX

typedef struct t_rmbx {

ID wtskid; /* Presence/absence of waiting task */

T_MSG * pk_msg; /* Presence/absence of message */

ATR mbxatr; /* Mailbox attribute */

} T_RMBX;

[Explanation]

Information is obtained on the mailbox specified by mbxid and stored in the packet specified by pk_mbx. The

mailbox information is described in detail below. To issue this service call from a non-task context such as an interrupt

service routine, use iref_mbx.

• wtskid

Stores the ID number of the first task in the waiting task queue if tasks waiting for message reception exist in the

target mailbox. If no task exists, TSK_NONE = 0 is stored.

• pk_msg

Stores the address of the first message in the queue of the messages that are registered to the target mailbox

and have not been received. If no message is registered, NULL is stored.

• mbxatr

Stores the mailbox attribute of the target mailbox. For the meaning of the stored value, refer to the description of

cre_mbx.

iref_mbx is intended to be issued from a non-task context but it can also be issued from a task context. ref_mbx

can be issued from a non-task context.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 217

[Differences from µµµµITRON3.0]

The extended data exinf has been deleted from the mailbox information and mailbox attribute mbxatr has been

added. The type of wtskid indicating the presence or absence of a waiting task has been changed from BOOL_ID to

ID. In addition, the order of the parameters has also been changed.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ref_mbx/iref_mbx is not included in the system

E_ID −18 The mailbox ID number is outside the range
(mbxid ≤ 0, maximum mailbox count < mbxid)

E_CTX −25 ref_mbx/iref_mbx was issued in the CPU lock state

E_NOEXS −42 The target mailbox does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM218

Create Mutex

cre_mtx

[Overview]

Creates a mutex

[C format]

#include <itron.h>

ER cre_mtx(ID mtxid, T_CMTX *pk_cmtx);

[Parameters]

I/O Parameter Description

I ID mtxiid ID number of mutex to be created

I T_CMTX * pk_cmtx Address of mutex creation packet

Configuration of T_CMTX

typedef struct t_cmtx {

ATR mtxatr; /* Mutex attribute */

PRI ceilpri; /* Priority ceiling value */

} T_CMTX;

[Explanation]

A mutex with the ID number specified by mtxid is created based on the information stored in the packet pk_cmtx.

In other words, a control block is assigned to the mutex to be created and the control block is initialized.

The mutex creation packet T_CMTX is described in detail below.

• mtxatr

Specifies the priority control protocol of the mutex to be created and the order in which tasks wait as a mutex

attribute. The values that can be specified as a mutex attribute and their meanings are as follows:

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 219

Figure 13-8. Mutex Attribute

mtxatr

15 8 7 0

TA_TFIFO (00): The task waits on an FIFO basis

TA_TPRI (01): The task waits according to priority

TA_INHERIT (10): The task waits according to priority and priority inheritance protocol

TA_CEILING (11): The task waits according to priority and priority ceiling protocol

Bits 0 and 1 of mtxatr specify the order in which tasks are registered to the waiting task queue, and a priority

control protocol if tasks wait for a mutex.

The tasks wait on an FIFO basis if TA_TFIFO is specified; if any other attribute is specified, they wait according to

priority. No priority control is performed if the TA_TFIFO and TA_TPRI attributes are specified. If the

TA_INHERIT attribute is specified, a priority inheritance protocol is employed. If TA_CEILING attribute is

specified, a priority ceiling protocol is employed.

• ceilpri

Specifies the ceiling value of the priority if TA_CEILING is specified as the mutex attribute. If a task waits for a

mutex with the priority ceiling protocol selected, and if the priority of the task that locks the mutex is lower than

that specified by ceilpri, the priority of the task is changed to that specified by ceilpri.

If an attribute other than TA_CEILING is specified as the mutex attribute, the value of ceilpri is meaningless.

[Differences from µµµµITRON3.0]

cre_mtx is a newly created service call.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 cre_mtx is not included in the system

E_RSATR −11 The mutex attribute is illegal

E_PAR −17 The parameter is illegal
− The priority ceiling value is outside the range

(ceilpri ≤ 0, maximum priority value < cilpri)

E_ID −18 The mutex ID number is outside the range (mtxid ≤ 0, maximum mutex count < mtxid)

E_CTX −25 cre_mtx was issued from a non-task context

cre_mtx was issued in the CPU lock state

E_OBJ −41 A mutex with the same ID number already exists

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM220

Create Mutex with Automatic ID assignment

acre_mtx

[Overview]

Creates a mutex (Automatic assignment of ID number)

[C format]

#include <kernel.h>

ER_ID acre_mtx(T_CMTX *pk_cmtx);

[Parameter]

I/O Parameter Description

I T_CMTX * mtxid Address of mutex creation packet

[Explanation]

A mutex is created based on the information stored in the packet pk_cmtx, and the ID number of the mutex is

returned. In other words, a mutex control block that is available but has not been created is searched, assigned, and

initialized, and its ID number is returned. If the return value is negative, it is an error. For the meaning of the return

value, refer to [Return values] below.

For details of the mutex creation packet, refer to the description of cre_mtx.

[Differences from µµµµITRON3.0]

acre_mtx is a newly created service call equivalent to cre_mtx, but with the addition of an automatic ID number

assignment function.

[Return values]

Symbol Value Meaning

(Integer of 1 or greater) ID number of the created mutex (normal termination)

E_RSFN −10 acre_mtx is not included in the system

E_RSATR −11 The mutex attribute is illegal

E_PAR −17 The parameter is illegal
− The priority ceiling value is outside the range

(ceilpri ≤ 0, maximum priority value < ceilpri)

E_CTX −25 acre_mtx was issued from a non-task context

acre_mtx was issued in the CPU lock state

E_NOID −34 The ID number cannot be assigned

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 221

Delete Mutex

del_mtx

[Overview]

Deletes a mutex

[C format]

#include <itron.h>

ER del_mtx(ID mtxid);

[Parameter]

I/O Parameter Description

I ID mtxid ID number of mutex to be deleted

[Explanation]

The control block of the mutex specified by mtxid is invalidated and the mutex is deleted. After deletion, a new

mutex can be created using the same ID number.

If waiting tasks exist for the target mutex, all the tasks are released from the waiting state. The value E_DLT

indicating that the mutex has been deleted is returned for the error code of the service call (t)loc_mtx that caused the

tasks to wait.

Even if the target mutex is locked by a task, it is deleted. However, deletion of the mutex is not immediately

reported to this task. The task learns that the mutex has been deleted if E_NOEXS or E_ILUSE is returned as the

error code of unl_mtx when lock of the mutex is released.

If the task locks a mutex with the TA_INHERIT or TA_CEILING attribute with the priority raised by either of the

priority control protocols, and if the mutex is deleted by del_mtx (any other mutex is not locked), the priority of the task

drops to the base priority.

[Differences from µµµµITRON3.0]

del_mtx is a newly created service call.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 del_mtx is not included in the system

E_ID −18 The mutex ID number is outside the range (mtxid ≤ 0, maximum mutex count < mtxid)

E_CTX −25 del_mtx was issued from a non-task context

del_mtx was issued in the CPU lock state

E_NOEXS −42 The target mutex does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM222

Lock Mutex

loc_mtx

[Overview]

Locks a mutex

[C format]

#include <kernel.h>

ER loc_mtx(ID mtxid);

[Parameter]

I/O Parameter Description

I ID mtxiid ID number of mutex to be locked

[Explanation]

The mutex specified by mtxid is locked.

If the target mutex can be locked, i.e., if locking the mutex is successful, the task continues processing. If the

mutex has the TA_CEILING attribute at this time and if the ceiling of the priority (ceilpri) specified when the mutex was

created is higher than the current priority of the task that locks the mutex, the priority of the task is raised to the ceiling

value.

If the mutex has been already locked by another task, the task enters the waiting state and is registered to the

waiting task queue in the order (on an FIFO basis or according to priority) specified when the mutex was created. If

the mutex has the TA_INHERIT attribute at this time and if the current priority of the task that has entered the waiting

state is higher than the current priority of the task that is locking the mutex, the priority of the locking task is lowered to

the current priority of the waiting task.

If the target mutex has the TA_CEILING attribute and if the base priority of the task is higher than the ceiling value

of the priority of the mutex, an error occurs and the error code E_ILUSE is returned.

The current priority raised by the mutex is changed to the base priority of the task when the task releases the lock

of the mutex (if the task locks two or more mutexes, when it releases the lock of all the mutexes).

Tasks placed in the waiting state due to loc_mtx are released from waiting by one of the following occurrences.

1. unl_mtx is issued and the task locks a new mutex (E_OK).

2. The locking task is terminated and a new mutex is locked (E_OK).

3. (i)rel_wai is issued and the task is forcibly released from the waiting state (E_RLWAI).

4. del_mtx is issued and the mutex is deleted (E_DLT).

[Differences from µµµµITRON3.0]

loc_mtx is a newly created service call.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 223

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 loc_mtx is not included in the system

E_ID −18 The mutex ID number is outside the range (mtxid ≤ 0, maximum mutex count < mtxid)

E_CTX −25 loc_mtx was issued from a non-task context

loc_mtx was issued in the CPU lock state

loc_mtx was issued in the dispatch disabled state

E_ILUSE −28 The base priority is higher than the priority ceiling value (when TA_CEILING attribute

is specified)

E_NOEXS −42 The target mutex does not exist

E_RLWAI −49 The task is forcibly released from the waiting state by (i)rel_wai

E_DLT −51 The mutex is deleted while a task is waiting

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM224

Poll and Lock Mutex

ploc_mtx

[Overview]

Locks a mutex (polling)

[C format]

#include <kernel.h>

ER ploc_mtx(ID mtxid);

[Parameter]

I/O Parameter Description

I ID mtxiid ID number of mutex to be locked

[Explanation]

The mutex specified by mtxid is locked.

If the target mutex can be locked, i.e., if locking the mutex is successful, the task continues processing. If the

mutex has the TA_CEILING attribute at this time and if the current priority of the locking task is lower than the priority

ceiling value (ceilpri) specified when the mutex was created, the current priority of the task is raised to the ceiling

value.

If the mutex has been already locked by another task and cannot be locked, the error code E_TMOUT is returned.

If the target mutex has the TA_CEILING attribute and if the base priority of the locking task is higher than the

priority ceiling value of the mutex, an error occurs and the error code E_ILUSE is returned.

The current priority raised by the mutex is changed to the base priority of the task when the task releases the lock

of the mutex (if the task locks two or more mutexes, when it releases the lock of all the mutexes).

[Differences from µµµµITRON3.0]

ploc_mtx is a newly created service call.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 225

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ploc_mtx is not included in the system

E_ID −18 The mutex ID number is outside the range (mtxid ≤ 0, maximum mutex count < mtxid)

E_CTX −25 ploc_mtx was issued from a non-task context

ploc_mtx was issued in the CPU lock state

E_ILUSE −28 The base priority is higher than the priority ceiling value (when TA_CEILING attribute

is specified)

E_NOEXS −42 The target mutex does not exist

E_TMOUT −50 Polling has failed

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM226

Lock Mutex with Timeout

tloc_mtx

[Overview]

Locks a mutex (with timeout)

[C format]

#include <kernel.h>

ER tloc_mtx(ID mtxid, TMO tmout);

[Parameters]

I/O Parameter Description

I ID mtxid ID number of mutex to be locked

I TMO tmout Timeout time [milliseconds]

[Explanation]

The mutex specified by mtxid is locked.

If the target mutex can be locked, i.e., if locking the mutex is successful, the task continues processing. If the

mutex has the TA_CEILING attribute at this time and if the ceiling of the priority (ceilpri) specified when the mutex was

created is higher than the current priority of the task that locks the mutex, the current priority of the task is raised to

the ceiling value.

If the mutex has been already locked by another task, the task enters the waiting state for the time specified as

tmout and is registered to the waiting task queue in the order (on an FIFO basis or according to priority) specified

when the mutex was created. If the mutex has the TA_INHERIT attribute at this time and if the current priority of the

task that has entered the waiting state is higher than the current priority of the task that is locking the mutex, the

priority of the locking task is raised to the same current priority as the waiting task.

If the target mutex has the TA_CEILING attribute and if the base priority of the task is higher than the ceiling value

of the priority of the mutex, an error occurs and the error code E_ILUSE is returned.

The current priority raised by the mutex is changed to the base priority of the task when the task releases the lock

of the mutex (if the task locks two or more mutexes, when it releases the lock of all the mutexes).

Tasks placed in the waiting state due to tloc_mtx are released from waiting by one of the following occurrences.

1. unl_mtx is issued and the task locks a new mutex (E_OK).

2. The locking task is terminated and a new mutex is locked (E_OK).

3. The specified time elapses and timeout occurs (E_TMOUT).

4. (i)rel_wai is issued and the task is forcibly released from the waiting state (E_RLWAI).

5. del_mtx is issued and the mutex is deleted (E_DLT).

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 227

[Differences from µµµµITRON3.0]

tloc_mtx is a newly created service call.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 tloc_mtx is not included in the system

E_PAR −17 The parameter is illegal
− The timeout time is illegal (tmout < TMO_FEVR = −1)

E_ID −18 The mutex ID number is outside the range (mtxid ≤ 0, maximum mutex count < mtxid)

E_CTX −25 tloc_mtx was issued from a non-task context

tloc_mtx was issued in the CPU lock state

tloc_mtx was issued in the dispatch disabled state

E_ILUSE −28 The base priority is higher than the priority ceiling value (when TA_CEILING attribute

is specified)

E_NOEXS −42 The target mutex does not exist

E_RLWAI −49 The task is forcibly released from the waiting state by (i)rel_wai

E_TMOUT −50 Timeout

E_DLT −51 The mutex is deleted while a task is waiting

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM228

Unlock Mutex

unl_mtx

[Overview]

Releases lock of a mutex

[C format]

#include <kernel.h>

ER unl_mtx(ID mtxid);

[Parameter]

I/O Parameter Description

I ID mtxid ID number of mutex whose lock is to be released

[Explanation]

The lock of the mutex specified by mtxid is released.

If waiting tasks exist in the target mutex, the first task in the waiting task queue is released from the waiting state

and immediately locks the mutex.

If the current priority of the task that released the lock has been changed based on the priority control protocol

specified by the mutex attribute, the current priority of the task is changed to the base priority. If the task locks two or

more mutexes, the priority is changed after the task has released the lock of all the mutexes.

