

802.15.4 MAC/PHY Software
User’s Guide

802154MPSUG/D

Rev. 0.0, 11/2004

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice
to any products herein. Freescale Semiconductor makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor
does Freescale Semiconductor assume any liability arising out of the application or
use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters that may
be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does not
convey any license under its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which
the failure of the Freescale Semiconductor product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended or unauthorized application, Buyer
shall indemnify and hold Freescale Semiconductor and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages,
and expenses, and reasonable attorney fees arising out of, directly or indirectly, any
claim of personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

Learn More: For more information about Freescale products, please visit
www.freescale.com.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004. All rights reserved.

Zigbee™ is a trademark of the Zigbee Alliance.

How to Reach Us:

USA/Europe/Locations Not Listed:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

Japan:
Freescale Semiconductor Japan Ltd.
Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334

Home Page:
www.freescale.com

Contents

Freescale Semiconductor 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 iii

About This Book ...v

Organization.. v

Conventions .. v

Definitions, Acronyms, and Abbreviations..vi

References...vii

Revision History ...vii

Chapter 1 Overview ...1-1

1.1 IEEE 802.15.4 Background ..1-1

1.2 Device Types ..1-4

1.3 System Overview..1-5

Chapter 2 Interfacing to the 802.15.4 MAC Software..2-1

2.1 Interface Overview..2-1

2.2 Include Files..2-3

2.3 MAC API..2-3

2.4 MAC Main Task ...2-6

2.5 MLME and MCPS Interface...2-7

2.5.1 Resetting ...2-7

2.5.2 Accessing PIB Attributes ..2-8

2.5.3 MLME Primitives ...2-8

2.5.4 MCPS Primitives ..2-11

2.6 ASP interface ..2-12

Chapter 3 Creating an Application ...3-1

3.1 Basic Setup ...3-2

3.1.1 Initialization ..3-2

3.1.2 Resetting ...3-2

3.1.3 Implementing SAP’s...3-3

3.2 Starting a New PAN..3-3

3.2.1 Energy Detection Scan..3-4

3.2.2 Choosing Short Address ...3-7

3.2.3 Choosing PAN ID...3-8

iv 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

3.2.4 Starting a PAN ..3-9

3.3 Joining a PAN...3-11

3.3.1 Active Scan ...3-11

3.3.2 Associating to a PAN..3-14

3.4 Adding a Device to the PAN ..3-17

3.5 Data Transfer ..3-19

3.5.1 Direct Data ..3-19

3.5.2 Indirect Data ...3-22

3.6 Summary ...3-24

Freescale Semiconductor 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 v

About This Book
This user’s guide describes how to use the Freescale 802.15.4 MAC/PHY software. It describes how to
access and use the Medium Access Control/Physical Layer (MAC/PHY) and provides detailed
programming descriptions which will allow users to develop upper layer or application code for this
product.

This manual is best used together with the 802.15.4 MAC/PHY Software Reference Manual,
802154MPSRM/D, so that any detailed and specific questions can be answered while reading this
manual.

The Freescale 802.15.4 software is designed for use with the Freescale MC13192 802.15.4 transceiver as
described in the MC13192/93 Data Sheet, MC13192DS/D. The software package, the MC13192, and the
HC08 MCU, form the Freescale 802.15.4 platform solution.

Organization
This document is organized into three chapters:

Chapter 1 Overview — This chapter presents a brief overview of the Freescale 802.15.4

software.
Chapter 2 Interfacing to the 802.15.4 MAC Software — This chapter describes how to

interface a user application to the MAC and how to use the MAC interface
functions.

Chapter 3 Creating an Application — This chapter guides users through the steps
required to create a basic, non-beacon network with one coordinator and one
device.

Conventions
This document uses the following notational conventions:

• Courier monospaced type indicates commands, command parameters, code examples,
expressions, data types, and directives e.g. ret = MSG_Send(NWK_MLME, msg);

• All source code examples are written in C.

vi 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

Definitions, Acronyms, and Abbreviations
The following list defines the abbreviations used in this document.

