3.3V / 5V ECL Quad 4-Input **OR/NOR**

Description

The MC10/100EP101 is a Quad 4-input OR/NOR gate. The device is functionally equivalent to the E101. With AC performance faster than the E101 device, the EP101 is ideal for applications requiring the fastest AC performance available.

The 100 Series contains temperature compensation.

Features

- 250 ps Typical Propagation Delay
- Maximum Frequency > 3 GHz Typical
- PECL Mode Operating Range: V_{CC} = 3.0 V to 5.5 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range: V_{CC} = 0 V with $V_{EE} = -3.0 \text{ V}$ to -5.5 V
- Open Input Default State
- Pb-Free Packages are Available*

ON Semiconductor®

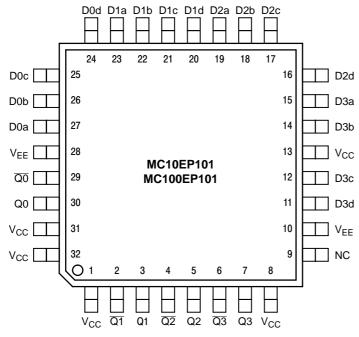
http://onsemi.com

LQFP-32 **FA SUFFIX CASE 873A**

MARKING

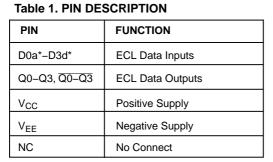
= 10 or 100XXX

Α = Assembly Location


WL = Wafer Lot YY = Year ww = Work Week = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.


^{*}For additional marking information, refer to Application Note AND8002/D.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 32-Lead LQFP Pinout (Top View)

* Pins will default LOW when left open.

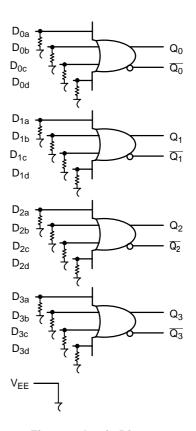


Figure 2. Logic Diagram

Table 2. TRUTH TABLE

Dna	Dnb	Dnc	Dnd	Qn	Qn
L H X X H	L X H X H	L X H X H	L X X H H	IIIII	HULL

Table 3. ATTRIBUTES

Charac	cteristics	Value				
Internal Input Pulldown Resisto	75 kΩ					
Internal Input Pullup Resistor	N	/A				
ESD Protection	> 4 kV > 100 V > 2 kV					
Moisture Sensitivity, Indefinite T	ime Out of Drypack (Note 1)	Pb Pkg	Pb-Free Pkg			
	LQFP-32	Level 2	Level 2			
Flammability Rating	Oxygen Index: 28 to 34	UL-94 V-0	@ 0.125 in			
Transistor Count	173 D	evices				
Meets or exceeds JEDEC Spec	: EIA/JESD78 IC Latchup Test					

^{1.} For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$V_I \le V_{CC}$ $V_I \le V_{EE}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	32 LQFP 32 LQFP	80 55	°C/W
θ JC	Thermal Resistance (Junction-to-Case)	Standard	32 LQFP	12 to 17	°C/W
T _{sol}	Wave Solder Pb Pb-Free	<2 to 3 sec @ 248°C <2 to 3 sec @ 260°C		265 265	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

Table 5. 10EP DC CHARACTERISTICS, PECL $V_{CC} = 3.3 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 2)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	45	57	75	45	58	75	45	59	75	mA
V _{OH}	Output HIGH Voltage (Note 3)	2165	2290	2415	2230	2355	2480	2290	2415	2540	mV
V _{OL}	Output LOW Voltage (Note 3)	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	2090		2415	2155		2480	2215		2540	mV
V _{IL}	Input LOW Voltage (Single-Ended)	1365		1690	1460		1755	1490		1815	mV
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	-150			-150			-150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 2. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.3 V to –2.2 V. 3. All loading with 50 W to V_{CC} 2.0 V.

Table 6. 10EP DC CHARACTERISTICS, PECL V_{CC} = 5.0 V, V_{EE} = 0 V (Note 4)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	45	57	75	45	58	75	45	59	75	mA
V _{OH}	Output HIGH Voltage (Note 5)	3865	3990	4115	3930	4055	4180	3990	4115	4240	mV
V _{OL}	Output LOW Voltage (Note 5)	3065	3190	3315	3130	3255	3380	3190	3315	3440	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3790		4115	3855		4180	3915		4240	mV
V _{IL}	Input LOW Voltage (Single-Ended)	3065		3390	3130		3455	3190		3515	mV
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	-150			-150			-150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 4. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +2.0 V to -0.5 V.
- 5. All loading with 50 Ω to V_{CC} 2.0 V.