The lock of the mutex must be released by the task that locked it. If a task other than the locking task issues

unl_mtx, an error occurs and the error code E_ILUSE is returned.

[Differences from µµµµITRON3.0]

unl_mtx is a newly created service call.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 unl_mtx is not included in the system

E_ID −18 The mutex ID number is outside the range (mtxid ≤ 0, maximum mutex count < mtxid)

E_CTX −25 unl_mtx was issued from a non-task context

unl_mtx was issued in the CPU lock state

E_ILUSE −28 The target mutex is not locked

E_NOEXS −42 The target mutex does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 229

Refer Mutex Status

ref_mtx/iref_mtx

[Overview]

Obtains mutex information

[C format]

#include <kernel.h>

ER ref_mtx(ID mtxid, T_RMTX *pk_rmtx);

[Parameters]

I/O Parameter Description

I ID mtxid ID number of mutex whose information is to be obtained

O T_RMTX * pk_rmtx Address of mutex information packet

Configuration of T_RMTX

typedef struct t_rmtx {

ID htskid; /* ID number of locking task */

ID wtskid; /* ID number of task waiting to lock */

ATR mtxatr; /* Mutex attribute */

PRI ceilpri; /* Priority ceiling value */

} T_RMTX;

[Explanation]

Information is obtained on the mutex specified by mtxid and stored in the packet specified by pk_rmtx. The mutex

information is described in detail below.

• htskid

Stores the ID number of the task currently locking the target mutex. If the mutex is not locked, TSK_NONE = 0 is

stored.

• wtskid

Stores the ID number of the task waiting to lock the target mutex. If two or more tasks are waiting, the ID number

of the first task in the waiting task queue is stored. If no waiting task exists, TSK_NONE = 0 is stored.

• mtxatr

Stores the attribute of the target mutex. For the meaning of the stored value, refer to the description of cre_mtx.

• ceilpri

Stores the priority ceiling value of the target mutex. This value is valid only when the mutex has the TA_CEILING

attribute; otherwise, it will be meaningless.

iref_mtx is intended to be issued from a non-task context but it can also be issued from a task context. ref_mtx can

be issued from a non-task context.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM230

[Differences from µµµµITRON3.0]

ref_mtx is a newly created service call.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ref_mtx/iref_mtx is not included in the system

E_ID −18 The mutex ID number is outside the range (mtxid ≤ 0, maximum mutex count < mtxid).

E_CTX −25 ref_mtx/iref_mtx was issued in the CPU lock state

E_NOEXS −42 The target mutex does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 231

13.8.5 Memory pool management function service calls

This section describes the memory pool management function service calls listed in the following table.

Table 13-12. Memory Pool Management Function Service calls

Name Function

cre_mpf Creates a fixed-length memory pool

acre_mpf Creates a fixed-length memory pool (automatic assignment of ID No.)

del_mpf Deletes a fixed-length memory pool

rel_mpf/irel_mpf Returns a memory block

get_mpf Acquires a memory block

pget_mpf/ipget_mpf Acquires a memory block (polling)

tget_mpf Acquires a memory block (with timeout)

ref_mpf/iref_mpf Obtains fixed-length memory pool information

cre_mpl Creates a variable-length memory pool

acre_mpl Creates a variable-length memory pool (automatic assignment of ID No.)

del_mpl Deletes a variable-length memory pool

rel_mpl/irel_mpl Returns a memory block

get_mpl Acquires a memory block

pget_mpl/ipget_mpl Acquires a memory block (polling)

tget_mpl Acquires a memory block (with timeout)

ref_mpl/iref_mpl Obtains variable-length memory pool information

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM232

Create Fixed-Size Memory Pool

cre_mpf

[Overview]

Creates a fixed-length memory pool

[C format]

#include <kernel.h>

ER cre_mpf(ID mpfid, T_CMPF *pk_cmpf);

[Parameters]

I/O Parameter Description

I ID mpfid ID number of fixed-length memory pool to be created

I T_CMPF * pk_cmpf Address of fixed-length memory pool creation packet

Configuration of T_CMPF

typedef struct t_cmpf {

ATR mpfatr; /* Fixed-length memory pool attribute */

UINT blkcnt; /* Number of memory blocks */

UINT blksz; /* Size of memory block */

VP mpf; /* Reserved area */

} T_CMPF;

[Explanation]

A fixed-length memory pool with the ID specified by mpfid is created based on the information stored in the fixed-

length memory pool creation packet pk_cmpf. In other words, a control block is assigned to the fixed-length memory

pool to be created, the control block is initialized, and the area that is the main body of the memory pool is reserved

from the user pool.

The fixed-length memory creation packet T_CMPF is described in detail below.

• mpfatr

Specifies the order in which tasks wait in the waiting task queue of the memory pool to be created as a fixed-

length memory pool attribute. The values that can be specified as the fixed-length memory pool attribute are as

follows:

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 233

Figure 13-9. Fixed-Length Memory Pool Attribute

mpfatr

15 8 7 0

TA_TFIFO (0): The task waits on an FIFO basis

TA_TPRI (1): The task waits according to priority

If TA_TFIFO is specified by mpfatr, the task waits on an FIFO basis. If TA_TPRI is specified, the task waits

according to the priority.

• blkcnt

Specifies the number of memory blocks constituting the fixed-length memory pool to be created.

• blksz

Specifies the size of one memory block constituting the fixed-length memory pool to be created in bytes. This

value must be an integral multiple of 8.

If any other value is specified, a size that is the lowest integral multiple of 8 greater than the specified size is

assumed.

Therefore, the total of the area that can be used for memory blocks is (blksz × blkcnt). The size of the area that is

extracted from the user pool, however, is greater than this value because a header that manages the area of the

entire memory pool is appended.

• mpf

This is a reserved area. Always specify NULL. Anything other than NULL is ignored even if specified.

[Differences from µµµµITRON3.0]

The extended data exinf has been deleted from the members of the fixed-length memory pool creation information

and the reserved area mpf has been added.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 cre_mpf is not included in the system

E_RSATR −11 The fixed-length memory pool attribute is illegal

E_PAR −17 The parameter is illegal
− The number of memory blocks is 0 (blkcnt = 0)

− The size of the memory block is 0 (blksz = 0)

E_ID −18 The fixed-length memory pool ID number is outside the range
(mpfid ≤ 0, maximum fixed-length memory pool count < mpfid)

E_CTX −25 cre_mpf was issued from a non-task context

cre_mpf was issued in the CPU lock state

E_NOMEM −33 The area for the memory pool cannot be reserved

E_OBJ −41 A fixed-length memory pool having the same ID number already exists

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM234

Create Fixed-Size Memory Pool with Automatic ID Assignment

acre_mpf

[Overview]

Creates a fixed-length memory pool (Automatic assignment of ID number)

[C format]

#include <kernel.h>

ER_ID acre_mpf(T_CMPF *pk_cmpf);

[Parameter]

I/O Parameter Description

I T_CMPF * pk_cmpf Address of fixed-length memory pool creation packet

[Explanation]

A fixed-length memory pool is created based on the information stored in the fixed-length memory pool creation

packet pk_cmpf, and the ID number of the memory pool is returned. In other words, a fixed-length memory pool

control block that is available and has not been created is searched, assigned, and initialized, the area of the main

body of the memory pool is reserved from the user pool, and the ID number of the memory pool is returned. If the

return value is negative, it is an error. For the meaning of the return value, refer to [Return values] below.

For details of the fixed-length memory pool creation packet, refer to the description of cre_mpf.

[Differences from µµµµITRON3.0]

acre_mpf is a newly created service call equivalent to cre_mpf, but with the addition of an automatic ID number

assignment function.

[Return values]

Symbol Value Meaning

(Integer of 1 or greater) ID number of the fixed-length memory pool created (normal termination)

E_RSFN −10 acre_mpf is not included in the system

E_RSATR −11 The fixed-length memory pool attribute is illegal

E_PAR −17 The parameter is illegal
− The number of memory blocks is 0 (blkcnt = 0)

− The size of the memory block is 0 (blksz = 0)

E_CTX −25 acre_mpf was issued from a non-task context

acre_mpf was issued in the CPU lock state

E_NOMEM −33 The area for the memory pool cannot be reserved

E_NOID −34 The ID number cannot be assigned (reserving a control block has failed)

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 235

Delete Fixed-Size Memory Pool

del_mpf

[Overview]

Deletes a fixed-length memory pool

[C format]

#include <kernel.h>

ER del_mpf(ID mpfid);

[Parameter]

I/O Parameter Description

I ID mpfid ID number of the fixed-length memory pool to be deleted

[Explanation]

The control block of the fixed-length memory pool specified by mpfid is invalidated, the area of the main body of the

fixed-length memory pool is returned to the user pool, and the fixed-length memory pool is deleted. After deletion, a

new fixed-length memory pool with the same ID number can be created.

The memory pool is deleted regardless of whether memory blocks acquired from the fixed-length memory pool to

be deleted have been released or not. Note, therefore, that deletion of the memory pool is not reported to the task

that is reserving (using) the memory blocks.

If tasks waiting to get a memory block from the fixed-length memory pool exist, all the tasks are released from the

waiting state. The value E_DLT indicating that the fixed-length memory pool has been deleted is returned for the error

code of the service call (t)get_mpf that caused the tasks to wait.

[Differences from µµµµITRON3.0]

None

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 del_mpf is not included in the system

E_ID −18 The fixed-length memory pool ID number is outside the range
(mpfid ≤ 0, maximum fixed-length memory pool count < mpfid)

E_CTX −25 del_mpf was issued from a non-task context

del_mpf was issued in the CPU lock state

E_NOEXS −42 The target fixed-length memory pool does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM236

Release Memory Block to Fixed-Size Memory Pool

rel_mpf/irel_mpf

[Overview]

Returns a memory block

[C format]

#include <kernel.h>

ER rel_mpf(ID mpfid, VP blk);

[Parameters]

I/O Parameter Description

I ID mpfid ID number of fixed-length memory pool to which memory block is to be

returned

I VP blk Address of memory block to be returned

[Explanation]

The memory block specified by blk is returned to the fixed-length memory pool specified by mpfid. If a task is

waiting for a memory block from the specified memory pool, this task is allowed to acquire the returned memory block

and is released from the waiting state.

The memory pool to which the memory block is to be returned must be the same memory pool from which the

memory block was acquired. If the memory block is returned to a different memory pool, the operation is not

guaranteed. If the memory block to be returned is registered to a mailbox as a message, or if an area other than that

of memory blocks is specified, the operation is not guaranteed.

Even if a memory block is returned, the contents of the memory block are not cleared.

irel_mpf is intended to be issued from a non-task context but it can also be issued from a task context. rel_mpf can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

The name of rel_blf has been changed to rel_mpf.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 237

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 rel_mpf/irel_mpf is not included in the system

E_ID −18 The fixed-length memory pool ID number is outside the range
(mpfid ≤ 0, maximum fixed-length memory pool count < mpfid)

E_CTX −25 rel_mpf/irel_mpf was issued in the CPU lock state

E_NOEXS −42 The target fixed-length memory pool does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM238

Get Memory Block from Fixed-Size Memory Pool

get_mpf

[Overview]

Acquires a memory block

[C format]

#include <kernel.h>

ER get_mpf(ID mpfid, VP *p_blk);

[Parameters]

I/O Parameter Description

I ID mpfid ID number of fixed-length memory pool from which memory block is to be

acquired

O VP * p_blk Address to store address of memory block

[Explanation]

A memory block is acquired from the fixed-length memory pool specified by mpfid, and the first address of the

memory block is stored in the address specified by p_blk.

If no vacant memory block exists in the memory pool when get_mpf is issued, the task waits for the memory block

and is registered to the waiting task queue of the memory pool until it can get the memory block. The task is

registered to the queue in the order (on an FIFO basis or according to priority) specified when the memory pool was

created.

Tasks placed in the waiting state due to get_mpf are released from waiting by one of the following occurrences.

1. (i)rel_mpf is issued and the task acquires a memory block (E_OK).

2. (i)rel_wai is issued and the task is forcibly released from the waiting state (E_RLWAI).

3. del_mpf is issued and the memory pool is deleted (E_DLT).

[Differences from µµµµITRON3.0]

The name of get_blf has been changed to get_mpf.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 239

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 get_mpf is not included in the system

E_ID −18 The fixed-length memory pool ID number is outside the range
(mpfid ≤ 0, maximum fixed-length memory pool count < mpfid)

E_CTX −25 get_mpf was issued from a non-task context

get_mpf was issued in the CPU lock state

get_mpf was issued in the dispatch disabled state

E_NOEXS −42 The target fixed-length memory pool does not exist

E_RLWAI −49 The task is forcibly released from the waiting state by (i)rel_wai

E_DLT −51 The fixed-length memory pool is deleted while a task is waiting

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM240

Poll and Get Memory Block from Fixed-Size Memory Pool

pget_mpf/ipget_mpf

[Overview]

Acquires a memory block (Polling)

[C format]

#include <kernel.h>

ER pget_mpf(ID mpfid, VP *p_blk);

[Parameters]

I/O Parameter Description

I ID mpfid ID number of fixed-length memory pool from which memory block is to be

acquired

O VP * p_blk Address to store address of acquired memory block

[Explanation]

A memory block is acquired from the fixed-length memory pool specified by mpfid, and the first address of the

memory block is stored in the address specified by p_blk. If no vacant memory block exists in the memory pool when

get_mpf is issued, an error occurs and the error code E_TMOUT is returned.

ipget_mpf is intended to be issued from a non-task context but it can also be issued from a task context. pget_mpf

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

The name of pget_blf has been changed to pget_mpf.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 pget_mpf/ipget_mpf is not included in the system

E_ID −18 The fixed-length memory pool ID number is outside the range
(mpfid ≤ 0, maximum fixed-length memory pool count < mpfid)

E_CTX −25 pget_mpf/ipget_mpf was issued in the CPU lock state

E_NOEXS −42 The target fixed-length memory pool does not exist

E_TMOUT −50 Polling has failed

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 241

Get Memory Block from Fixed-Size Memory Pool with Timeout

tget_mpf

[Overview]

Acquires a memory block (with timeout)

[C format]

#include <kernel.h>

ER tget_mpf(ID mpfid, VP *p_blk, TMO tmout);

[Parameters]

I/O Parameter Description

I ID mpfid ID number of fixed-length memory pool from which memory block is to be

acquired

O VP * p_blk Address to store address of acquired memory block

I TMO tmout Timeout time [milliseconds]

[Explanation]

A memory block is acquired from the fixed-length memory pool specified by mpfid, and the first address of the

memory block is stored in the address specified by p_blk.