API Application Programming Interface
ASP Application Support Package
CAP Contention Access Period
CSMA-CA Carrier Sense Multiple Access with Collision Avoidance
ED Energy Detection
FFD Full Function Device
GTS Guaranteed Time Slot
ISR Interrupt Service Routine
LQI Link Quality Indication
MAC Medium Access Control
MCPS MAC Common Part Sublayer
MCU Micro Control Unit
MLME MAC subLayer Management Entity
NWK Network
PAN Personal Area Network
PANID PAN Identification
PHY PHYsical Layer
PIB PAN Information Base
RAM Random Access Memory
RFD Reduced Function Device
SAP Service Access Point
SW Software
WPAN Wireless Personal Area Network

Freescale Semiconductor 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 vii

References
The following documents are referenced in this document.

[1] IEEE™ 802.15.4 Standard -2003, Part 14.5: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPANs), The Institute of Electrical and Electronics Engineers, Inc., 1
October 2003

[2] MC13192 Data Sheet, MC13192DS/D, Freescale Semiconductor, 2004
[3] 802.15.4 MAC/PHY Software Reference Manual, 802154MPSUM/D, Freescale

Semiconductors, 2004
[4] HCS08 Family Reference Manual, Motorola Inc., 2003

Revision History
The following table summarizes revisions to this manual since the previous release
(Rev. 0.0).

Revision History
Location Revision

Entire Document New document. 0.0

viii 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

Freescale Semoconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 1-1

Chapter 1
Overview
This chapter presents a brief overview of the Freescale 802.15.4 software. In Section 1.1, the
main concept of the IEEE 802.15.4 standard is explained. Section 1.2 provides a brief
introduction to the full function device and the reduced function device and the use cases
associated with each one. Section 1.3 provides a system overview. In this section, pay special
attention to the concepts presented regarding the three interfaces present in this implementation:

1. MLME

2. MCPS

3. ASP

These three interfaces comprise the Application Programming Interface (API) and are described
in detail in Chapter 2. Chapter 3 guides users through the making of an application using the
IEEE 802.15.4 software and the API as described in Chapter 2.

1.1 IEEE 802.15.4 Background
The IEEE 802.15.4 is a standard developed for Wireless Personal Area Networks (WPANs).
WPANS convey information over short distances among their participants in the network. They
enable small, power efficient, inexpensive solutions to be implemented for a wide range of
applications and types of devices. Some key characteristics of an IEEE 802.15.4 network are:

• An over the air data rate of 250 kbit/s in the 2.4GHz band.

• 16 independent communication channels in the 2.4GHz band.

• Large networks (up to 65534 devices).

• Devices use carrier sense multiple access with collision avoidance (CSMA-CA) to access
the medium.

• Devices use Energy Detection (ED) for channel selection.

• Devices inform the application about the quality of the wireless link - Link Quality
Indication (LQI).

1-2 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

The IEEE 802.15.4 Standard defines two network topologies in which both topologies use one
and only one central device (the PAN coordinator). The PAN coordinator is the principal
controller of the network:

The star network topology In a star network all communication in the network is either to the

PAN coordinator or from the PAN coordinator. That is, communication
between non-PAN coordinator devices is not possible.

The peer-to-peer network topology In a peer-to-peer network communication can occur between any
two devices in the network as long as they are within range of
one another.

Figure 1. Peer-to- Peer and Star Network (No PAN Coordinator)

If a device wants to join an IEEE 802.15.4 network it will have to associate with a device that is
already part of the network. That allows other devices to associate with it. A device can only be
associated with one other device but multiple devices can be associated with the same device as
shown in Figure 1. A device that has other devices associated with it is a coordinator to those
devices. A coordinator can provide synchronization services to the devices that are associated
with it through the transmission of beacon frames as shown in Figure 2. In a star network there
will be only one PAN coordinator, but in a peer-to-peer network there can be multiple
coordinators plus the PAN coordinator.