Table 7. 10EP DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$, $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 6)

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	45	57	75	45	58	75	45	59	75	mA
V _{OH}	Output HIGH Voltage (Note 7)	-1135	-1010	-885	-1070	-945	-820	-1010	-885	-760	mV
V _{OL}	Output LOW Voltage (Note 7)	-1935	-1810	-1685	-1870	-1745	-1620	-1810	-1685	-1560	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1210		-885	-1145		-820	-1085		-760	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1935		-1610	-1870		-1545	-1810		-1485	mV
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	-150			-150			-150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 6. Input and output parameters vary 1:1 with $V_{\mbox{\footnotesize CC}}$.
- 7. All loading with 50 Ω to VCC 2.0 V.

Table 8. 100EP DC CHARACTERISTICS, PECL $V_{CC} = 3.3 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 8)

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	40	55	75	40	58	75	45	60	85	mA
V _{OH}	Output HIGH Voltage (Note 9)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 9)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	2075		2420	2075		2420	2075		2420	mV
V _{IL}	Input LOW Voltage (Single–Ended)	1355		1675	1355		1675	1355		1675	mV
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	-150			-150			-150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 8. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.3 V to -2.2 V.
- 9. All loading with 50 Ω to V_{CC} 2.0 V.

Table 9. 100EP DC CHARACTERISTICS, PECL $V_{CC} = 5.0 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 10)

			-40°C		25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	40	58	75	40	61	75	45	64	85	mA
V _{OH}	Output HIGH Voltage (Note 11)	3855	3980	4105	3855	3980	4105	3855	3980	4105	mV
V _{OL}	Output LOW Voltage (Note11)	3055	3180	3305	3055	3180	3305	3055	3180	3305	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	3775		4120	3775		4120	3775		4120	mV
V _{IL}	Input LOW Voltage (Single–Ended)	3055		3375	3055		3375	3055		3375	mV
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	-150			-150			-150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 10. 100EP DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$, $V_{EE} = -5.5 \text{ V}$ to -3.0 V (Note 12)

			-40°C		25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current $V_{CC} = -3.3V$ $V_{CC} = -5.0 V$	40 40	55 58	75 75	40 40	58 61	75 75	45 45	60 64	85 85	mA
I _{EE}	Power Supply Current	50	63	80	55	67	85	60	70	88	mA
V _{OH}	Output HIGH Voltage (Note 13)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 13)	-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1225		-880	-1225		-880	-1225		-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1945		-1625	-1945		-1625	-1945		-1625	mV
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	-150			-150			-150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

^{10.} Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +2.0 V to -0.5 V.

^{11.} All loading with 50 Ω to V_{CC} – 2.0 V.

^{12.} Input and output parameters vary 1:1 with $V_{\mbox{\scriptsize CC}}$.

^{13.} All loading with 50 Ω to V_{CC} – 2.0 V.

Table 11. AC CHARACTERISTICS $V_{CC} = 0 \text{ V}$; $V_{EE} = -3.0 \text{ V}$ to -5.5 V or $V_{CC} = 3.0 \text{ V}$ to 5.5 V; $V_{EE} = 0 \text{ V}$ (Note 14)

				-40°C			25°C			85°C		
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (See Figure 3. F _{max} /JITTER)			> 3			> 3			> 3		GHz
t _{PLH} , t _{PHL}	Propagation Delay D t	o Q, Q 10 100	125 180	225 280	325 380	150 200	250 300	370 400	170 250	300 320	420 450	ps
tSKEW	Within Device Skew Device to Device Skew (Note 15)	Q, <u>Q</u>		15	50 200		20	50 200		20	50 200	ps
t _{JITTER}	Cycle-to-Cycle Jitter (See Figure 3. F _{max} /JITTER)			0.2	< 1		0.2	< 1		0.2	< 1	ps
t _r t _f	Output Rise/Fall Times (20% – 80%)	Q, Q	100	150	200	120	170	220	150	190	250	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 14. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} 2.0 V.
- 15. Skew is measured between outputs under identical transitions.