If no vacant memory block exists in the memory pool when tget_mpf is issued, the task waits for the memory block

and is registered to the waiting task queue of the memory pool until it can get the memory block or the time specified

by tmout elapses. The task is registered to the queue in the order (on an FIFO basis or according to priority) specified

when the memory pool was created.

If TMO_POL = 0 is specified as tmout, 0 is specified as the timeout time and tget_mpf performs the same operation

as pget_mpf. If TMO_FEVR = −1 is specified as tmout, the timeout time is specified to be infinite and the service call

performs the same operation as get_mpf.

Tasks placed in the waiting state due to tget_mpf are released from waiting by one of the following occurrences.

1. (i)rel_mpf is issued and the task acquires a memory block (E_OK).

2. The specified time elapses and timeout occurs (E_TMOUT).

3. (i)rel_wai is issued and the task is forcibly released from the waiting state (E_RLWAI).

4. del_mpf is issued and the memory pool is deleted (E_DLT).

[Differences from µµµµITRON3.0]

The name of tget_blf has been changed to tget_mpf.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM242

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 tget_mpf is not included in the system

E_PAR −17 The parameter is illegal
− The timeout time is illegal (tmout < TMO_FEVR = −1)

E_ID −18 The fixed-length memory pool ID number is outside the range
(mpfid ≤ 0, maximum fixed-length memory pool count < mpfid)

E_CTX −25 tget_mpf was issued from a non-task context

tget_mpf was issued in the CPU lock state

tget_mpf was issued in the dispatch disabled state

E_NOEXS −42 The target fixed-length memory pool does not exist

E_RLWAI −49 The task is forcibly released from the waiting state by (i)rel_wai

E_TMOUT −50 Timeout

E_DLT −51 The fixed-length memory pool is deleted while a task is waiting

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 243

Refer Fixed-Size Memory Pool Status

ref_mpf/iref_mpf

[Overview]

Obtains fixed-length memory pool information

[C format]

#include <kernel.h>

ER ref_mpf(ID mpfid, T_RMPF *pk_rmpf);

[Parameters]

I/O Parameter Description

I ID mpfid ID number of fixed-length memory pool whose information is to be

obtained

O T_RMPF * pk_rmpf Address of fixed-length memory pool information packet

Configuration of T_RMPF

typedef struct t_rmpf {

ID wtskid; /* Presence/absence of waiting task */

UINT fblkcnt; /* Number of vacant memory blocks */

ATR mpfatr; /* Fixed-length memory pool attribute */

} T_RMPF;

[Explanation]

Information is obtained on the fixed-length memory pool specified by mpfid and stored in the packet specified by

pk_rmpf. The fixed-length memory pool information is described in detail below. To issue this service call from a non-

task context such as an interrupt service routine, use iref_mpf.

• wtskid

Indicates the presence or absence of tasks waiting for a memory block from the target fixed-length memory pool.

If waiting tasks exist, the ID number of the first task in the waiting task queue is stored. If no waiting task exists,

TSK_NONE = 0 is stored.

• fbrkcnt

Stores the number of vacant memory blocks in the target memory block.

• mpfatr

Stores the attribute of the target fixed-length memory pool. For the meaning of the stored value, refer to the

description of cre_mpf.

iref_mpf is intended to be issued from a non-task context but it can also be issued from a task context. ref_mpf can

be issued from a non-task context.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM244

[Differences from µµµµITRON3.0]

The extended data exinf has been deleted from the members of the fixed-length memory pool information and the

fixed-length memory pool attribute mpfatr has been added.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ref_mpf/iref_mpf is not included in the system

E_ID −18 The fixed-length memory pool ID number is outside the range (mpfid ≤ 0, maximum

fixed-length memory pool count < mpfid)

E_CTX −25 ref_mpf/iref_mpf was issued in the CPU lock state

E_NOEXS −42 The target fixed-length memory pool does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 245

Create Variable-Size Memory Pool

cre_mpl

[Overview]

Creates a variable-length memory pool

[C format]

#include <kernel.h>

ER cre_mpl(ID mplid, T_CMPL *pk_cmpl);

[Parameters]

I/O Parameter Description

I ID mplid ID number of variable-length memory pool to be created

I T_CMPL * pk_cmpl Address of variable-length memory pool creation packet

Configuration of T_CMPL

typedef struct t_cmpl {

ATR mplatr; /* Variable-length memory pool attribute */

SIZE mplsz; /* Variable-length memory pool size */

VP mpl; /* Reserved area */

} T_CMPL;

[Explanation]

A variable-length memory pool with the ID specified by mplid is created based on the information stored in the

variable-length memory pool creation packet pk_cmpl. In other words, a control block is assigned to the variable-

length memory pool to be created, the control block is initialized, and an area that is the main body of the memory

pool is reserved from the user pool.

The variable-length memory creation packet T_CMPL is described in detail below.

• mplatr

Specifies the order in which tasks wait in the waiting task queue of the memory pool to be created as a variable-

length memory pool attribute. The values that can be specified as the variable-length memory pool attribute are

as follows:

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM246

Figure 13-10. Variable-Length Memory Pool Attribute

mplatr

15 8 7 0

TA_TFIFO (0): The task waits on an FIFO basis

TA_TPRI (1): The task waits according to priority

Bit 0 specifies the order in which tasks wait for a memory block from the memory pool to be created. If

TA_TFIFO is specified by mplatr, the task waits on an FIFO basis. If TA_TPRI is specified, the task waits

according to the priority.

• mplsz

Specifies the size (in bytes) of the variable-length memory pool to be created. This value must be an integral

multiple of 8. If any other value is specified, a size that is the lowest integral multiple of 8 greater than the

specified size is assumed.

When a memory pool is actually created, it is greater than the value specified by mplsz because a header area

that manages all the memory pools is necessary in addition to the area of the main body of the memory pool.

• mpl

This is a reserved area. Always specify NULL. Anything other than NULL is ignored even if specified.

[Differences from µµµµITRON3.0]

The extended data exinf has been deleted from the members of the variable-length memory pool creation packet

T_CMPL, and the reserved area mpl has been added. In addition, the type of the memory pool size mplsz has been

changed from INT to SIZE. SIZE is a type newly defined for µITRON4.0.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 cre_mpl is not included in the system

E_RSATR −11 The variable-length memory pool attribute is illegal

E_PAR −17 The parameter is illegal
− The size of the memory pool is illegal (mplsz = 0)

E_ID −18 The variable-length memory pool ID number is outside the range
(mplid ≤ 0, maximum variable-length memory pool count < mplid)

E_CTX −25 cre_mpl was issued from a non-task context

cre_mpl was issued in the CPU lock state

E_NOMEM −33 The area for the memory pool cannot be reserved

E_OBJ −41 A variable-length memory pool with the same ID number already exists

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 247

Create Variable-Size Memory Pool with Automatic ID Assignment

acre_mpl

[Overview]

Creates a variable-length memory pool (Automatic assignment of ID number)

[C format]

#include <kernel.h>

ER_ID acre_mpl(T_CMPL *pk_cmpl);

[Parameter]

I/O Parameter Description

I T_CMPL * pk_cmpl Address of variable-length memory pool creation packet

[Explanation]

A variable-length memory pool is created based on the information stored in the variable-length memory pool

creation packet pk_cmpl, and the ID number of the memory pool is returned. In other words, a variable-length

memory pool control block that is available and has not been created is searched, assigned, and initialized, the area

of the main body of the memory pool is reserved from the user pool, and the ID number of the memory pool is

returned. If the return value is negative, an error occurs. For the meaning of the return value, refer to [Return values]

below. For details of the variable-length memory pool creation packet, refer to the description of cre_mpl.

[Differences from µµµµITRON3.0]

acre_mpl is a newly created service call equivalent to cre_mpl, but with the addition of an automatic ID number

assignment function.

[Return values]

Symbol Value Meaning

(Positive integer) ID number of the variable-length memory pool created (normal termination)

E_RSFN −10 acre_mpl is not included in the system

E_RSATR −11 The variable-length memory pool attribute is illegal

E_PAR −17 The parameter is illegal
− The size of the memory pool is illegal (mplsz = 0)

E_CTX −25 acre_mpl was issued from a non-task context

acre_mpl was issued in the CPU lock state

E_NOMEM −33 The area for the memory pool cannot be reserved

E_NOID −34 The ID number cannot be allocated (reserving a control block has failed)

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM248

Delete Variable-Size Memory Pool

del_mpl

[Overview]

Deletes a variable-length memory pool

[C format]

#include <kernel.h>

ER del_mpl(ID mplid);

[Parameter]

I/O Parameter Description

I ID mplid ID number of variable-length memory pool to be deleted

[Explanation]

The control block of the variable-length memory pool specified by mplid is invalidated, the area of the main body of

the variable-length memory pool is returned to the user pool, and the variable-length memory pool is deleted. After

deletion, a new variable-length memory pool with the same ID number can be created.

The memory pool is deleted regardless of whether memory blocks acquired from the variable-length memory pool

to be deleted have been released or not. Note, therefore, that deletion of the memory pool is not reported to the task

that is reserving (using) the memory blocks.

If tasks waiting to acquire a memory block from the variable-length memory pool exist, all the tasks are released

from the waiting state. The value E_DLT indicating that the variable-length memory pool has been deleted is returned

for the error code of the service call (t)get_mpl that caused the tasks to wait.

[Differences from µµµµITRON3.0]

None

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 del_mpl is not included in the system

E_ID −18 The variable-length memory pool ID number is outside the range
(mplid ≤ 0, maximum variable-length memory pool count < mplid)

E_CTX −25 del_mpl was issued from a non-task context

del_mpl was issued in the CPU lock state

E_NOEXS −42 The target variable-length memory pool does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 249

Release Memory Block to Variable-Size Memory Pool

rel_mpl/irel_mpl

[Overview]

Returns a memory block

[C format]

#include <kernel.h>

ER rel_mpl(ID mplid, VP blk);

[Parameters]

I/O Parameter Description

I ID mplid ID number of variable-length memory pool to which memory block is to be

returned

I VP blk Address of memory block to be returned

[Explanation]

The memory block specified by blk is returned to the variable-length memory pool specified by mplid. If a task is

waiting for a memory block from the specified memory pool, this task is allowed to acquire the released memory block

and is released from the waiting state.

The memory pool to which the memory block is to be returned must be the same memory pool from which the

memory block was acquired. If the memory block is returned to a different memory pool, an error occurs and the error

code E_PAR is returned. The operation is not guaranteed if rel_mpl is issued to an area other than a memory block

area. If the memory block to be returned is registered to a mailbox as a message, the operation is not guaranteed.

irel_mpl is intended to be issued from a non-task context but it can also be issued from a task context. rel_mpl can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

The name of rel_blk has been changed to rel_mpl.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM250

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 rel_mpl/irel_mpl is not included in the system

E_PAR −17 The parameter is illegal
− The source and return destination of the memory block are different

E_ID −18 The variable-length memory pool ID number is outside the range
(mplid ≤ 0, maximum variable-length memory pool count < mplid)

E_CTX −25 rel_mpl/irel_mpl was issued in the CPU lock state

E_NOEXS −42 The target variable-length memory pool does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 251

Get Memory Block from Variable-Size Memory Pool

get_mpl

[Overview]

Acquires a memory block

[C format]

#include <kernel.h>

ER get_mpl(ID mplid, UINT blksz, VP *p_blk);

[Parameters]

I/O Parameter Description

I ID mplid ID number of variable-length memory pool from which memory block is to

be acquired

I UINT blksz Requested block size [bytes]

O VP * p_blk Address to store address of memory block

[Explanation]

A memory block of the size specified by blksz is acquired from the variable-length memory pool specified by mplid,

and the first address of the memory block is stored in the address specified by p_blk.

The requested size blksz must be a value that is an integral multiple of 8. If any other value is specified, a size that

is the lowest integral multiple of 8 greater than blksz is automatically assumed. The actual size of the memory block

extracted from the memory pool is greater than the specified size because a header area that manages the memory

block is included.

If no vacant memory block exists in the memory pool when get_mpl is issued, the task waits for the memory block

and is registered to the waiting task queue of the memory pool until it can acquire the memory block. The task is

registered to the queue in the order (on an FIFO basis or according to priority) specified when the memory pool was

created. If a memory block is released by rel_mpl, it is checked whether a waiting task can get the memory block in

the order in which the tasks were placed in the queue. If two or more tasks are waiting, therefore, they may be

blocked by a task requesting a larger size. Consequently, the tasks may be kept waiting even though the requested

size is smaller than the vacant area of the memory pool.

Tasks placed in the waiting state due to get_mpl are released from waiting by one of the following occurrences.

1. (i)rel_mpl is issued and the task acquires a memory block (E_OK).

2. A blocking task is released from the waiting task queue and acquires a memory block (E_OK).

3. (i)rel_wai is issued and the task is forcibly released from the waiting state (E_RLWAI).

4. del_mpl is issued and the memory pool is deleted (E_DLT).

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM252

[Differences from µµµµITRON3.0]

The name of get_blk has been changed to get_mpl. In addition, the order of the parameters has also been

changed.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 get_mpl is not included in the system

E_PAR −17 The parameter is illegal
− The memory block size is illegal (blksz = 0)

E_ID −18 The variable-length memory pool ID number is outside the range
(mplid ≤ 0, maximum variable-length memory pool count < mplid)

E_CTX −25 get_mpl was issued from a non-task context

get_mpl was issued in the CPU lock state

get_mpl was issued in the dispatch disabled state

E_NOEXS −42 The target variable-length memory pool does not exist

E_RLWAI −49 The task is forcibly released from the waiting state by (i)rel_wai

E_DLT −51 The variable-length memory pool is deleted while a task is waiting

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 253

Poll and Get Memory Block from Variable-Size Memory Pool

pget_mpl/ipget_mpl

[Overview]

Acquires a memory block (Polling)

[C format]

#include <kernel.h>

ER pget_mpl(ID mplid, UINT blksz, VP *p_blk);

[Parameters]

I/O Parameter Description

I ID mplid ID number of variable-length memory pool from which memory block is to

be acquired

I UINT blksz Requested block size [bytes]

O VP * p_blk Address to store address of memory block

[Explanation]

A memory block of the size specified by blksz is acquired from the variable-length memory pool specified by mplid,

and the first address of the memory block is stored in the address specified by p_blk. If no vacant memory block

exists in the memory pool when get_mpl is issued, an error occurs and the error code E_TMOUT is returned.