DevicePAN coordinator Communication Line (within range)

Star network Peer-to-peer network

Freescale Semiconductor 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 1-3

Figure 2. Peer and Star Network (With PAN Coordinator)

A network (both star and peer-to-peer) can operate in either beacon mode or non-beacon mode.
In beacon mode, all coordinators within the network transmit synchronization frames (beacon
frames) to its associated devices and all data transmissions between the coordinator and its
associated devices occur in the active period following the beacon frame as shown in

Figure 3. Beacon Frame Timing

In non-beacon mode data transmissions data transmission can take place at any time. For both
non-beacon and beacon networks, the application can choose to transmit data in two ways.

• Direct data transfer - Data exchanged between a device and a coordinator in a non-
beacon network using direct data transfer takes place as soon as the channel is free using
CSMA-CA.

• Indirect data transfer - Data from a device to a coordinator in a beacon network using
indirect data transfer is sent in the CAP as soon as the channel is free using CSMA-CA.

CoordinatorPAN coordinator Association Lines

Star network Peer-to-peer network

Device

Beacon Frames

Contention Access Period

Time
Active
Period

Inactive
Period

1-4 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

1.2 Device Types
The basic device types for the Freescale 802.15.4 software are as follows:

• Reduced Function Device (RFD) - This device contains a subset of the IEEE 802.15.4
features. The RFD can only act as a device in a network. Normally the RFD would be
used for battery powered devices, since a device with a pure device capability is very
power efficient. Examples of RFDs could be light switches and temperature sensors.

• Full Function Device (FFD) - This device contains all of the IEEE 802.15.4 features.
The FFD can act as device or coordinator in a network. The FFD is targeted to be used
for backbone powered devices. An FFD that take on the role as coordinator uses
significantly more power than an RFD in the device role and is more complex and
therefore requires more code and memory space than the RFD. Examples of FFDs could
be light controllers with router capability (light bulbs) and PAN coordinators (main
network controller).

To allow users to select the best memory solution, Freescale provides both the RFD and the FFD
as precompiled libraries. In addition, Freescale provides a small number of derivatives of both
the FFD and the RFD devices to further reduce memory requirements. For example, if users
want to implement an FFD device that does not require beacon capability, they can save almost
9 kb of code space by selecting the FFD library that does not contain this feature. Table 1 shows
the MAC device types as provided by Freescale.

Table 1. MAC Device Types
Device type Description Code size

FFD Full-blown FFD. Contains all 802.15.4 features including security. 37k

FFDNGTS Same as FFD but no GTS capability. 33k

FFDNB Same as FFD but no beacon capability. 28k

FFDNBNS Same as FFD but no beacon and no security capability. 21k

RFD Reduced function device. Contains 802.15.4 RFD features. 29k

RFDNB Same as RFD but no beacon capability. 25k

RFDNBNS Same as RFD but no beacon and no security capability. 18k

Table 1 shows that a significant code reduction is achieved by proper device type library
selection.

NOTE

Most low cost, low power applications fit into a standalone embedded
device model where the application and MAC/PHY reside on the same
processor.

Freescale Semiconductor 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 1-5

1.3 System Overview
Figure 4 shows a block diagram of the system. The application is using the lower layers to
implement a wireless application based on the Freescale 802.15.4 software.

Figure 4. System Block Diagram

The application can theoretically be anything and is entirely up to the user. Some examples are:
• Dedicated MAC application

• Zigbee network layer

• Proprietary stack
The layer below the application as shown in Figure 4, is the 802.15.4 MAC (or just MAC). The
MAC provides three interfaces to the application.

1. MLME interface - This interface is used for all 802.15.4 MAC commands. For example,
the application must use this interface to send the MLME-ASSOCIATE.request primitive
and it will also receive the MLME-ASSOCIATE.confirm primitive on this interface. This
interface is defined in the IEEE 802.15.4 specification.