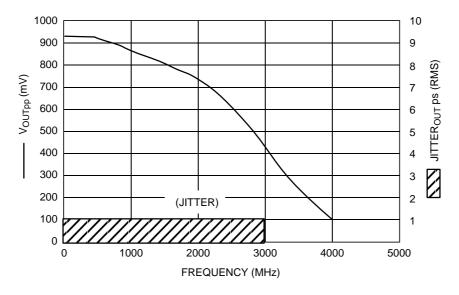


Figure 3. F_{max}/Jitter

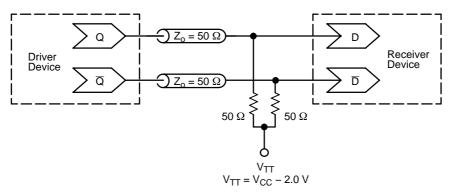


Figure 4. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping [†]
MC10EP101FA	LQFP-32	250 Units / Tray
MC10EP101FAG	LQFP-32 (Pb-Free)	250 Units / Tray
MC10EP101FAR2	LQFP-32	2000 / Tape & Reel
MC10EP101FAR2G	LQFP-32 (Pb-Free)	2000 / Tape & Reel
MC100EP101FA	LQFP-32	250 Units / Tray
MC100EP101FAG	LQFP-32 (Pb-Free)	250 Units / Tray
MC100EP101FAR2	LQFP-32	2000 / Tape & Reel
MC100EP101FAR2G	LQFP-32 (Pb-Free)	2000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

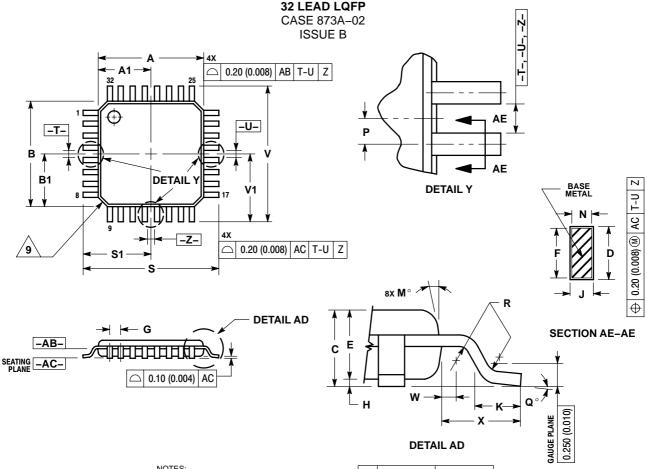
AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

AN1504/D - Metastability and the ECLinPS Family

AN1568/D - Interfacing Between LVDS and ECL

AN1642/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design


AND8002/D – Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DATUM PLANE AB IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.

 4. DATUMS T. U. AND Z. TO BE DETERMINED AT DATUM PLANE AB S. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE AC G. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE AB T. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION. DAMBAR PROTRUSION. DAMBAR PROTRUSION. DAMBAR PROTRUSION. DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D. DIMENSION TO EXCEPT D. 520 (0.020)
- PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.520 (0.020).
- MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076 (0.0003).
- 9. EXACT SHAPE OF EACH CORNER MAY VARY FROM DEPICTION.

	MILLIN	IETERS	INC	HES						
DIM	MIN	MAX	MIN	MAX						
Α	7.000	BSC	0.276	BSC						
A1	3.500	BSC	0.138	BSC						
В	7.000	BSC	0.276	BSC						
B1	3.500	BSC	0.138	BSC						
С	1.400	1.600	0.055	0.063						
D	0.300	0.450	0.012	0.018						
Ε	1.350	1.450	0.053	0.057						
F	0.300	0.400	0.012	0.016						
G	0.800	BSC	0.031 BSC							
Н	0.050	0.150	0.002	0.006						
J	0.090	0.200	0.004	0.008						
K	0.500	0.700	0.020 0.028							
M	12°	REF	12°	REF						
N	0.090	0.160	0.004	0.006						
Р	0.400	BSC	0.016	BSC						
Q	1°	5°	1°	5°						
R	0.150	0.250	0.006	0.010						
S	9.000	BSC	0.354	BSC						
S1	4.500	BSC	0.177	BSC						
٧	9.000	BSC	0.354 BSC							
V1	4.500	BSC	0.177 BSC							
W	0.200	REF	0.008 REF							
X	1 000	RFF	0.039 BFF							

ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC).

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.