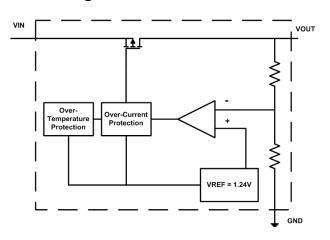


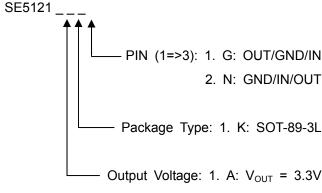
Description


The SE5121 series of fixed output low dropout linear regulators are designed for portable battery powered applications, which require low power consumption, low noise environment, and low dropout voltage. Each device contains a bandgap voltage reference, an error amplifier, a PMOS power transistor, and resistors for setting output voltage, and current limit and temperature limit protection circuits.

The SE5121 has been designed to be used with low cost capacitors and requires a minimum output capacitor of 1.0 μ F. Standard voltage versions are 1.5, 1.8, 2.5, 2.8, 3.0, 3.3, 3.5and 3.6V.

Pin Configuration

Block Diagram


Features

- Typical 175mV Dropout Voltage at 150mA.
- Excellent Line and Load Regulation.
- High Accuracy Output Voltage of 2%.
- Ultra-Low Ground Current at 35µA (Typ.)
- Over Current and thermal Protection.
- Standard SOT-89-3L Package.
- > 100% Lead (Pb)-Free

Application

- USB removable devices
- MPEG4 devices
- Wireless LAN's
- > Hand-Held Instrumentation.
- Portable DVD players
- Digital camera

Ordering Information

2. B: $V_{OUT} = 2.8V$

3. C: $V_{OUT} = 2.5V$

4. D: $V_{OUT} = 1.8V$

5. E: V_{OUT} = 1.5V

6. F: $V_{OUT} = 3.0V$

7. Y: $V_{OUT} = 3.5V$

8. Q: $V_{OUT} = 3.6V$

Absolute Maximum Rating (1)

Parameter	Symbol	Value	Units
Input Voltage	V _{IN}	6	V
Output Voltage	V_{OUT}	-0.3 to V _{IN}	V
Power Dissipation	P _D	Internally Limited ⁽³⁾	
Output Short Circuit Duration		Infinite	
Thermal Resistance, Junction-to-Ambient	Θ_{JA}	180	°C/W
Lead Temperature (Soldering, 5 sec.)		260	°C
Junction Temperature	TJ	0 to +150	°C
Storage Temperature	Ts	-40 to +150	°C

Operating Rating (2)

Parameter	Symbol	Value	Units
Supply Input Voltage	V_{IN}	5.5	V
Junction Temperature	TJ	0 to +125	°C

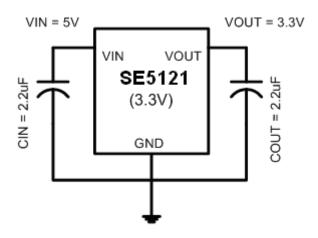
Electrical Characteristics

 V_{IN} = 5V; C_{IN} = 2.2 μ F; C_{OUT} = 2.2 μ F (Electrolytic capacitor) ; I_{OUT} = 10mA; T_{J} = 25°C; unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		SE5121 - 1.5(V _{IN} =3.3V)	1.470	1.5	1.530	
		SE5121 - 1.8(V _{IN} =3.3V)	1.764	1.8	1.836	
		SE5121 – 2.5	2.450	2.5	2.550	
\ \/	Output Voltage	SE5121 – 2.8	2.744	2.8	2.856	V
V _{OUT}	Accuracy	SE5121 – 3.0	2.940	3.0	3.060	V
		SE5121 – 3.3	3.234	3.3	3.366	
		SE5121 – 3.5	3.430	3.5	3.570	
		SE5121 – 3.6	3.528	3.6	3.672	
ΔV_{OUT}	Line Regulation	$V_{IN} = (V_{OUT} + 0.8)V$ to 5.5V		0.2		%/V
ΔV _{OUT}	Load Regulation ⁽⁵⁾	$V_{IN} = (V_{OUT} + 0.8)V$ to 2.5V		2.0		%
		I_{OUT} = 10mA to 600mA				
	Output Voltage					
$\Delta V_{OUT}/\Delta T$	Temperature	Note 4		0.1		mV/°C
	Coefficient					

600mA CMOS Low Power Low Noise LDO Voltage Regulator

SE5121


Electrical Characteristics (Continued)