2. MCPS interface - This interface is used for all 802.15.4 data related primitives. The
application must use this interface in order to send and receive data. This interface is
defined in the IEEE 802.15.4 specification.

3. ASP interface - This interface is used for various application support features. For
example, the application can request that the hardware must enter a low power mode.
This interface is proprietary to Freescale.

802.15.4 PHY

802.15.4 MAC

MCPSMLME ASP

RF modem transceiver

Application

1-6 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

As shown in Figure 4, the two layers at the bottom are the PHY and the actual radio (including hardware
driver). The application does not access the PHY and hardware layer directly.

NOTE

The application must use the three MAC interfaces to implement the
desired functionality. Chapter 3 describes in detail how to implement a
simple application. Chapter 2 describes the interfaces in complete detail.

Freescale Semoconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 2-1

Chapter 2
Interfacing to the 802.15.4 MAC Software
This chapter describes how to interface an application to the MAC and how to use the MAC
interface functions. The examples shown in this chapter explain the API functions and are often
simplified for this purpose. Refer to the example application described in Chapter 3 for a detailed
walk-through of how to create a more advanced application. For a more detailed description of
all MAC primitives refer to the 802.15.4 MAC/PHY Software Reference Manual,
802154MPSRM/D. Freescale recommends having the reference manual at hand when reding
this guide because subtle details (for reasons of readability) are not included in this guide.
A brief overview of the MAC interfaces are given in Section 2.3 before each interface is
explained in more detail. Throughout this chapter, the term “application” refers to the next
higher layer and all layers above the MAC layer. This could be the ZigBee Network, an
application, or another network layer written directly on top of the MAC.

2.1 Interface Overview
The interface between the application layer and the MAC layer is based on service primitives
passed as messages from one layer to another. These service primitives are implemented as a
number of C-structures with fields for command opcodes/identifiers and command parameters.
This chapter does not describe the primitives in detail but focuses on the functions used for
passing, receiving, and processing the message primitives. For a description of all available
message primitives see the 802.15.4 MAC/PHY Software Reference Manual, 802154MPSRM/D.
Figure 5 shows the three interfaces to the MAC.

Figure 5. MAC Interfaces

2-2 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

Messages are sent to a Service Access Point (SAP) function which is responsible for handling
the message. Six SAPs exists, three for the communication stream to the MAC and three for the
communication to the application layer.
The following list shows the three Service Access Points as provided by the MAC layer:

1. NWK_MLME_SapHandler() - Used for command related primitives sent from the
application (or network) layer to the MAC layer. This SAP receives all MLME request
and response primitives. See Section 2.5 for a detailed description.

2. NWK_MCPS_SapHandler() - Used for data related primitives sent from the
application layer to the MAC layer. This SAP receives all MCPS request and response
primitives. See Section 2.5 for a detailed description.

3. APP_ASP_SapHandler() - The Application Support Package (ASP) interface is
provided in order to support Freescale specific functionality such as enabling the low-
power modes of the MAC. This SAP is used for all ASP request from the application
layer to the MAC. See Section 2.6 for a detailed description.

The following list shows the three Service Access Points which must be implemented in the
application layer by the MAC user.

1. MLME_NWK_SapHandler() - Used for command related primitives sent from the
MAC layer to the application/network layer. The access point receives all MLME
confirm and indication primitives. See Section 2.5 for a detailed description.

2. MCPS_NWK_SapHandler() - Used for data related primitives sent from the
application layer to the MAC layer. This SAP receives all MCPS confirm and indication
primitives. See Section 2.5 for a detailed description.

3. ASP_APP_SapHandler()- Used for receiving all ASP indications from the MAC.
See Section 2.6 for a detailed description.