The requested size blksz must be a value that is an integral multiple of 8. If any other value is specified, a size that

is the lowest integral multiple of 8 greater than blksz is automatically assumed. The actual size of the memory block

extracted from the memory pool is greater than the specified size because a header area that manages the memory

block is included.

Even if the memory pool has a vacant area large enough to be acquired, if the attribute of the memory pool is

TA_TFIFO and a waiting task exists, or if the memory pool attribute is TA_TPRI, a waiting task exists, and the priority

of the waiting task is higher than the task that has issued get_mpl, acquiring the memory block fails and the error code

E_TMOUT is returned.

ipget_mpl is intended to be issued from a non-task context but it can also be issued from a task context. pget_mpl

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

The name of pget_blk has been changed to pget_mpl. In addition, the order of the parameters has also been

changed.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM254

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 pget_mpl/ipget_mpl is not included in the system

E_PAR −17 The parameter is illegal
− The memory block size is illegal (blksz = 0)

E_ID −18 The variable-length memory pool ID number is outside the range
(mplid ≤ 0, maximum variable-length memory pool count < mplid)

E_CTX −25 pget_mpl/ipget_mpl was issued in the CPU lock state

E_NOEXS −42 The target variable-length memory pool does not exist

E_TMOUT −50 Polling has failed

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 255

Get Memory Block from Variable-Size Memory Pool with Timeout

tget_mpl

[Overview]

Acquires a memory block (with timeout)

[C format]

#include <kernel.h>

ER tget_mpl(ID mplid, UINT blksz, VP *p_blk, TMO tmout);

[Parameters]

I/O Parameter Description

I ID mplid ID number of variable-length memory pool from which memory block is to

be acquired

I UINT blksz Requested block size [bytes]

O VP * p_blk Address to store address of memory block

I TMO tmout Timeout time [milliseconds]

[Explanation]

A memory block of the size specified by blksz is acquired from the variable-length memory pool specified by mplid,

and the first address of the memory block is stored in the address specified by p_blk.

The requested size blksz must be a value that is an integral multiple of 8. If any other value is specified, a size that

is the lowest integral multiple of 8 greater than blksz is automatically assumed. The actual size of the memory block

extracted from the memory pool is greater than the specified size because a header area that manages the memory

block is included.

If no vacant memory block exists in the memory pool when tget_mpl is issued, the task waits for the memory block

and is registered to the waiting task queue of the memory pool until it can get the memory block or the time specified

by tmout elapses. The task is registered to the queue in the order (on an FIFO basis or according to priority) specified

when the memory pool was created. If a memory block is released by rel_mpl, it is checked whether a waiting task

can get the memory block in the order in which the tasks are placed in the queue. If two or more tasks are waiting,

therefore, they may be blocked by a task requesting a larger size. Consequently, the tasks may be kept waiting even

though the requested size is smaller than the vacant area of the memory pool.

If TMO_POL = 0 is specified as tmout, 0 is specified as the timeout time and tget_mpl performs the same operation

as pget_mpl. If TMO_FEVR = −1 is specified as tmout, the timeout time is specified to be infinite and the service call

performs the same operation as get_mpl.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM256

Tasks placed in the waiting state due to tget_mpl are released from waiting by one of the following occurrences.

1. (i)rel_mpl is issued and the task acquires a memory block (E_OK).

2. The blocking task is released from the waiting task queue and acquires a memory block (E_OK).

3. The specified time elapses and timeout occurs (E_TMOUT).

4. (i)rel_wai is issued and the task is forcibly released from the waiting state (E_RLWAI).

5. del_mpl is issued and the memory pool is deleted (E_DLT).

[Differences from µµµµITRON3.0]

The name of tget_blf has been changed to tget_mpl. In addition, the order of the parameters has also been

changed.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 tget_mpl is not included in the system

E_PAR −17 The parameter is illegal
− The memory block size is illegal (blksz = 0)

− The timeout time is illegal (tmout < TMO_FEVR = −1)

E_ID −18 The variable-length memory pool ID number is outside the range
(mplid ≤ 0, maximum variable-length memory pool count < mplid)

E_CTX −25 tget_mpl was issued from a non-task context

tget_mpl was issued in the CPU lock state

tget_mpl was issued in the dispatch disabled state

E_NOEXS −42 The target variable-length memory pool does not exist

E_RLWAI −49 The task is forcibly released from the waiting state by (i)rel_wai

E_TMOUT −50 Timeout

E_DLT −51 The variable-length memory pool is deleted while a task is waiting

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 257

Refer Variable-Size Memory Pool Status

ref_mpl/iref_mpl

[Overview]

Obtains memory pool information

[C format]

#include <kernel.h>

ER ref_mpl(ID mplid, T_RMPL *pk_rmpl);

[Parameters]

I/O Parameter Description

I ID mplid ID number of variable-length memory pool whose information is to be

obtained

O T_RMPL * pk_rmpl Address of variable-length memory pool information packet

Configuration of T_RMPL

typedef struct t_rmpl {

ID wtskid; /* Presence/absence of waiting task */

SIZE fmplsz; /* Total size of vacant area */

UINT fblksz; /* Maximum size of block that can be acquired */

ATR mplatr; /* Variable-length memory pool attribute */

} T_RMPL;

[Explanation]

Information is obtained on the variable-length memory pool specified by mplid and stored in the packet specified by

pk_rmpl. The variable-length memory pool information is described in detail below.

• wtskid

Indicates the presence or absence of tasks waiting for a memory block from the target variable-length memory

pool. If waiting tasks exist, the ID number of the first task in the waiting task queue is stored. If no waiting task

exists, TSK_NONE = 0 is stored.

• fmplsz

Stores the total of the vacant area that can be acquired as a memory block from the specified memory pool. As

memory blocks are repeatedly acquired and released from a memory pool, the vacant areas may exist in the

memory pool like islands. Therefore, a memory block of size fmplsz may not always be able to be acquired.

• fblksz

Stores the size of the largest block of the vacant memory blocks that are available from the specified memory

pool.

• mplatr

Stores the attribute of the target variable-length memory pool. For the meaning of the stored value, refer to the

description of cre_mpl.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM258

iref_mpl is intended to be issued from a non-task context but it can also be issued from a task context. ref_mpl can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

The extended data exinf has been deleted from the members of the variable-length memory pool information. In

addition, the type of wtskid indicating the presence or absence of a waiting task has been changed from BOOL_ID to

ID, and the type of the total size of available area fmplsz and the maximum size of the available block fblksz has been

changed from INT to SIZE and UNIT. SIZE is a type newly defined for µITRON4.0.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ref_mpl/iref_mpl is not included in the system

E_ID −18 The variable-length memory pool ID number is outside the range
(mplid ≤ 0, maximum variable-length memory pool count < mplid)

E_CTX −25 ref_mpl/iref_mpl was issued in the CPU lock state

E_NOEXS −42 The target variable-length memory pool does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 259

13.8.6 Time management function service calls

This section explains the time management function service calls listed in the following table.

Table 13-13. Time Management Function Service calls

Name Function

set_tim/iset_tim Sets the system time

get_tim/iget_tim Obtains the system time

isig_tim Supplies the time tick (issued from ISR)

cre_cyc Creates a cyclic handler

acre_cyc Creates a cyclic handler (automatic assignment of ID No.)

del_cyc Deletes a cyclic handler

sta_cyc/ista_cyc Activates a cyclic handler

stp_cyc/istp_cyc Stops a cyclic handler

ref_cyc/iref_cyc Obtains cyclic handler information

ISR: Interrupt Service Routine

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM260

Set System Time

set_tim/iset_tim

[Overview]

Sets the time of the system

[C format]

#include <kernel.h>

ER set_tim(SYSTIM *p_systim);

[Parameter]

I/O Parameter Description

I SYSTIM * p_systim Address of system time packet

Configuration of SYSTIM

typedef struct t_systim {

UW ltime; /* Time (lower 32 bits)*/

UW utime; /* Time (higher 32 bits)*/

} SYSTIM;

[Explanation]

The time of the system is set to the time stored in p_systim. Even if the time has been changed, it does not mean

that the time difference between the previous time and new time has elapsed, so the timeout of tasks and cyclic

handlers is not affected at all.

iset_tim is intended to be issued from a non-task context but it can also be issued from a task context. set_tim can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

The type of the system time packet has been changed from SYSTIME to SYSTIM.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 set_tim/iset_tim is not included in the system

E_CTX −25 set_tim/iset_tim was issued in the CPU lock state

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 261

Get System Time

get_tim/iget_tim

[Overview]

Obtains the time of the system

[C format]

#include <kernel.h>

ER get_tim(SYSTIM *p_systim);

[Parameter]

I/O Parameter Description

O SYSTIM * p_systim Address of system time packet

Configuration of SYSTIM

typedef struct t_systim {

UW ltime; /* Time (lower 32 bits)*/

UW utime; /* Time (higher 32 bits)*/

} SYSTIM;

[Explanation]

The current time of the system is obtained and stored in the time packet p_systim.

iget_tim is intended to be issued from a non-task context but it can also be issued from a task context. get_tim can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

The type of the system time packet has been changed from SYSTIME to SYSTIM.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 get_tim/iget_tim is not included in the system

E_CTX −25 get_tim/iget_tim was issued in the CPU lock state

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM262

Signal Clock Tick

isig_tim

[Overview]

Supplies a time tick (Issued from an interrupt service routine)

[C format]

#include <kernel.h>

ER isig_tim(void);

[Parameter]

None

[Explanation]

The kernel is notified that the time of 1 tick of the timer interrupt has elapsed.

Therefore, the kernel judges that the basic clock cycle specified by the static API DEF_TIM has elapsed when

isig_tim is issued once, and updates the system time, checks the timeout of waiting tasks, and activates a cyclic

handler.

The user must therefore set an interrupt to be generated in every basic clock cycle, by using the timer of the CPU,

and describe an interrupt service routine corresponding to the interrupt.

Processing such as timeout of a task and activation of a cyclic handler is performed in batch when execution

returns from an interrupt. Therefore, do not describe processing that expects completion of processing by the kernel

(timeout of a task occurs or the cyclic handler has been activated) between when isig_tim is issued and when the

interrupt service routine is terminated.

[Differences from µµµµITRON3.0]

isig_tim is a newly created service call. With µITRON4.0, the lapse of time must be explicitly reported to the kernel

by using isig_tim.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 isig_tim is not included in the system

E_CTX −25 isig_tim was issued from a task context

isig_tim was issued in the CPU lock state

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 263

Create Cyclic Handler

cre_cyc

[Overview]

Creates a cyclic handler

[C format]

#include <kernel.h>

ER cre_cyc(ID cycid, T_CCYC *pk_ccyc);

[Parameters]

I/O Parameter Description

I ID cycid ID number of cyclic handler to be created

I T_CCYC * pk_ccyc Address of cyclic handler creation packet

Configuration of T_CCYC

typedef struct t_ccyc {

ATR cycatr; /* Cyclic handler attribute */

VP_INT exinf; /* Extended data */

FP cychdr; /* Activation address of cyclic handler */

RELTIM cyctim; /* Activation time interval of cyclic handler */

RELTIM cycphs; /* Phase of cyclic handler */

VP gp; /* PID base address of cyclic handler */

VP tp; /* Reserved area */

} T_CCYC;

[Explanation]

A cyclic handler with the an ID number specified by cycid is created based on the information stored in the cyclic

handler creation packet pk_ccyc. In other words, a control block is assigned to the cyclic handler to be created, and

the control block is initialized.

The cyclic handler creation packet T_CCYC is explained in detail below.

• cycatr

Specifies the initial status of the cyclic handler immediately after the handler has been created, and the

description language, as cyclic handler attributes.

Bit 0 specifies the language in which the handler is described. TA_HLNG means the handler is described in C

language and TA_ASM means assembly language. With the current version, however, these two attributes are

not differentiated in the kernel processing.

Bit 1 specifies the status of the cyclic handler immediately after it has been created. If TA_STA is specified, the

handler is created in the operating status. If it is not specified, the handler is created in the stopped status.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM264

Bit 2 specifies whether the created cyclic handler saves the phase cycphs to be explained below. If TA_PHS is

specified, the phase is saved. By issuing sta_cyc after the handler has been created, the phase cycphs

becomes valid when the handler is activated.

If two or more attributes are specified at the same time, set the logical sum of the attribute values to cycatr.

Figure 13-11. Cyclic Handler Attribute

cycatr

15 8 7 0

TA_ASM (1): Described in assembly language

TA_HLNG (0): Described in C language

TA_STA (1): Handler is created in operating status

TA_PHS (1): Phase cycphs is saved

• exinf

Sets user-defined information on the cyclic handler to be created. This value is passed to the cyclic handler

when it has been created.

• cychdr

Specifies the activation address of the cyclic handler to be created.

• cyctim

Specifies the interval in milliseconds at which the created cyclic handler is to be activated.

• cycphs

Specifies the phase of the cyclic handler to be created in milliseconds. This means that the created cyclic

handler is activated cycphs [milliseconds] after cre_cyc has been issued. This phase can be saved by specifying

TA_PHS as the cyclic handler attribute. In other words, the activation timing of the cyclic handler can be fixed,

regardless of changes in status after the cyclic handler has been created.

cycphs is meaningless if neither TA_STA nor TA_PHS is given as a handler attribute.

• gp

Specifies the base address (gp) of PID (Position Independent Data) used by the cyclic handler to be created. Set

NULL if the cyclic handler does not use PID.

• tp

This is a reserved area. Always set NULL to this area. However, a value other than NULL is ignored even if set.