 V_{IN} = 5V; C_{IN} = 2.2 μ F; C_{OUT} = 2.2 μ F (Electrolytic capacitor); I_{OUT} = 10mA; T_J = 25°C; unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IN} – V _{OUT} Dropout	Dropout Voltage (6)	I _{OUT} = 10mA		5		mV
		I _{OUT} = 150mA	1	175	-	
		I _{OUT} = 250mA	1	300	-	
		I _{OUT} = 600mA		800	-	
T _{PROTECTION} Thermal Protection	Thermal Protection Temperature	1	150		°C	
	memiai Frotection	Protection Hysterisys	I	20	1	
PSRR	Ripple Rejection	f = 120 Hz	I	60	1	dB
IQ	Quiescent Current	I _{OUT} = 10mA	1	35	-	μA
I _{LIMIT}	Current Limit		600			mA

- Note 1: Exceeding the absolute maximum rating may damage the device.
- Note 2: The device is not guaranteed to function outside its operating rating.
- Note 3: The maximum allowable power dissipation at any T_A (ambient temperature) is calculated using: $P_{D(MAX)} = (T_{J(MAX)} T_A)/\Theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. See "Thermal Consideration" section for details
- Note 4: Output voltage temperature coefficient is the worst case voltage change divided by the total temperature range.
- **Note 5:** Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 600mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- **Note 6:** Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.
- Note 7: The Cin or Cout should be chosen carefully. Please refer to the Application Hints

Application Diagram

600mA CMOS Low Power Low Noise LDO Voltage Regulator

SE5121

Application Hints

Like any low dropout regulator, SE5121 requires external capacitors to ensure stability. The external capacitors must be carefully selected to ensure performance.

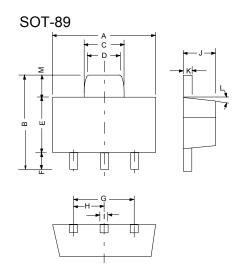
Input Capacitor

An input capacitor of at least $1\mu F$ is required. The inexpensive Electrolytic capacitor is preferred. The value can be increased without upper limit.

Output Capacitor

An output capacitor is required for stability. It must be placed no more than 1 cm away from the V_{OUT} pin, and connected directly between V_{OUT} and GND pins. The inexpensive Electrolytic capacitor is recommended. The minimum value is $1\mu\text{F}$ but may be increased without limit.

Thermal Considerations


It is important that the thermal limit of the package is not exceeded. The SE5121 has built-in thermal protection. When the thermal limit is exceeded, the IC will enter protection, and V_{OUT} will be pulled to ground. The power dissipation for a given application can be calculated as following:

The power dissipation (P_D) is $P_D = I_{OUT} * [V_{IN} - V_{OUT}]$

The thermal limit of the package is then limited to $P_{D(MAX)} = [T_J - T_A]/\Theta_{JA}$ where T_J is the junction temperature, TA is the ambient temperature, and Θ_{JA} is around 180°C/W for SE5121. SE5121 is designed to enter thermal protection at 150°C. For example, if T_A is 25°C then the maximum P_D is limited to about 0.7W. In other words, if $I_{OUT(MAX)} = 600$ mA, then $[V_{IN} - V_{OUT}]$ cannot exceed 1.7V.

OUTLINE DRAWING SOT-89-3L

DIMENSIONS					
DIM ^N	INCHES		MM		
ווועו	MIN	MAX	MIN	MAX	
Α	0.173	0.181	4.400	4.600	
В	0.159	0.167	4.050	4.250	
С	0.067	0.075	1.700	1.900	
D	0.051	0.059	1.300	1.500	
Е	0.094	0.102	2.400	2.600	
F	0.035	0.047	0.890	1.200	
G	0.118REF		3.00REF		
Н	0.059REF		1.50REF		
I	0.016	0.020	0.400	0.520	
J	0.055	0.063	1.400	1.600	
K	0.014	0.016	0.350	0.410	
L	10°TYP		10°TYP		
М	0.028REF		0.70REF		

Customer Support

Seaward Electronics Incorporated - China

Section B, 2nd Floor, ShangDi Scientific Office Complex, #22 XinXi Road

Haidian District, Beijing 100085, China

Tel: 86-10-8289-5700/01/05

Fax: 86-10-8289-5706

Seaward Electronics Corporation - Taiwan

2F, #181, Sec. 3, Minquan East Rd,

Taipei, Taiwan R.O.C Tel: 886-2-2712-0307

Fax: 886-2-2712-0191

Seaward Electronics Incorporated - North America

1512 Centre Pointe Dr.

Milpitas, CA95035, USA

Tel: 1-408-821-6600

Last Updated - 12/4/2008