The application and MAC SAPs typically store the received messages in message queues. A
message queue decouples the execution context which ensures that the call stack does not build
up between modules when communicating. The decoupling also ensures that timing critical
modules can queue a message to less timing critical modules and move on which ensures that the
receiving module does process the message immediately.
Parts of the MAC are executed through a synchronous, interrupt driven part. This part is referred
to as the MC13192 ISR because the controlling interrupts are generated by the MC13192 radio.
MC13192 interrupts typically indicate events such as Rx data received, Rx timeouts, Tx done
indications, and others. The most timing critical parts of the MAC are serviced through this
interrupt. The following timing constraint must be kept by the application in order to meet MAC
interrupt latency demands:

• Within a peiod of 64 µs the application must disable the MC13192 interrupts for a
duration of maximum 10 µs.

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 2-3

2.2 Include Files
Table 2 shows which MAC files must be included in the application C-files in order to have
access to the entire MAC API.

Table 2. Required MAC Files in Application C-Files
Include file name Description

DigiType.h Provides Freescale specific type defines for creating fixed sized variables. For example
an uint8_t defines the type of an 8 bit unsigned integer. Also defines the TRUE and
FALSE constants.

PhyMacMsg.h Provides access to message handling functions and to allocation/deallocation of data
and command buffers to/from the MAC/PHY.

NwkMacInterface.h Defines structures and constants for all MLME and MCPS primitives.

AppAspInterface.h Defines structures and constants for all ASP primitives.

PublicConst.h Contains the 802.15.4 specific status/return codes.

2.3 MAC API
The MAC API provides a simple and consistent way of interfacing to the Freescale IEEE
802.15.4 MAC software. The number of API functions that the Freescale MAC software exposes
to the application, are limited in order to keep the interfaces as simple and consistent as possible.
The API functions available are used for initialization of the MAC, running the MAC, allocating,
deallocating, and sending messages, and queueing and dequeueing of messages. Table 3 shows
the available API functions for initializing and running the MAC.

Table 3. Available API Functions
Function Description

Init_802_15_4() This function initializes internal variables of the MAC/PHY modules,
resets state machines etc. Once the function has been called the MAC
layer services are available and the MAC and PHY layers are in a known
and ready state for further access.

The function is only available if the preprocessor definition
INCLUDE_802_15_4 has been setup in the compiler settings of the
MCP project.

status = Mlme_Main() As the MAC has been designed to be independent of an operating
system, part of the MAC must be executed through regular calls to a
MAC “main task” implemented as a simple function. The function
basically processes data/command messages that are pending in any of
the MAC input queues.

The function returns TRUE if it has more messages to process (that is, it
should be called again immediately) and FALSE otherwise.

See Section 2.4 for an in-depth description of the Mlme_Main()
function.

2-4 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

For allocating and deallocating messages to and from the MAC and sending messages to the
MAC, the MAC exposes the following message handling functions as shown in Table 4.

Table 4. Exposed Message Handling Functions
Function Description

*pMsg = MSG_AllocType(type) Allocate a message of a certain type. This must only be used to
allocate messages for one of the MAC access points. The type
parameter can be set to mlmeMessage_t, mcpsMessage_t, and
aspMessage_t.

MSG_Free(*pMsg) Frees a message that was allocated using MSG_AllocType().

status = MSG_Send(SAP, *pMsg) Sending a message is equal to calling a Service Access Point
function. The SAP argument can be either NWK_MLME,
NWK_MCPS or APP_ASP. The argument is translated into the
corresponding SAP handler function, e.g.
NWK_MLME_SapHandler().

The MAC implements a few functions for queueing and dequeuing messages from the MAC to
the application. These functions are shown in Table 5.

Table 5. Queueing and Dequeuing Functions

Function Description

MSG_InitQueue(*pAnchor) Initializes a queue. This function must be called before
queuing or dequeueing from the queue.

status = MSG_Pending(*pAnchor) Checks if a message is pending in a queue given a queue
anchor. Returns TRUE if any pending messages, and FALSE
otherwise.

MSG_Queue(*pAnchor, *pMsg) Queues a message given a queue anchor and a pointer to the
message.

*pMsg = MSG_DeQueue(*pAnchor) Gets a message from a queue. Returns NULL if there are no
messages in the queue.