[Differences from µµµµITRON3.0]

1. Change of terminology and service call name

“Defining cyclic handler” → “Creating cyclic handler”

“Cyclically activated handler definition number” → “Cyclic handler ID number”

def_cyc → cre_cyc

“Activated status” → “Cyclic handler status” or “status”

Contents of status: “ON status” → “Operating (STA) status”

“OFF status” → “Stop (STP) status”

2. An activation phase can be specified for the cyclic handler.

3. Explicit specification by an attribute is not necessary even when the cyclic handler uses PID.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 265

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 cre_cyc is not included in the system

E_RSATR −11 The cyclic handler attribute is illegal

E_PAR −17 The parameter is illegal
− The activation phase is illegal (cyctim = 0)

− The activation phase is outside the range (cycphs = 0)

E_ID −18 The ID number of the cyclic handler is outside the range
(cycid ≤ 0, maximum cyclic handler count < 0)

E_CTX −25 cre_cyc was issued from a non-task context

cre_cyc was issued in the CPU lock state

E_OBJ −41 A cyclic handler with the same ID number already exists

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM266

Create Cyclic Handler with Automatic ID Assignment

acre_cyc

[Overview]

Creates a cyclic handler (Automatic assignment of ID number)

[C format]

#include <kernel.h>

ER_ID acre_cyc(T_CCYC *pk_ccyc);

[Parameter]

I/O Parameter Description

I T_CCYC * pk_ccyc Address of cyclic handler creation packet

[Explanation]

A cyclic handler is created based on the information stored in the cyclic handler creation packet pk_ccyc, and the

ID number of the handler is returned. In other words, a cyclic handler control block that is available but has not been

created is searched, assigned, and initialized, and the ID number of the block is returned. If the return value is

negative, an error occurs. For the meaning of the return value, refer to [Return values] below.

For details of the cyclic handler creation packet T_CCYC, refer to the description of cre_cyc.

[Differences from µµµµITRON3.0]

acre_cyc is a newly created service call equivalent to cre_cyc, but with of the addition of an automatic ID number

assignment function.

[Return values]

Symbol Value Meaning

(Positive integer) ID number of created cyclic handler (normal termination)

E_RSFN −10 acre_cyc is not included in the system

E_RSATR −11 The cyclic handler attribute is illegal

E_PAR −17 The parameter is illegal
− The activation phase is illegal (cyctim = 0)

− The activation phase is illegal (cycphs = 0)

E_CTX −25 acre_cyc was issued from a non-task context

acre_cyc was issued in the CPU lock state

E_NOID −34 The ID number cannot be assigned (reserving a control block has failed)

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 267

Delete Cyclic Handler

del_cyc

[Overview]

Deletes a cyclic handler

[C format]

#include <kernel.h>

ER del_cyc(ID cycid);

[Parameter]

I/O Parameter Description

I ID cycid ID number of cyclic handler to be deleted

[Explanation]

The control block of the cyclic handler specified by cycid is invalidated, and the cyclic handler is deleted. After

deletion, a new cyclic handler can be created using the same ID number.

[Differences from µµµµITRON3.0]

del_cyc is a newly created service call that can take the place of def_cyc (cycno, NADR).

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 del_cyc is not included in the system

E_ID −18 The ID number of the cyclic handler is outside the range
(cycid ≤ 0, maximum cyclic handler count < cycid)

E_CTX −25 del_cyc was issued from a non-task context

del_cyc was issued in the CPU lock state

E_NOEXS −42 The target handler does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM268

Start Cyclic Handler

sta_cyc/ista_cyc

[Overview]

Activates a cyclic handler

[C format]

#include <kernel.h>

ER sta_cyc(ID cycid);

[Parameter]

I/O Parameter Description

I ID cycid ID number of cyclic handler to be activated

[Explanation]

The cyclic handler specified by cycid is placed in the operable status so that the handler is ready to be activated.

After issuance of sta_cyc, the specified cyclic handler is activated at the timing determined by the saved phase if

the handler has the attribute TA_PHS (refer to 7.5.6). If the handler does not have TA_PHS, the handler is activated

when the activation cycle has elapsed after issuance of sta_cyc. Even if this service call has been issued to a cyclic

handler already in the operable status, therefore, the activation time is re-set if the handler does not have the attribute

TA_PHS.

ista_cyc is intended to be issued from a non-task context but it can also be issued from a task context. sta_cyc can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

sta_cyc/ista_cyc is a newly created service call, and its function is equivalent to act_cyc (cycno,

TCY_ON|TCY_INI) or act_cyc (cycno, TCY_ON).

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 sta_cyc/ista_cyc is not included in the system

E_ID −18 The ID number of the cyclic handler is outside the range
(cycid ≤ 0, maximum cyclic handler count < cycid)

E_CTX −25 sta_cyc/ista_cyc was issued in the CPU lock state

E_NOEXS −42 The target handler does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 269

Stop Cyclic Handler

stp_cyc/istp_cyc

[Overview]

Stops a cyclic handler

[C format]

#include <kernel.h>

ER stp_cyc(ID cycid);

[Parameter]

I/O Parameter Description

I ID cycid ID number of a cyclic handler to be stopped

[Explanation]

The cyclic handler specified by cycid is placed in the stopped status. Consequently, the handler is not activated

even when the cyclic time has elapsed. If the specified cyclic handler is already in the stopped status, nothing is

executed and no error occurs.

istp_cyc is intended to be issued from a non-task context but it can also be issued from a task context. stp_cyc can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

stp_cyc/istp_cyc is a newly created service call, and its function is equivalent to act_cyc (cycno, TCY_OFF).

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 stp_cyc/istp_cyc is not included in the system

E_ID −18 The ID number of the cyclic handler is outside the range
(cycid ≤ 0, maximum cyclic handler count < cycid)

E_CTX −25 stp_cyc/istp_cyc was issued in the CPU lock state

E_NOEXS −42 The target handler does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM270

Refer Cyclic Handler Status

ref_cyc/iref_cyc

[Overview]

Obtains cyclic handler information

[C format]

#include <kernel.h>

ER ref_cyc(ID cycid, T_RCYC *pk_rcyc);

[Parameters]

I/O Parameter Description

I ID cycid ID number of cyclic handler whose information is to be obtained

O T_RCYC * pk_rcyc Address of cyclic handler information packet

Configuration of T_RCYC

typedef struct t_rcyc {

STAT cycstat; /* Operation status of cyclic handler */

RELTIM lefttim; /* Time up to next activation */

ATR cycatr; /* Cyclic handler attribute */

RELTIM cyctim; /* Activation interval */

RELTIM cycphs; /* Activation phase */

} T_RCYC;

[Explanation]

Information is obtained on the cyclic handler specified by cycid and stored in the packet specified by pk_rcyc. The

cyclic handler information is described in detail below.

• cycstat

Stores a value indicating the current status of the cyclic handler. If this value is TCYC_STP(0), it means that the

handler stops. If it is TCYC_STA(1), it means that the handler is operating (this does not mean that the handler

is under execution).

• lefttim

Stores the time up to the next activation of the cyclic handler in milliseconds.

If lefttime = 0, it means that the time is less than the timer interrupt input interval (the cyclic handler is activated

when isig_tim is issued next time), and does not mean that the handler is “under execution” or “stopped”.

• cycatr

Stores the attribute of the specified cyclic handler. For the meaning of the value stored, refer to the description of

cre_cyc.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 271

• cyctim

Stores the activation interval of the specified cyclic handler (in milliseconds).

• cycphs

Stores the activation phase of the specified cyclic handler (in milliseconds).

iref_cyc is intended to be issued from a non-task context but it can also be issued from a task context. ref_cyc can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

1. The specification order of the parameters has been changed.

2. The cyclic handler specification number is called a cyclic handler ID number, and its type has been changed

from HNO to ID.

3. In connection with the above, the error code E_ID that may be returned has been added.

4. “Activated status” is called cyclic handler status or just status. Each status has been also changed from ON to

STA and from OFF to STP.

5. Extended data exinf has been deleted from the members of the cyclic handler information packet T_RCYC,

and cyclic handler attribute cycatr and phase cycphs have been added.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ref_cyc/iref_cyc is not included in the system

E_ID −18 The ID number of the cyclic handler is outside the range
(cycid ≤ 0, maximum cyclic handler count < cycid)

E_CTX −25 ref_cyc/iref_cyc was issued from a non-task context

ref_cyc/iref_cyc was issued in the CPU lock state

E_NOEXS −42 The target handler does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM272

13.8.7 System status management function service calls

This section explains the system status management function service calls listed in the following table.

Table 13-14. System Status Management Function Service calls

Name Function

rot_rdq/irot_rdq Rotates a ready queue

get_tid/iget_tid Obtains the ID number of a task in the running state

loc_cpu/iloc_cpu Locks the CPU of the system

unl_cpu/iunl_cpu Releases the CPU lock of the system

dis_dsp Disables dispatch

ena_dsp Enables dispatch

sns_ctx References the execution context

sns_loc Checks whether the CPU is locked

sns_dsp Checks whether dispatch is disabled

sns_dpn Checks whether dispatch is pending

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 273

Rotate Ready Queue

rot_rdq/irot_rdq

[Overview]

Rotates a ready queue

[C format]

#include <kernel.h>

ER rot_rdq(PRI tskpri);

[Parameter]

I/O Parameter Description

I PRI tskpri Priority according to which ready queue is rotated.

[Explanation]

A ready queue is rotated corresponding to the priority specified by tskpri. In other words, the first task in the ready

queue is moved to the end of the queue to change the execution sequence of the tasks with the same priority. By

issuing rot_rdq at fixed time intervals, therefore, round-robin scheduling can be implemented.

If TPRI_SELF = 0 is set for tskpri, the ready queue corresponding to the base priority of the issuing task can be

rotated. If rot_rdq is issued with TPRI_SELF or the priority of the issuing task directly specified, the task in the running

state moves to the end of the ready queue. Consequently, the task relinquishes the right of execution. If rot_rdq is

issued with TPRI_SELF specified while dispatch is disabled, only the ready queue is manipulated and the task

continues its processing.

If the priority that only one task is placed in the ready queue or the priority that no task is placed in the queue is

specified when rot_rdq is issued, nothing happens and no error occurs.

To issue this service call from a non-task context such as an interrupt service routine, use irot_rdq.

irot_rdq is intended to be issued from a non-task context but it can also be issued from a task context. rot_rdq can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

TPRI_RUN is deleted and TPRI_SELF is newly provided.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 rot_rdq/irot_rdq is not included in the system

E_PAR −17 The priority is outside the range (tskpri < 0, maximum priority value < tskpri)

E_CTX −25 rot_rdq/irot_rdq was issued in the CPU lock state

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM274

Get Task Identifier

get_tid/iget_tid

[Overview]

Obtains the ID number of the task in the running state

[C format]

#include <kernel.h>

ER get_tid(ID * p_tskid);

[Parameter]

I/O Parameter Description

O ID * p_tskid Address to store task ID number

[Explanation]

The ID number of the task in the running state, i.e., the ID number of the issuing task is stored in the area specified

by p_tskid. If this service call is issued from an interrupt service routine that has been activated in the idle state,

TSK_NONE = 0 is stored in p_tskid.

iget_tid is intended to be issued from a non-task context but it can also be issued from a task context. get_tid can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

The meaning (definition) of the service call has been changed from “obtaining the ID number of the issuing task” to

“obtaining the ID number of the task in the running state”. Consequently, even if this service call is issued from a non-

task block such as an interrupt service routine, no error occurs and the task ID number can be obtained. No functional

change has been made.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 get_tid/iget_tid is not included in the system

E_CTX −25 get_tid/iget_tid was issued from a non-task context

get_tid/iget_tid was issued in the CPU lock state

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 275

Lock CPU

loc_cpu/iloc_cpu

[Overview]

Locks the CPU of the system

[C format]

#include <kernel.h>

ER loc_cpu(void);

[Parameter]

None

[Explanation]

Interrupts and dispatch are disabled, and the CPU of the system is locked. While the CPU is locked, no service call

other than loc_cpu, unl_cpu, and sns_xxx can be issued. If any service call other than these is issued while the CPU

is locked, the service call returns the error code E_CTX.

If loc_cpu is issued while the CPU is locked, the lock status of the CPU merely continues and no error occurs.

Even if loc_cpu is issued more than once, the lock of CPU is released by the first unl_cpu.

It is assumed that timer operations such as delaying tasks or cyclic handlers are processed by a software timer

using a timer interrupt. While interrupts are disabled, therefore, these operations are not performed. If interrupts are

disabled for too long a time, the wait time specified for these operations cannot be guaranteed.

Interrupts are disabled by loc_cpu, by clearing the IE bit of the status register. The operation is not guaranteed if

the status register is directly manipulated and the IE bit is set while the CPU is locked. The interrupt mask (IM bit) is

not affected.

iloc_cpu is intended to be issued from a non-task context but it can also be issued from a task context. loc_cpu

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

Issuing service calls, with some exceptions, is disabled while the CPU is locked. In addition, disabling dispatch by

loc_cpu is distinguished from disabling dispatch by dis_dsp.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 loc_cpu/iloc_cpu is not included in the system

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM276

Unlock CPU

unl_cpu/iunl_cpu

[Overview]

Releases the CPU lock of the system

[C format]

#include <kernel.h>

ER unl_cpu(void);

[Parameter]

None

[Explanation]

The CPU lock of the system is released and interrupts and dispatch are enabled. If the system was disabled by

dis_dsp from dispatching tasks before the CPU was locked, however, only interrupts are enabled by issuance of

unl_cpu. The interrupt mask (IM field of the status register) is not affected.

iunl_cpu is intended to be issued from a non-task context but it can also be issued from a task context. unl_cpu

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

µITRON3.0 unconditionally enables interrupts and dispatch by unl_cpc. µITRON4.0 returns the status to that

before loc_cpu was issued.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 unl_cpu/iunl_cpu is not included in the system

E_CTX −25 unl_cpu/iunl_cpu was issued from a non-task context

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 277

Disable Dispatch

dis_dsp

[Overview]

Disables dispatch

[C format]

#include <kernel.h>

ER dis_dsp(void);

[Parameter]

None

[Explanation]

Dispatch of tasks is disabled until ena_dsp is issued. Therefore, tasks will not change their state from running to

ready. They cannot enter the waiting state, either. However, because interrupts are not disabled, an interrupt handler

can be activated even while dispatch is disabled. Therefore, there is no possibility that a task is preempted by another

task, though it may be preempted by an interrupt handler.

Therefore, even if a task with a priority higher than that of the issuing task is placed in the ready state by a service

call issued from an interrupt handler or the task itself, dispatch to that task does not take place and is postponed until

dispatch is enabled.

If a service call that may keep a task waiting is issued while dispatch is disabled, an error occurs and the error code

E_CTX is returned. Similarly, if sus_tsk is issued from an interrupt handler to a task in the running state, the error

code E_CTX is returned.

If dis_dsp is issued again while dispatch is already disabled, the dispatch disabled state merely continues and no

error occurs. Even if dis_dsp is issued more than once, however, dispatch is enabled by issuing ena_dsp only once.

