
CBR Series, C0G Dielectric, Ultra High Q, Low ESR, 6.3VDC-250VDC (RF & Microwave) Preliminary

Overview

KEMET's CBR series surface mount multilayer ceramic capacitors (MLCCs) in C0G dielectric feature a robust and exceptionally stable base metal electrode dielectric system that provides excellent low loss performance (High Q). These devices offer extremely low ESR and high self-resonance characteristics, and are well suited for resonant circuit applications or those where Q and stability of capacitance characteristics are required. CRF series capacitors exhibits no change in capacitance with respect to time and voltage and boasts a negligible change in capacitance with reference to ambient temperature. Capacitance change is limited to ±30ppm/°C from -55°C to +125°C.

CBR series devices are are suitable for many circuit applications including RF power amplifiers, mixers, oscillators, low noise amplifiers, filter networks, antenna tuning, timing circuits, delay lines and MRI imaging coils.

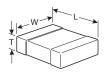
Benefits

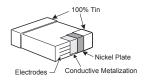
- -55°C to +125°C operating temperature range
- Ultra High Q
- · Base metal electrode (BME) dielectric system
- · Pb-Free and RoHS compliant
- 0201, 0402, 0603 and 0805 case sizes (inches)
- DC voltage ratings of 6.3V, 10V, 25V, 50V, 100V and 250V
- Capacitance offerings ranging from 0.1pF up to 100pF
- Available capacitance tolerances of ±0.05pF, ±0.1pF, ±0.25pF, ±0.5pF, ±1%, ±2%, ±5% and ±10%
- No piezoelectric noise
- Low ESR
- High thermal stability
- No capacitance change with respect to applied rated DC voltage
- Negligible capacitance change with respect to temperature
- · No capacitance decay with time

- · Non-polar device, minimizing installation concerns
- 100% pure matte tin-plated termination finish allowing for excellent solderability

Applications

Typical applications include critical timing, tuning, bypass, coupling, feedback, filtering, impedance matching and DC blocking.


Field applications include wireless and cellular base stations, wireless LAN, subscriber based wireless services, wireless broadcast equipment, satellite communications, RF PA modules, filters, VCOs, PAs, matching networks, RF modules, satellite communications and medical electronics.


Ordering Information

CBR	02	С	330	F	9	G	Α	С	TU
Series	Case Size (L"x W")	Specification/ Series	Capacitance Code (pF)	Capacitance Tolerance	Voltage	Dielectric	Termination Style	Termination Finish	Packaging/Grade (C-Spec)
CBR	02 = 0201 04 = 0402 06 = 0603 08 = 0805	C = Standard	2 Sig. Digits + Number of Zeros Use 9 for 1.0 - 9.9pF Use 8 for 0.5 - .99pF ex. 2.2pF = 229 ex. 0.5pF = 508	A = ± 0.05 pF B = ± 0.1 pF C = ± 0.25 pF D = ± 0.5 pF F = $\pm 1\%$ G = $\pm 2\%$ J = $\pm 5\%$	9 = 6.3V 8 = 10V 3 = 25V 5 = 50V 1 = 100V A = 250V	G = C0G	A = N/A	C = 100% Matte Sn	TU = 7" Reel Unmarked

Dimensions – Millimeters (Inches)

Case Size (in.)	Case Size (mm)	L Length	W Width	T Thickness	B Bandwidth	Mounting Technique
0201	0603	0.60 (.024) ± 0.03 (.001)	0.30 (.012) ± 0.03 (.001)	0.30 (.012) ± 0.03 (.001)	0.15 (.006) ± 0.05 (.002)	Solder Reflow
0402	1005	1.00 (.040) ± 0.05 (.002)	0.50 (.020) ± 0.05 (.002)	0.50 (.020) ± 0.05 (.002)	0.25 (.010) + 0.05 (.002) / -0.10 (.004)	Only
0603	1608	1.60 (.063) ± 0.10 (.004)	0.80 (.031) ± 0.10 (.004)	$0.80 (.031) \pm 0.07 (.003)$	0.40 (.016) ± 0.15 (.006)	Solder Wave
0805	2012	2.00 (.079) ± 0.20 (.008)	1.25 (.049) ± 0.20 (.008)	0.85 (.031) ± 0.10 (.004)	0.50 (.020) ± 0.20 (.008)	or Solder Reflow