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 2-5

Also, a few data types are available on the MLME, MCPS, and ASP interfaces. A common
element of the data structures is that a member variable must be set to indicate which message is
being sent. The rest of the data structure is a union that must be accessed and set up accordingly.

Table 6. Data Structures Passed From The Application
Data Type Description

mlmeMessage_t The data structure of the messages passed from the application
to the MLME SAP handler.

mcpsMessage_t The data structure of the messages passed from the application
to the MCPS SAP handler.

aspMessage_t The data structure of the messages passed from the application
to the ASP SAP handler.

Similar data structures are used when the MAC sends messages to the application. Again, a
member variable contains the message type and the rest of the data structure is a union that must
be decoded accordingly.

Table 7. Data Structures Passed From The MAC

Data Type Description

nwkMessage_t The data structure of the messages passed from the MLME to
the applications MLME SAP handler.

mcpsToNwkMessage_t The data structure of the messages passed from the MCPS to
the applications MCPS SAP handler.

aspToAppMsg_t The data structure of the messages passed from the ASP to
the applications ASP SAP handler.

Additionally, a helper structure for managing message queues is also defined.

Table 8. Helper Structures For Managing Message Queues
Data Type Description
anchor_t A container for any type of MAC message. Before queuing or

dequeuing messages into the structure the anchor must be
initialized using MSG_InitQueue(). Messages are queued and
dequeued using MSG_Queue() and MSG_DeQueue().

2-6 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

2.4 MAC Main Task
Because the MAC is designed to be independent of an operating system, part of the MAC must
be executed through regular calls to a MAC “main task” implemented as a simple function. The
MAC main task Mlme_Main() is responsible for the following functions.

• Restructuring data and command frames from the application to the 802.15.4 MAC
packet format and vice versa. This includes processing all primitives sent to the MLME,
MCPS, and ASP SAPs.

• Matching data requests received from remote devices against the packets queued for
indirect transfer. Matched packets are passed on to an interrupt driven part of the MAC
that takes care of the actual transmission.

• Processing the GTS fields, pending address fields, and the beacon payload of received
beacon frames.

• Automatically generating data requests packets to extract pending data from remote
devices (only if in beacon mode and the PIB attribute macAutoRequest is set to TRUE).

• Applying encryption/decryption to the MAC frames if sequrity is enabled.

Even though these activities are not highly time critical in nature, the application program must
execute this function in a timely manner. The specific requirements for this execution are as
follows.

• The function must be executed at least once for every Rx packet the application wishes to
receive. If the MAC is in a state where the receiver is enabled either continously or with a
regular interval, packets can be expected “any time” and the worst-case packet receive
latency is increased with the interval, with which the application executes the
Mlme_Main() function. The MAC will not crash if all receive buffers fill up due to
slow Mlme_Main() polling, but instead the receiver will be switched off even though it
should actually have been enabled.

• The function must be executed at least once for every MCPS, MLME or ASP primitive
the application has sent to one of the MAC access points.

• In addition to the already stated requirements, the function must be executed at least once
between two beacon receptions in order to ensure basic beacon operation. If this
requirement is not met, beacon packets are not processed in a timely manner, which
could lead to unexpected behaviour. For optimal beacon operation it is recommended that
the Mlme_Main() function is polled at least twice during every superframe.

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 2-7

2.5 MLME and MCPS Interface
The MLME and MCPS interfaces are quite similar in the way that they are used and both of
them are specified in the IEEE™ 802.15.4 Standard. The ASP interface is Freescale proprietary.
The MLME interface manages all commands, responses, indications, and confirmations used for
managing a PAN and an IEEE 802.15.4 compliant unit. The MCPS interface carries data related
messages (data requests, data indications, data confirmations) and the number of available
messages are much smaller than on the MLME interface.
Common for the MCPS and MLME interface is that messages are sent to the interfaces using the
MSG_Send(SAP, *pMsg) function (see Section 2.3). If sending to the MLME the SAP
parameter must be set to NWK_MLME and sending to the MCPS the SAP parameter must be set
to NWK_MCPS.