[Differences from µµµµITRON3.0]

Disabling dispatch by dis_dsp and disabling dispatch by loc_cpu are distinguished.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 dis_dsp is not included in the system

E_CTX −25 dis_dsp was issued from a non-task context

dis_dsp was issued in the CPU lock state

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM278

Enable Dispatch

ena_dsp

[Overview]

Enables dispatch

[C format]

#include <kernel.h>

ER ena_dsp(void);

[Parameter]

None

[Explanation]

Dispatch of tasks is enabled. In other words, dispatch disabled by dis_dsp is enabled. Consequently, dispatch that

has been postponed by a service call issued from an interrupt handler or the issuing task, such as when a task with a

higher priority than the task itself is in the ready state, is processed after this service call has been issued.

Even if a task that is not in the dispatch disabled state issues ena_dsp, the status in which dispatch is enabled

merely continues and no error occurs.

[Differences from µµµµITRON3.0]

None

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ena_dsp is not included in the system

E_CTX −25 ena_dsp was issued from a non-task context

ena_dsp was issued in the CPU lock state

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 279

Sense Context

sns_ctx

[Overview]

References a context

[C format]

#include <kernel.h>

BOOL sns_ctx(void);

[Parameter]

None

[Explanation]

The context currently under execution is referenced and TRUE is returned if a non-task context such as an interrupt

handler is executed; otherwise, FALSE is returned.

If this service call is issued from a CPU exception handler, the context used when a CPU exception has occurred is

referenced, and TRUE or FALSE is returned.

The type of the return value of sns_ctx is BOOL. Usually, a value of 0 or 1 is returned. As an exception, E_RSFN

(−10) is returned if sns_ctx is not included in the system.

[Differences from µµµµITRON3.0]

sns_ctx is a newly created service call.

[Return values]

Symbol Value Meaning

TRUE 1 A non-task context is under execution

FALSE 0 A task context is under execution

E_RSFN −10 sns_ctx is not included in the system

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM280

Sense CPU Locked or Not

sns_loc

[Overview]

Checks whether the CPU is locked

[C format]

#include <kernel.h>

BOOL sns_loc(void);

[Parameter]

None

[Explanation]

The current system status is checked to see whether the CPU is locked by (i)loc_cpu, and the value TRUE or

FALSE is returned.

The type of the return value of sns_loc is BOOL. Usually, a value of 0 or 1 is returned. As an exception, E_RSFN

(−10) is returned if sns_loc is not included in the system.

[Differences from µµµµITRON3.0]

sns_loc is a newly created service call to simplify referencing the status with ref_sys to realize high-speed

processing.

[Return values]

Symbol Value Meaning

TRUE 1 The CPU is locked

FALSE 0 The CPU is not locked

E_RSFN −10 sns_loc is not included in the system

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 281

Sense Dispatch Enabled or Not

sns_dsp

[Overview]

Checks whether dispatch is disabled

[C format]

#include <kernel.h>

BOOL sns_dsp(void);

[Parameter]

None

[Explanation]

The current system status is checked to see whether dispatch is disabled by dis_dsp, and TRUE is returned if

dispatch is disabled; otherwise, FALSE is returned.

Note that disabling dispatch by dis_dsp is distinguished from disabling dispatch by (i)loc_cpu. If sns_dsp is issued

after (i)loc_cpu has been issued, TRUE is returned if dispatch is disabled after issuance of (i)unl_cpu; otherwise,

FALSE will be returned.

The type of the return value of sns_dsp is BOOL. Usually, a value of 0 or 1 is returned. As an exception, E_RSFN

(−10) is returned if sns_dsp is not included in the system.

[Differences from µµµµITRON3.0]

sns_dsp is a newly created service call to simplify referencing the status with ref_sys to realize high-speed

processing.

[Return values]

Symbol Value Meaning

TRUE 1 Dispatch is disabled

FALSE 0 Dispatch is not disabled

E_RSFN −10 sns_dsp is not included in the system

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM282

Sense Dispatch Pending

sns_dpn

[Overview]

Checks whether dispatch is pending

[C format]

#include <kernel.h>

BOOL sns_dsp(void);

[Parameter]

None

[Explanation]

The current system status is checked to see whether dispatch is pending, and TRUE is returned if dispatch is

pending; otherwise, FALSE is returned.

Pending dispatch includes when dispatch is disabled by loc_cpu while dispatch has been disabled by dis_dsp and

when processing with a higher priority than the dispatcher is under execution. When sns_dpn returns FALSE,

therefore, it means that a service call that may keep a task waiting can be issued.

The type of the return value of sns_dpn is BOOL. Usually, a value of 0 or 1 is returned. As an exception, E_RSFN

(−10) is returned if sns_dpn is not included in the system.

[Differences from µµµµITRON3.0]

sns_dpn is a newly created service call to simplify referencing the status with ref_sys to realize high-speed

processing.

[Return values]

Symbol Value Meaning

TRUE 1 Dispatch is pending

FALSE 0 Dispatch is not pending

E_RSFN −10 sns_dpn is not included in the system

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 283

13.8.8 Interrupt management function service calls

This section explains the interrupt management function service calls. Note that the descriptions in this section

apply if the source file supplied as a sample is used without modification. The user can change the functions of the

source file as necessary.

Table 13-15. Interrupt Management Function Service calls

Name Function

cre_isr Creates an ISR

acre_isr Creates an ISR (automatic assignment of ID No.)

del_isr Deletes an ISR

dis_int Disables interrupts

ena_int Enables interrupts

chg_ims/ichg_ims Changes the interrupt mask

get_imsi/get_ims References the interrupt mask

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM284

Create Interrupt Service Routine

cre_isr

[Overview]

Creates an interrupt service routine

[C format]

#include <kernel.h>

ER cre_isr(ID isrid, T_CISR *pk_cisr);

[Parameters]

I/O Parameter Description

I ID isrid ID number of interrupt service routine to be created

I T_CISR * pk_cisr Address of interrupt service routine creation packet

Configuration of T_CISR

typedef struct t_disr {

ATR isratr; /* Interrupt service routine attribute */

VP_INT exinf; /* Extended data */

INTNO intno; /* Interrupt number */

FP isr; /* Interrupt service routine address */

VP gp; /* PID base address */

VP tp; /* Reserved area */

} T_CISR;

[Explanation]

An interrupt service routine with the ID number specified by isrid is created based on the information stored in the

interrupt service routine creation packet pk_cisr. The interrupt service routine creation packet T_CISR is described in

detail below.

• isratr

Specifies the attribute of the interrupt service routine to be created. The following interrupt service routine

attributes are available:

Figure 13-12. Interrupt Service Routine Attribute

isratr

15 8 7 0

TA_ASM (1): Described in an assembly language

TA_HLNG (0): Described in C language

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 285

Bit 0 specifies the language in which the interrupt service routine is described. TA_ASM means that the routine

is described in an assembly language. TA_HLNG means the C language. With the current version, however,

these two attributes are not differentiated in the kernel processing.

• exinf

Stores user-defined information on the interrupt service routine to be created. This extended data is passed to

the interrupt service routine as a parameter when the routine is activated.

• intno

Specifies a number that uniformly identifies the interrupt corresponding to the interrupt service routine to be

created. Interrupt numbers can be arbitrarily defined by the user. However, −1 must not be used as it is reserved

for the system.

• isr

Specifies the activation address of the interrupt service routine.

• gp

Specifies the base address (gp) of PID (Position Independent Data) used by the interrupt service routine to be

created. Set NULL if the routine does not use PID.

• tp

This is a reserved area. Always set NULL to this area. However, a value other than NULL is ignored even if set.

[Differences from µµµµITRON3.0]

It is defined that processing corresponding to an interrupt vector is performed by an “interrupt handler” and the

processing corresponding to an interrupt source is performed by an “interrupt service routine”. Because the RX4000

has only one interrupt vector for the VR4100 Series and VR5000 Series, it does not supply a function to define interrupt

handlers but supplies a function to create interrupt service routines.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 cre_isr is not included in the system

E_RSATR −11 The interrupt service routine attribute is illegal

E_PAR −17 The parameter is illegal
− The interrupt number is illegal (intno > maximum interrupt number)

E_ID −18 The interrupt service routine ID number is outside the range
(isrid ≤ 0, maximum interrupt service routine count < isrid)

E_CTX −25 cre_isr was issued from a non-task context

cre_isr was issued in the CPU lock state

E_OBJ −41 An interrupt service routine with the same ID number already exists

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM286

Create Interrupt Service Routine with Automatic ID Assignment

acre_isr

[Overview]

Creates an interrupt service routine (Automatic assignment of ID number)

[C format]

#include <kernel.h>

ER_ID acre_isr(T_CISR *pk_cisr);

[Parameter]

I/O Parameter Description

I T_CISR * pk_cisr Address of interrupt service routine creation packet

[Explanation]

An interrupt service routine is created based on the information stored in the interrupt service routine creation

packet pk_cisr, and the ID number of the interrupt service routine is returned. In other words, an interrupt service

routine control block that is available but has not been created is searched, assigned, and initialized, and its ID

number is returned. If the return value is negative, an error occurs. For the meaning of the return value, refer to

[Return values] below.

For details of the interrupt service routine creation packet, refer to the description of cre_isr.

[Differences from µµµµITRON3.0]

Refer to the description of cre_isr.

[Return values]

Symbol Value Meaning

(Integer of 1 or greater) ID number of the created interrupt service routine (normal termination)

E_RSFN −10 acre_isr is not included in the system

E_RSATR −11 The interrupt service routine attribute is illegal

E_PAR −17 The parameter is illegal
− The interrupt number is illegal (intno > maximum interrupt number)

E_CTX −25 acre_isr was issued from a non-task context

acre_isr was issued in the CPU lock state

E_NOID −34 The ID number cannot be assigned (reserving a control block has failed)

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 287

Delete Interrupt Service Routine

del_isr

[Overview]

Deletes an interrupt service routine

[C format]

#include <kernel.h>

ER del_isr(ID isrid);

[Parameter]

I/O Parameter Description

I ID isrid ID number of interrupt service routine to be deleted

[Explanation]

The interrupt service routine specified by isrid is deleted. However, an interrupt service routine created by the

static API ATT_ISR cannot be deleted.

[Differences from µµµµITRON3.0]

This service call is newly created with the introduction of interrupt service routines. It is equivalent to def_int

(dintno, NADR) in µITRON3.0.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 del_isr is not included in the system

E_ID −18 The interrupt service routine ID number is outside the range
(isrid ≤ 0, maximum interrupt service routine count < isrid)

E_CTX −25 del_isr was issued from a non-task context

del_isr was issued in the CPU lock state

E_NOEXS −42 The target interrupt service routine does not exist

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM288

Disable Interrupt

dis_int

[Overview]

Disables interrupts.

[C format]

#include <kernel.h>

ER dis_int(INTNO intno);

[Parameter]

I/O Parameter Description

I INTNO intno Interrupt number

[Explanation]

The interrupt controller corresponding to the interrupt number specified by intno is manipulated, and the interrupt of

that number is disabled. In the sample source file supplied, interrupts to the interrupt controller provided in the VR

Series evaluation boards, CMB-VR4131, Ostrich VR4181A, and RTE-VR5500-CB, are disabled.

The interrupt number INO_CPU = −1 is reserved. If INO_CPU is specified as intno, IM of the status register is

changed and interrupts are disabled (masked).

[Differences from µµµµITRON3.0]

RX4000 V3.x disables interrupts by manipulating the IE bit of the status register. In contrast, µITRON4.0 disables

interrupts by manipulating a specified interrupt controller. In addition, INO_CPU can be specified.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 dis_int is not included in the system

E_PAR −17 The interrupt number is illegal

E_CTX −25 dis_int was issued from a non-task context

dis_int was issued in the CPU lock state

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 289

Disable Interrupt

ena_int

[Overview]

Enables interrupts

[C format]

#include <kernel.h>

ER ena_int(INTNO intno);

[Parameter]

I/O Parameter Description

I INTNO intno Interrupt number

[Explanation]

The interrupt controller corresponding to the interrupt number specified by intno is manipulated, and the interrupt of

that number is enabled. In the sample source file supplied, interrupts to the interrupt controller provided in the VR

Series evaluation boards, CMB-VR4131, Ostrich VR4181A, and RTE-VR5500-CB, are enabled.

The interrupt number INO_CPU = −1 is reserved. If INO_CPU is specified as intno, IM of the status register is

changed and interrupts are enabled (unmasked).

[Differences from µµµµITRON3.0]

RX4000 V3.x enables interrupts by manipulating the IE bit of the status register. In contrast, µITRON4.0 enables

interrupts by manipulating a specified interrupt controller. In addition, INO_CPU can be specified.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 ena_int is not included in the system

E_PAR −17 The interrupt number is illegal

E_CTX −25 ena_int was issued in the CPU lock state

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM290

Change Interrupt Mask

chg_ims/ichg_ims

[Overview]

Changes the interrupt mask

[C format]

#include <kernel.h>

ER chg_ims(UINT intms);

[Parameter]

I/O Parameter Description

I UINT intms Interrupt mask to be set

[Explanation]

The interrupt mask of the CPU (IM field of the status register) is changed to the interrupt mask specified by intms.

ichg_ims is intended to be issued from a non-task context but it can also be issued from a task context. chg_ims

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

None

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 chg_ims/ichg_ims is not included in the system

E_PAR −17 The interrupt mask is outside the range (0xff < intms)

E_CTX −25 chg_ims/ichg_ims was issued in the CPU lock state

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 291

Get Interrupt Mask

get_ims/iget_ims

[Overview]

Obtains the interrupt mask

[C format]

#include <kernel.h>

ER get_ims(UINT *p_intms);

[Parameter]

I/O Parameter Description

I UINT * p_intms Address to store interrupt mask

[Explanation]

The interrupt mask of the CPU (IM field of the status register) is obtained and stored in the address specified by

p_intms.

iget_ims is intended to be issued from a non-task context but it can also be issued from a task context. get_ims

can be issued from a non-task context.

[Differences from µµµµITRON3.0]

The name of ref_ims has been changed to get_ims.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 get_ims/iget_ims is not included in the system

E_CTX −25 get_ims/iget_ims was issued in the CPU lock state

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM292

13.8.9 System configuration management function service calls

This section explains the system configuration management function service calls listed in the following table.