Electrical Parameters/Characteristics

Item	Parameters/Characteristics
Operating Temperature Range:	-55°C to +125°C
Capacitance Change with Reference to +25°C and 0 Vdc Applied (TCC):	0 ± 30PPM/°C
Aging Rate (Max % Cap Loss/Decade Hour):	0%
Dielectric Withstanding Voltage (DWV):	See Dielectric Withstanding Voltage Table (5 ± 1 seconds and charge/discharge not exceeding 50mA)
Quality Factor (Q):	≥ 1000 for capacitance values ≥ 30pF ≥ 400 + 20C for capacitance values < 30pF
Insulation Resistance (IR) Limit @ 25°C:	10^{5} Megohms minimum (Rated voltage applied for 120 ± 5 secs)
Insulation Resistance (IR) Limit @ 125°C:	10 ⁴ Megohms minimum (Rated voltage applied for 120 ± 5 secs)

Capacitance and Quality Factor (Q) measured under the following conditions:

1MHz \pm 100kHz and 1.0 \pm 0.2 Vrms if capacitance ≤1000pF

 $1kHz \pm 50Hz$ and 1.0 ± 0.2 Vrms if capacitance >1000pF

Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 & Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

Dielectric Withstanding Voltage (DWV)						
DWV	250%	200%				
Rated Voltage (VDC)	≤100V	250V				

Environmental Compliance

Pb-Free and RoHS compliant

Table 1 – CBR Series (0201 - 0805 Case Sizes)

Case	Size (in.)		0201		04	02	0603				0805		
Volta	ge Code	9	8	3	5	1	5	1	Α	5	1	Α	
Rated Vo	oltage (VDC)	6.3	10	25		50 100		100	250	50	100	250	
Сар	Cap Code				Capacita	псе & Сара	acitance To	olerance A	vailability				
0.1 pF	108												
0.2 pF	208												
0.3 pF	308												
0.4 pF	408												
0.5 pF	508												
0.6 pF	608												
0.7 pF	708												
0.8 pF 0.9 pF	808 908												
1.0 pF	109												
1.0 pF	189		A, B, C		A, I	3, C							
2.2 pF	229							A, B, C			A, B, C		
2.4 pF	249												
2.7 pF	279												
3.0 pF	309												
3.3 pF	339												
3.6 pF	369												
3.9 pF	399												
4.3 pF	439												
4.7 pF	479												
5.1 pF	519												
5.6 pF	569												
6.2 pF	629				B, C, D								
6.8 pF	689		B, C, D				B, C, D				B, C, D		
7.5 pF	759	_, _, _		,				, -,					
8.2 pF	829												
9.1 pF 10 pF	919 100												
10 pF	110			I									
12 pF	120												
13 pF	130												
15 pF	150			F, G, J									
16 pF	160				F, G, J								
18 pF	180	_	2 1										
20 pF	200	F, (G, J										
22 pF	220							F, G, J					
24 pF	240							г, G , J					
27 pF	270										F, G, J		
30 pF	300										1, 0, 0		
33 pF	330												
36 pF	360												
39 pF	390												
43 pF	430												
47 pF 56 pF	470 560												
68 pF	680												
82 pF	820												
100 pF	101												
100 μι	101	6.3	10	25	50	100	50	100	250	50	100	250	
Сар	Cap Code	9	8	3	5	1	5	1	Α	5	1	Α	
			0201		04	02		0603			0805		

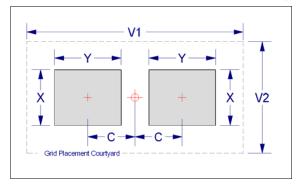


Table 2 – Chip Capacitor Land Pattern Design Recommendations per IPC-7351 (mm)

Case Size (in.)	Case Size (mm)	Density Level A: Maximum (Most) Land Protrusion			N	ledian	Density Level B: ian (Nominal) Land Protrusion			Density Level C: Minimum (Least) Land Protrusion						
(111.)	(11111)	С	Υ	Х	V1	V2	С	Υ	Х	V1	V2	С	Υ	Х	V1	V2
0201	0603	0.38	0.56	0.52	1.80	1.00	0.33	0.46	0.42	1.50	0.80	0.28	0.36	0.32	1.20	0.60
0402	1005	0.50	0.72	0.72	2.20	1.20	0.45	0.62	0.62	1.90	1.00	0.40	0.52	0.52	1.60	0.80
0603	1608	0.90	1.15	1.10	4.00	2.10	0.80	0.95	1.00	3.10	1.50	0.60	0.75	0.90	2.40	1.20
0805	2012	1.00	1.35	1.55	4.40	2.60	0.90	1.15	1.45	3.50	2.00	0.75	0.95	1.35	2.80	1.70

Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of 0603(1608) and 0805(2012) case sizes.

Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. **Density Level C:** For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC standard 7351 (IPC-7351).

Storage and Handling

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature – reels may soften or warp, and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40 degrees C, and maximum storage humidity not exceed 70% relative humidity. In addition, temperature fluctuations should be minimized to avoid condensation on the parts, and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability, chip stock should be used promptly, preferably within 1.5 years of receipt.

Other KEMET Resources

Tools					
Resource	Location				
Configure A Part: CapEdge	http://capacitoredge.kemet.com				
SPICE & FIT Software	http://www.kemet.com/spice				
Search Our FAQs: KnowledgeEdge	http://www.kemet.com/keask				

Product Information					
Resource	Location				
Products	http://www.kemet.com/products				
Technical Resources (Including Soldering Techniques)	http://www.kemet.com/technicalpapers				
RoHS Statement	http://www.kemet.com/rohs				
Quality Documents	http://www.kemet.com/qualitydocuments				

Product Request				
Resource	Location			
Sample Request	http://www.kemet.com/sample			
Engineering Kit Request	http://www.kemet.com/kits			

Contact					
Resource	Location				
Website	www.kemet.com				
Contact Us	http://www.kemet.com/contact				
Investor Relations	http://www.kemet.com/ir				
Call Us	1-877-MyKEMET				
Twitter	http://twitter.com/kemetcapacitors				

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") are subject to change without notice.

All Information given herein is believed to be accurate and reliable, but is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on our knowledge of typical operating conditions for such applications, but are not intended to constitute – and we specifically disclaim – any warranty concerning suitability for a specific customer application or use. This Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by us with reference to the use of our products is given gratis, and we assume no obligation or liability for the advice given or results obtained.

Although we design and manufacture our products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicated or that other measures may not be required.

KEMET Corporation World Headquarters

2835 KEMET Way Simpsonville, SC 29681

Mailing Address: P.O. Box 5928 Greenville, SC 29606

www.kemet.com Tel: 864-963-6300 Fax: 864-963-6521

Corporate Offices

Fort Lauderdale, FL Tel: 954-766-2800

North America

Southeast

Lake Mary, FL Tel: 407-855-8886

Northeast

Wilmington, MA Tel: 978-658-1663

West Chester, PA Tel: 610-692-4642

Central

Schaumburg, IL Tel: 847-882-3590

Carmel, IN Tel: 317-706-6742

West

Milpitas, CA Tel: 408-433-9950

Mexico

Zapopan, Jalisco Tel: 52-33-3123-2141

Europe

Southern Europe

Geneva, Switzerland Tel: 41-22-715-0100

Paris, France Tel: 33-1-4646-1009

Sasso Marconi, Italy Tel: 39-051-939111

Milan, Italy

Tel: 39-02-57518176

Rome, Italy

Tel: 39-06-23231718

Madrid, Spain Tel: 34-91-804-4303

Central Europe

Landsberg, Germany Tel: 49-8191-3350800

Dortmund, Germany Tel: 49-2307-3619672

Kwidzyn, Poland Tel: 48-55-279-7025

Northern Europe

Bishop's Stortford, United Kingdom

Tel: 44-1279-757201

Weymouth, United Kingdom Tel: 44-1305-830747

Coatbridge, Scotland Tel: 44-1236-434455

Färjestaden, Sweden Tel: 46-485-563934

Espoo, Finland

Tel: 358-9-5406-5000

Asia

Northeast Asia

Hong Kong Tel: 852-2305-1168

Shenzhen, China Tel: 86-755-2518-1306

Beijing, China

Tel: 86-10-5829-1711

Shanghai, China Tel: 86-21-6447-0707

Taipei, Taiwan Tel: 886-2-27528585

Southeast Asia

Singapore Tel: 65-6586-1900

Penang, Malaysia Tel: 60-4-6430200

Bangalore, India Tel: 91-806-53-76817

Note: KEMET reserves the right to modify minor details of internal and external construction at any time in the interest of product improvement. KEMET does not assume any responsibility for infringement that might result from the use of KEMET Capacitors in potential circuit designs. KEMET is a registered trademark of KEMET Electronics Corporation.