2.5.1 Resetting
Before the Freescale IEEE 802.15.4 MAC layer can be accessed after power-on, it must be
initialized by calling the Init_802_15_4() function. See Section 2.3 and the 802.15.4
MAC/PHY Software Reference Manual, 802154MPSRM/D, for a more detailed explanation.
At any point after this, it is always safe to reset the MAC (and also the PHY) layer by using the
service MLME-RESET.request as shown in the following example code:

void App_ResetMac_Example(void)
{
 mlmeMessage_t mlmeReset;

 /* Create and execute the Reset request */
 mlmeReset.msgType = gMlmeResetReq_c;
 mlmeReset.msgData.resetReq.setDefaultPib = TRUE;
 (void) MSG_Send(NWK_MLME, &mlmeReset);
}

By calling this service, the MAC layer is reset and brought into the same state, as it was right
after having called Init_802_15_4(). The setDefaultPib parameter tells the MAC
layer whether its PIB attributes should be set to their default value or if they are to stay
unchanged after the reset. This is specified in the IEEE 802.15.4 Standard.

Notice that the reset is processed immediately (in the NWK_MLME_SapHandler()) and that
the Freescale MAC does not generate the confirmation message, MLME-RESET.confirm.
Furthermore there is no need to check for the return value of MSG_Send() as it always returns
gSuccess_c on an MLME-RESET.request.
Since the call is processed immediately, the message structure need not be allocated through
MSG_AllocType(), but can be allocated on the stack. In all circumstances, it is the
responsibility of the calling entity to de-allocate the message for MLME-RESET.request.

2-8 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

2.5.2 Accessing PIB Attributes
The MAC PIB holds all the MAC attributes/variables that are accessible for the application.
According to IEEE 802.15.4 Standard, the primitives MLME-SET.request and MLME-
GET.request, provide access to the PIB.
Similar to the Freescale implementation of MLME-RESET, these primitives are processed
immediately and therefore the corresponding confirm messages MLME-SET.confirm and
MLME-GET.confirm are not generated. Instead, the return code from MSG_Send() must be
used to check the status. The MLME-SET.request message contains a pointer to the data to be
written to the MAC PIB, which must be supplied by the application. The following code is an
example of how to use MLME-SET.request.

uint8_t App_SetMacPib_Example(uint8_t attribute, uint8_t *pValue)
{
 mlmeMessage_t mlmeSet;

 /* Create and execute the Set request */
 mlmeSet.msgType = gMlmeSetReq_c;
 mlmeSet.msgData.setReq.pibAttribute = attribute;
 mlmeSet.msgData.setReq.pibAttributeValue = pValue;

 return MSG_Send(NWK_MLME, &mlmeSet);
}

This usage is very similar to MLME-RESET.request, because the call is processed immediately.
Therefore the message structure need not be allocated through MSG_AllocType(), but can be
allocated. For example, it can allocated on the stack. It is the responsibility of the calling entity
to de-allocate the message (and potentially the PIB attribute value data buffer) for MLME-
SET.request.
The return value of MSG_Send() is gSuccess_c if the set request was processed correctly or
gInvalidParameter_c if parameter verification failed. In the latter case, the PIB attribute
was not set to the new value. The use of MLME-GET.request is very similar and only differs in
that the pibAttributeValue parameter in the message is a return value and in the value of
msgType.
See the 802.15.4 MAC/PHY Software Reference Manual, 802154MPSRM/D, for a description of
how to access all available PIB attributes including Freescale specific PIB attributes.