Table 13-16. System Configuration Management Function Service calls

Name Function

def_exc Defines a CPU exception handler

ivsta_exc Activates a CPU exception handler

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 293

Define Exception Handler

def_exc

[Overview]

Defines a CPU exception handler

[C format]

#include <kernel.h>

ER def_exc(EXCNO excno, T_DEXC *pk_dexc);

[Parameters]

I/O Parameter Description

I EXCNO excno CPU exception handler number

I T_DEXC * pk_dexc Address of CPU exception handler definition packet

Configuration of T_DEXC

typedef struct t_dexc {

ATR excatr; /* CPU exception handler attribute */

FP exchdr; /* Activation address of CPU exception handler */

VP gp; /* PID base address */

VP tp; /* Reserved area */

} T_DEXC;

[Explanation]

A CPU exception handler with the exception handler number specified by excno is defined based on the CPU

exception handler definition packet specified by pk_dexc. The RX4000 supplies a sample that allows the user to

describe how to identify the exception source and activate a handler if a CPU exception occurs, and therefore the user

must make sure that the exception source corresponds to the CPU exception handler definition number. In addition,

the supplied sample assumes that the value of the ExcCode field of the cause register is used as the exception

handler number.

If def_exc is issued with a definition number for which a CPU exception handler has been already defined, the

previous definition is overwritten and new definition is made. To clear the definition of a CPU exception handler,

specify NULL as pk_dexc.

The CPU exception handler definition packet is described in detail below.

• excatr

Specifies the language in which the CPU exception handler to be defined is described. TA_ASM means that the

handler is described in an assembly language. TA_HLNG means the C language. With the current version,

however, these two attributes are not differentiated in the kernel processing.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM294

Figure 13-13. Exception Handler Attribute

excatr

15 8 7 0

TA_ASM (1): Described in an assembly language

TA_HLNG (0): Described in C language

• exchdr

Specifies the activation address of the CPU exception handler to be defined.

• gp

Specifies the base address of PID used by the CPU exception handler to be defined. Set NULL if the handler

does not use PID.

• tp

This is a reserved area. Always set NULL to this area. However, a value other than NULL is ignored even if set.

[Differences from µµµµITRON3.0]

The RX4000 V3.x allows only one CPU exception handler to exist in the system. The RX4000 (µITRON4.0) allows

two or more CPU exception handlers to be defined. However, the user must describe what processing the hander

should perform depending on the source of the exception, and how the handler is activated.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 def_exc is not included in the system

E_RSATR −11 The CPU exception handler attribute is illegal

E_PAR −17 The CPU exception handler definition number is outside the range
(excno < 0, maximum CPU exception handler count ≤ dexcno)

E_CTX −25 def_exc was issued from a non-task context

def_exc was issued in the CPU lock state

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 295

Attach Idle Routine

vatt_idl

[Overview]

Defines an idle routine

[C format]

#include <kernel.h>

ER vatt_idl(T_DIDL *pk_didl);

[Parameter]

I/O Parameter Description

I T_DIDL * pk_didl Address of idle routine definition packet

Configuration of T_DIDL

typedef struct t_didl {

ATR idlatr; /* Idle routine attribute */

FP idlrtn; /* Idle routine activation address */

VP gp; /* PID base address */

VP tp; /* Reserved area */

} T_DIDL;

[Explanation]

An idle routine is defined, based on the information stored in the idle routine definition packet pk_didl. Only one

idle routine can exist in the system, and one idle routine must be defined. Therefore, the definition of the idle routine is

overwritten each time vatt_idl has been issued.

The idle routine definition packet is described in detail below.

• idlatr

Specifies the language in which the idle routine to be defined is described. TA_ASM means that the routine is

described in an assembly language. TA_HLNG means the C language. With the current version, however, these

two attributes are not differentiated in the kernel processing.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM296

Figure 13-14. Exception Handler Attribute

idlatr

15 8 7 0

TA_ASM (1): Described in an assembly language

TA_HLNG (0): Described in C language

• idlrtn

Specifies the activation address of the idle routine to be defined.

• gp

Specifies the base address of PID used by the idle routine to be defined. Set NULL if the routine does not use

PID.

• tp

This is a reserved area. Always set NULL to this area. However, a value other than NULL is ignored even if set.

[Differences from µµµµITRON3.0]

The RX4000 V3.x calls the idle routine an idle handler. Definition of the idle routine by a service call is not

supported. By adding the new service call vatt_idl, the idle routine can be now defined by a service call. vatt_idl is the

original extended function of the RX4000 and is not defined in the µITRON4.0 specification.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 vatt_idl is not included in the system

E_RSATR −11 The idle routine attribute is illegal

E_CTX −25 vatt_idl was issued from a non-task context

vatt_idl was issued in the CPU lock state

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 297

13.8.10 Service call management function service calls

This section explains the service call management function service calls listed in the following table.

Table 13-17. Service call Management Function Service calls

Name Function

def_svc Defines an extended service call routine

cal_svc/ical_svc Activates an extended service call routine

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM298

Define Extended Service Call Routine

def_svc

[Overview]

Defines an extended service call routine

[C format]

#include <kernel.h>

ER def_svc(FN fncd, T_DSVC *pk_dsvc);

[Parameters]

I/O Parameter Description

I FN fncd Function code

I T_DSVC * pk_dsvc Address of extended service call routine definition packet

Configuration of T_DSVC

typedef struct t_dsvc {

ATR svcatr; /* Extended service call routine attribute */

FP svcrtn; /* Activation address of extended service call routine */

VP gp; /* PID base address */

VP tp; /* Reserved area */

} T_DEXC;

[Explanation]

An extended service call routine with the function code specified by fncd is defined based on the extended service

call routine definition packet specified by pk_dsvc.

Therefore, def_svc can register a user-described function to the kernel as a service call. If def_svc is issued by

using a function code for which an extended service call routine has been already defined, the previous definition is

overwritten by new definition. To clear the definition of the extended service call routine, set NULL to pk_dsvc.

The extended service call routine definition packet is described in detail below.

• svcatr

Specifies the language in which the extended service call routine to be defined is described. TA_ASM means

that the routine is described in an assembly language. TA_HLNG means the C language. With the current

version, however, these two attributes are not differentiated in the kernel processing.

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM 299

Figure 13-15. Extended Service call Routine Attribute

svcatr

15 8 7 0

TA_ASM (1): Described in an assembly language

TA_HLNG (0): Described in C language

• svcrtn

Specifies the activation address of the extended service call routine to be defined.

• gp

Specifies the base address of PID used by the extended service call routine to be defined. Set NULL if the

routine does not use PID.

• tp

This is a reserved area. Always set NULL to this area. However, a value other than NULL is ignored even if set.

[Differences from µµµµITRON3.0]

The extended SVC handler is now called an extended service call routine.

[Return values]

Symbol Value Meaning

E_OK 0 Normal termination

E_RSFN −10 def_svc is not included in the system

E_PAR −10 The function code is outside the range
(fncd ≤ 0, maximum extended service call routine count < fncd)

E_RSATR −11 The extended service call routine attribute is illegal

E_CTX −25 def_svc was issued from a non-task context

def_svc was issued in the CPU lock state

CHAPTER 13 SERVICE CALLS

User’s Manual U14833EJ2V0UM300

Call Extended Service Call Routine

cal_svc/ical_svc

[Overview]

Calls a service call

[C format]

#include <kernel.h>

ER cal_svc(FN fncd, VW arg1, VW arg2, VW arg3);

[Parameters]

I/O Parameter Description

I FN fncd Function code

I VW arg1 First argument of service call

I VW arg2 Second argument of service call

I VW arg3 Third argument of service call

[Explanation]

cal_svc is a general-purpose interface library that calls service calls including extended service call routines, and

calls the service call with the function code fncd. If the function code of a standard service call is specified as fncd,

E_RSFN error is returned.

Three parameters, arg1 to arg3, can be passed to the service call routine (main processing block). To issue this

service call from a non-task context such as an interrupt service routine, use ical_svc.

ical_svc is intended to be issued from a non-task context but it can also be issued from a task context. cal_svc can

be issued from a non-task context.

[Differences from µµµµITRON3.0]

cal_svc/ical_svc is a newly created service call.

[Return values]

Symbol Value Meaning

E_RSFN −10 An unused function code is specified

Others Return value of the service call

User’s Manual U14833EJ2V0UM 301

APPENDIX INDEX

[Symbol]

µITRON4.0 specification .. 17

[A]

acre_cyc .. 266

acre_dtq... 190

acre_flg .. 176

acre_isr .. 286

acre_mbx ... 207

acre_mpf.. 234

acre_mpl .. 247

acre_mtx .. 220

acre_sem ... 165

acre_tsk ... 121

act_tsk ... 123

Activation request .. 34

Address.. 23

AND wait .. 51

Another task

Forcibly terminating .. 129

Releasing waiting state 144

[B]

Base priority... 39

Boot processing block.. 104

[C]

cal_svc... 300

can_act .. 125

can_wup .. 143

chg_ims ... 290

chg_pri ... 130

clr_flg ... 179

Coprocessor 32, 40, 89, 95, 103

CPU exception handler .. 99

Activating/terminating ... 100

Defining .. 100

Exception handler number 100

Issuance of service calls 100

PID ... 100

Use of coprocessor .. 100

CPU lock state ... 275, 280

cre_cyc .. 263

cre_dtq... 188

cre_flg .. 174

cre_isr...284

cre_mbx..205

cre_mpf ..232

cre_mpl...245

cre_mtx...218

cre_sem..163

cre_tsk..118

Cross tool ...17, 19

Current priority..39

Cyclic handler...86

Activating ..87

Creating ..86, 263, 266

Deleting...86, 267

Interrupts...88

Issuance of service calls89

Obtaining information..270

Operable status...268

Phase..87

State ...86

Stopped status..269

Terminating ...87

Use of coprocessor ...89

[D]

Data queue...54

Communication ...56

Creating ..54, 188, 190

Deleting...54, 191

Obtaining information..203

Receiving data55, 198, 200, 201

Transmitting data...................55, 192, 194, 195, 197

Data reception wait...36

Data transmission wait ...36

Data type ..110

General data type ...110

RX4000 data type ...111

Debugger..19

def_exc...293

def_svc ...298

def_tex..152

del_cyc ...267

del_dtq..191

del_flg...177

del_isr...287

del_mbx..208

APPENDIX INDEX

User’s Manual U14833EJ2V0UM302

del_mpf ..235

del_mpl ..248

del_mtx ..221

del_sem..166

del_tsk..122

Development environment..19

dis_dsp...277

dis_int...288

dis_tex..156

Dispatch

Disable.. 277, 281

Enable ..278

Pending...282

dly_tsk ..149

Dormant ...36

Drive method..25

[E]

ena_dsp ...278

ena_int ...289

ena_tex ..157

Error code ..109

Evaluation board ..19

Event flag ...50

Clear ... 51, 179

Creating .. 50, 174, 176

Deleting .. 50, 177

Obtaining information..186

Satisfying condition............................. 180, 182, 184

Setting ..178

Wait ..52

Wait condition ...51

Event flag wait ..36

Exception handler

CPU exception handler...99

Exception processing ...96

Occurrence notification...99

Processing flow ..96

exd_tsk...128

ext_tsk..127

Extended function code..23

Extended service call routine102

Activating and terminating102

Defining .. 102, 298

Use of coprocessor...103

[F]

FCFS method...25

Fixed-length memory block...................................... 71

Acquiring72, 238, 240, 241

Returning ... 72, 236

Fixed-length memory block wait............................... 36

Fixed-length memory pool 70

Acquiring memory blocks 73

Creating ..70, 232, 234

Deleting.. 70, 235

Obtaining information 72, 243

Structure .. 71

Forcible termination ... 35

frsm_tsk ... 148

fsnd_dtq... 197

[G]

get_ims .. 291

get_mpf.. 238

get_mpl.. 251

get_pri.. 132

get_tid.. 274

get_tim... 261

[H]

Handler number ... 23

Host OS ... 19

[I]

iact_tsk .. 123

ical_svc.. 300

ican_act ... 125

ican_wup ... 143

ichg_ims .. 290

ichg_pri .. 130

iclr_flg .. 179

ID number.. 23

Idle routine... 32

Defining.. 295

Executing and terminating.................................... 32

Registering... 32

ifrsm_tsk .. 148

ifsnd_dtq .. 197

iget_ims ... 291

iget_pri... 132

iget_tid ... 274

iget_tim .. 261

iloc_cpu ... 275

Initial priority .. 39

Initialization processing.................................... 22, 104

APPENDIX INDEX

User’s Manual U14833EJ2V0UM 303

Initialization routine .. 101, 105

Activating.. 101

Defining .. 101

Terminating... 101

Interface library .. 18, 106

Function and position ... 106

Interrupt

Disable ... 288

Enable .. 289

Management .. 22, 90

Interrupt control.. 90

Interrupt initialization.. 105

Interrupt management function service call ... 108, 283

acre_isr .. 286

chg_ims.. 290

cre_isr .. 284

del_isr... 287

dis_int... 288

ena_int ... 289

get_ims... 291

ichg_ims ... 290

iget_ims.. 291

Interrupt mask

Changing.. 290

Obtaining.. 291

Interrupt number .. 23

Interrupt processing management 91

Interrupt service routine ... 94

Activating.. 94

Creating.. 94, 284, 286

Deleting .. 94, 287

ID number and interrupt number 94

Issuance of service calls 95

Terminating... 95

Use of coprocessor .. 95

ipget_mpf ... 240

ipget_mpl ... 253

ipol_flg ... 182

ipol_sem .. 169

iprcv_dtq .. 200

iprcv_mbx .. 213

ipsnd_dtq ... 194

iras_tex .. 154

iref_cyc .. 270

iref_dtq... 203

iref_flg .. 186

iref_mbx ... 216

iref_mpf.. 243

iref_mpl...257

iref_mtx...229

iref_sem..172

iref_tex..159

iref_tsk..133

iref_tst...136

irel_mpf...236

irel_mpl...249

irel_wai ...144

irot_rdq ...273

irsm_tsk ..147

iset_flg ..178

iset_tim ...260

isig_sem ...167

isig_tim ...262

isnd_mbx ..209

ista_cyc ..268

ista_tsk ...126

istp_cyc ..269

isus_tsk ..145

iunl_cpu ..276

iwup_tsk ...142

[K]

Kernel ...18, 20

Kernel initialization block ..105

[L]

loc_cpu ...275

loc_mtx ...222

Locking ...66

[M]

Macro ...112

Mailbox ...60

Communication ...62

Creating ..60, 205, 207

Deleting...60, 208

Obtaining information..216

Receiving messages.....................62, 211, 213, 214

Transmitting messages61, 209

Management object

Creation and initialization....................................105

Memory block

Acquiring.....................238, 240, 241, 251, 253, 255

Returning ..236, 249

Memory management ..22, 69

Memory pool

APPENDIX INDEX

User’s Manual U14833EJ2V0UM304

Obtaining information...................... 72, 80, 243, 257

Memory pool management function system

call.. 108, 231

acre_mpf...234

acre_mpl...247

cre_mpf...232

cre_mpl...245

del_mpf...235

del_mpl ...248

get_mpf...238

get_mpl...251

ipget_mpf..240

ipget_mpl ..253

iref_mpf...243

iref_mpl...257

irel_mpf...236

irel_mpl ...249

pget_mpf...240

pget_mpl...253

ref_mpf ...243

ref_mpl..257

rel_mpf..236

rel_mpl..249

tget_mpf..241

tget_mpl..255

Message...61

Allocating area..61

Contents ...61

Priority ..61

Message reception wait..36

Multitask OS...16

Multitasking ..16

Mutex ...65

Creating .. 65, 218, 220

Deleting .. 65, 221

Locking ... 66, 222, 224, 226

Obtaining information..229

Priority ceiling protocol ...65

Priority control rules..66

Priority inheritance protocol65

Releasing locks .. 66, 228

Synchronization ..67

Mutex wait ..36

[N]

Non-existent ...36

Normal termination...35

[O]

Object .. 23

Creation ... 105

Object control block ... 23

Automatic assignment of ID number 24

Creating and deleting ... 24

Identification number.. 23

OR wait .. 51

[P]

Parameter value range... 113

Peripheral hardware... 19

pget_mpf.. 240

pget_mpl.. 253

PID..32, 40, 89, 95, 100, 103

ploc_mtx .. 224

pol_flg .. 182

pol_sem ... 169

Pool creation and initialization 105

prcv_dtq... 200

prcv_mbx ... 213

Priority ceiling protocol .. 65

Priority control rules... 66

Priority inheritance protocol 65

Priority method .. 25

Processor .. 19

psnd_dtq.. 194

[R]

ras_tex ... 154

rcv_dtq... 198

rcv_mbx ... 211

Ready .. 36

Ready queue ... 26

Creation ... 105

Rotation.. 273

Real-time OS ... 16

ref_cyc ... 270

ref_dtq ... 203

ref_flg... 186

ref_mbx.. 216

ref_mpf .. 243

ref_mpl... 257

ref_mtx... 229

ref_sem.. 172

ref_tex.. 159

ref_tsk.. 133

ref_tst... 136

APPENDIX INDEX

User’s Manual U14833EJ2V0UM 305

rel_mpf... 236

rel_mpl ... 249

rel_wai ... 144

Releasing CPU lock state 276

Resource

Acquiring 47, 168, 169, 170

Returning.. 47, 167

Return value .. 109

ROMization .. 17

rot_rdq ... 273

Round robin method .. 27

rsm_tsk .. 147

Running ... 36

[S]

Saving/restoring registers 93, 99

CPU exception handler... 99

Scheduler... 21, 25

Scheduling ... 25

Delay .. 30

Enabling/disabling .. 31

Scheduling method .. 25

Semaphore .. 46

Acquiring resource 168, 169, 170

Creating.. 46, 163, 165

Deleting .. 47, 166

Exclusive control .. 48

Obtaining information ... 172

Returning resource... 167

Semaphore wait ... 36

set_flg .. 178

set_tim ... 260

sig_sem ... 167

slp_tsk.. 139

snd_dtq .. 192

snd_mbx .. 209

sns_ctx... 279

sns_dpn ... 282

sns_dsp ... 281

sns_loc... 280

sns_tex... 158

sta_cyc... 268

sta_tsk ... 126

Stack pool .. 69, 70

stp_cyc... 269

sus_tsk... 145

Suspended... 37

Synchronous communication management 21, 46

Synchronous communication management

function service call ..108, 161

acre_dtq..190

acre_flg ...176

acre_mbx ..207

acre_mtx ...220

acre_sem ..165

clr_flg ..179

cre_dtq..188

cre_flg ...174

cre_mbx ..205

cre_mtx ...218

cre_sem ..163

del_dtq ..191

del_flg ...177

del_mbx ..208

del_mtx ...221

del_sem ..166

fsnd_dtq ..197

iclr_flg ...179

ifsnd_dtq ...197

ipol_flg ..182

ipol_sem ...169

iprcv_dtq ...200

iprcv_mbx ...213

ipsnd_dtq ..194

iref_dtq..203

iref_flg ...186

iref_mbx ..216

iref_mtx ...229

iref_sem ..172

iset_flg ..178

isig_sem..167

isnd_mbx ..209

loc_mtx ...222

ploc_mtx ...224

pol_flg ...182

pol_sem ..169

prcv_dtq ..200

prcv_mbx ..213

psnd_dtq ...194

rcv_dtq ..198

rcv_mbx ..211

ref_dtq...203

ref_flg..186

ref_mbx...216

ref_mtx..229

ref_sem...172

APPENDIX INDEX

User’s Manual U14833EJ2V0UM306

set_flg ...178

sig_sem ..167

snd_dtq...192

snd_mbx ...209

tloc_mtx ..226

trcv_dtq...201

trcv_mbx ...214

tsnd_dtq..195

twai_flg ...184

twai_sem ..170

unl_mtx...228

wai_flg ..180

wai_sem ...168

System base table

Creation ..105

Service call...107

acre_cyc ...266

acre_dtq..190

acre_flg...176

acre_isr...286

acre_mbx..207

acre_mpf...234

acre_mpl...247

acre_mtx...220

acre_sem..165

acre_tsk ..121

act_tsk ..123

cal_svc..300

can_act ...125

can_wup ...143

chg_ims ..290

chg_pri..130

clr_flg ..179

cre_cyc ...263

cre_dtq..188

cre_flg...174

cre_isr...284

cre_mbx..205

cre_mpf...232

cre_mpl...245

cre_mtx...218

cre_sem..163

cre_tsk ..118

def_exc ...293

def_svc ...298

def_tex..152

del_cyc ...267

del_dtq..191

del_flg .. 177

del_isr .. 287

del_mbx ... 208

del_mpf .. 235

del_mpl .. 248

del_mtx .. 221

del_sem ... 166

del_tsk.. 122

dis_dsp... 277

dis_int... 288

dis_tex.. 156

dly_tsk.. 149

ena_dsp ... 278

ena_int ... 289

ena_tex .. 157

exd_tsk... 128

ext_tsk.. 127

frsm_tsk ... 148

fsnd_dtq ... 197

get_ims .. 291

get_mpf .. 238

get_mpl .. 251

get_pri .. 132

get_tid .. 274

get_tim ... 261

iact_tsk... 123

ical_svc .. 300

ican_act.. 125

ican_wup.. 143

ichg_ims... 290

ichg_pri .. 130

iclr_flg... 179

ifrsm_tsk... 148

ifsnd_dtq .. 197

iget_ims.. 291

iget_pri ... 132

iget_tid ... 274

iget_tim .. 261

iloc_cpu.. 275

Interrupt management function system

call.. 108, 283

ipget_mpf ... 240

ipget_mpl ... 253

ipol_flg.. 182

ipol_sem... 169

iprcv_dtq .. 200

iprcv_mbx... 213

ipsnd_dtq ... 194

APPENDIX INDEX

User’s Manual U14833EJ2V0UM 307

iras_tex... 154

iref_cyc... 270

iref_dtq ... 203

iref_flg .. 186

iref_mbx ... 216

iref_mpf .. 243

iref_mpl .. 257

iref_mtx .. 229

iref_sem ... 172

iref_tex.. 159

iref_tsk.. 133

iref_tst .. 136

irel_mpf .. 236

irel_mpl... 249

irel_wai ... 144

irot_rdq ... 273

irsm_tsk.. 147

iset_flg.. 178

iset_tim... 260

isig_sem ... 167

isig_tim ... 262

isnd_mbx.. 209

ista_cyc .. 268

ista_tsk ... 126

istp_cyc .. 269

isus_tsk .. 145

iunl_cpu.. 276

iwup_tsk ... 142

loc_cpu... 275

loc_mtx... 222

Memory pool management function system

call.. 108, 231

pget_mpf .. 240

pget_mpl .. 253

ploc_mtx... 224

pol_flg... 182

pol_sem.. 169

prcv_dtq ... 200

prcv_mbx.. 213

psnd_dtq .. 194

ras_tex.. 154

rcv_dtq ... 198

rcv_mbx.. 211

ref_cyc.. 270

ref_dtq .. 203

ref_flg ... 186

ref_mbx .. 216

ref_mpf ... 243

ref_mpl..257

ref_mtx..229

ref_sem...172

ref_tex...159

ref_tsk ...133

ref_tst..136

rel_mpf..236

rel_mpl ..249

rel_wai ..144

rot_rdq ..273

rsm_tsk ...147

set_flg ...178

set_tim ..260

sig_sem ..167

slp_tsk...139

snd_dtq ...192

snd_mbx ...209

sns_ctx..279

sns_dpn ..282

sns_dsp ..281

sns_loc..280

sns_tex..158

sta_cyc..268

sta_tsk ..126

stp_cyc..269

sus_tsk..145

Synchronous communication management

function service call108, 161

Service call management function system

call ..108, 297

System configuration management function

service call ..108, 292

System status management function system

call ..108, 272

Task exception processing function system

call ..107, 151

Task management function service call107, 117

Task-associated synchronization function

service call ..107, 138

ter_tsk ...129

tget_mpf..241

tget_mpl ..255

Time management function service call......108, 259

tloc_mtx ..226

trcv_dtq ...201

trcv_mbx ...214

tslp_tsk..140

tsnd_dtq ..195

APPENDIX INDEX

User’s Manual U14833EJ2V0UM308

twai_flg ...184

twai_sem ..170

unl_cpu...276

unl_mtx...228

vatt_idl ..295

wai_flg ..180

wai_sem ...168

wup_tsk ..142

Service call management...22

Service call management function system

call.. 108, 297

cal_svc..300

def_svc ...298

ical_svc...300

System clock ..84

Reading ..84

Setting ..84

Updating ...84

System configuration management....................22, 96

System configuration management function

service call ... 108, 292

def_exc ...293

vatt_idl ..295

System configurator ...17, 18

System pool ...69

System status management.....................................22

System status management function system

call.. 108, 272

dis_dsp ...277

ena_dsp..278

get_tid...274

iget_tid ..274

iloc_cpu ..275

irot_rdq ...273

iunl_cpu ..276

loc_cpu ...275

rot_rdq ..273

sns_ctx ...279

sns_dpn..282

sns_dsp ..281

sns_loc ...280

unl_cpu...276

[T]

Task..16

Activating .. 34, 123, 126

Creating .. 34, 118, 121

Delay ..39, 85

Deleting...34, 122, 128

Invalidating wakeup requests 125, 143

Issuance of wakeup requests............................. 142

Obtaining ID number .. 274

Obtaining task information 133, 136

Priority...39, 130, 132

Reactivating ... 35

Releasing suspend state............................ 147, 148

State... 36

State transition ... 38

Terminating ...35, 127, 128

Time lapse waiting state..................................... 149

Timeout .. 39, 85

Waiting state .. 145

Wakeup waiting state 139, 140

Task context... 40

Task debugger ... 17, 18

Task exception ... 41

Enabled/disabled states42, 156, 157

Processing ... 21

Request.. 42, 154

Task exception processing function system

call ... 107, 151

def_tex ... 152

dis_tex.. 156

ena_tex .. 157

iras_tex... 154

iref_tex ... 159

ras_tex ... 154

ref_tex .. 159

sns_tex... 158

Task exception processing routine........................... 41

Activating.. 43

Defining.. 41, 152

Issuance of service calls 45

Obtaining information ... 159

State... 158

Terminating .. 44

Task management ... 21, 33

Task management function service call 107, 117

acre_tsk ... 121

act_tsk.. 123

can_act .. 125

chg_pri ... 130

cre_tsk ... 118

del_tsk.. 122

exd_tsk... 128

ext_tsk.. 127

APPENDIX INDEX

User’s Manual U14833EJ2V0UM 309

get_pri .. 132

iact_tsk ... 123

ican_act.. 125

ichg_pri... 130

iget_pri ... 132

iref_tsk.. 133

iref_tst .. 136

ista_tsk ... 126

ref_tsk .. 133

ref_tst ... 136

sta_tsk.. 126

ter_tsk .. 129

Task-associated synchronization 21

Task-associated synchronization function

service call ... 107, 138

can_wup... 143

dly_tsk .. 149

frsm_tsk.. 148

ican_wup .. 143

ifrsm_tsk... 148

irel_wai ... 144

irsm_tsk.. 147

isus_tsk .. 145

iwup_tsk ... 142

rel_wai .. 144

rsm_tsk... 147

slp_tsk .. 139

sus_tsk ... 145

tslp_tsk ... 140

wup_tsk .. 142

ter_tsk .. 129

tget_mpf... 241

tget_mpl ... 255

Time

Obtaining.. 261

Setting .. 260

Time elapse wait .. 36, 39

Time management ... 22, 84

Time management function service call......... 108, 259

acre_cyc... 266

cre_cyc... 263

del_cyc ... 267

get_tim ... 261

iget_tim... 261

iref_cyc... 270

iset_tim ...260

isig_tim..262

ista_cyc...268

istp_cyc...269

ref_cyc ..270

set_tim ..260

sta_cyc..268

stp_cyc..269

Time tick ...262

Timeout ..39

tloc_mtx ..226

trcv_dtq...201

trcv_mbx...214

tslp_tsk ...140

tsnd_dtq..195

twai_flg ...184

twai_sem ..170

[U]

unl_cpu...276

unl_mtx...228

User pool ..69, 70

Utility...17

System configurator ..17, 18

Task debugger ..17, 18

[V]

Variable-length memory block75

Acquiring...77

Returning ..79

Variable-length memory block wait36

Variable-length memory pool....................................75

Acquiring memory blocks......................................81

Creating ..75, 245, 247

Deleting...75, 248

Structure ...76

vatt_idl ..295

[W]

wai_flg ..180

wai_sem ...168

Waiting..36

Waiting-suspended...37

Wake-up wait ..36

wup_tsk ..142