2.5.3 MLME Primitives
The MLME-SET.request, MLME-GET.request, and MLME-RESET.requests are the only
messages that are completed synchronously all other messages from the application to the
MLME interface are completed asynchronously i.e. a confirmation message will be generated in
the MLME and sent to the MLME SAP handler of the application
(MLME_NWK_SapHandler()).
For example, in order to request an energy detection scan (for a further explanation of energy
detection scan see Section 3.2.1) the application must allocate a MLME message using
MSG_AllocType(mlmeMessage_t) and fill out the parameters of the message (MLME-
SCAN.request) and send the message to the MLME SAP handler as shown in the following code
example.

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 2-9

uint8_t App_StartEdScan_Example(void)
{
 mlmeMessage_t *pMsg;

 /* Allocate a message for the MLME. */
 pMsg = MSG_AllocType(mlmeMessage_t);
 if(pMsg != NULL)
 {
 /* Allocation succeeded. Fill out the message */
 pMsg->msgType = gMlmeScanReq_c;
 pScanReq->msgData.scanReq.scanType = gScanModeED_c;
 pScanReq->msgData.scanReq.scanChannels[0] = 0x00;
 pScanReq->msgData.scanReq.scanChannels[1] = 0xF8;
 pScanReq->msgData.scanReq.scanChannels[2] = 0xFF;
 pScanReq->msgData.scanReq.scanChannels[3] = 0x07;
 pScanReq->msgData.scanReq.scanDuration = 5;

 /* Send the Scan request to the MLME. */
 if(MSG_Send(NWK_MLME, pMsg) == gSuccess_c)
 return errorNoError;
 else
 return errorInvalidParameter;
 }
 else
 {
 /* Allocation of a message buffer failed. */
 return errorAllocFailed;
 }
}

When requesting a service that is completed asynchronously, it is the responsibility of the
MLME to deallocate the message. In order for the application to be able to receive the MLME-
SCAN.confirm message from the MLME (and for the application to be able to link without any
errors) the application must implement the MLME SAP handler. This SAP handler will typically
only queue the message (which is of type nwkMessage_t) and return as soon as possible. To
tell the MLME that the message was received successfully the SAP handler must return a status
code of gSuccess_c (any other return codes indicates a failure) as shown in the following
code example.

uint8_t MLME_NWK_SapHandler(nwkMessage_t * pMsg)
{
 MSG_Queue(&mMlmeNwkInputQueue, pMsg);
 return gSuccess_c;
}

2-10 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

As shown in the following code example, dequeuing the messages that were received from either
the MCPS, MLME, or ASP interface is done using MSG_DeQueue(). Before dequeuing, it
makes sense to have called Mlme_Main() and then check if there are any messages from the
MLME that need to be processed.

void main(void)
{
 nwkMessage_t *pMsg;
 uint8_t *pEdList;

 while(1)
 {
 /* Execute the MAC main task function. */
 Mlme_Main();

 /* Try to get a message from the MLME. */
 if(MSG_Pending(&mMlmeNwkInputQueue))
 {
 pMsg = MSG_DeQueue(&mMlmeNwkInputQueue);
 switch (pMsg->msgType)
 {
 /* Check for a scan confirm message. */
 case gNwkScanCnf_c:
 /* Find the pointer to the list of detected energies */
 pEdList = pMsg->msgData.scanCnf.resList.pEnergyDetectList;

 /* Do app. specific operation on the detected energies */
 … No code is shown for that …

 /* The list of detected energies MUST be freed. */
 /* Note: This is a special exception for scan. */
 MSG_Free(pEdList);
 break;

 default:
 break;
 }
 /* Ensure to always free the message */
 MSG_Free(pMsg);
 }
 }
}

Notice that the application must free the MLME message after having processed it and that some
messages contain pointers to data structures that must be freed before freeing the message itself
(as in the case shown in the previous example code). Neglecting to free such data structures (and
the messages themselves) will cause memory leaks. See the 802.15.4 MAC/PHY Software
Reference Manual, 802154MPSRM/D for more details.
The MLME interface only allows for one request pending at a time. That is, after having sent a
scan request message to the MLME, users must wait for a scan confirmation message on the
MLME SAP handler until they are allowed to send another MLME request to the MLME. Not
complying with this rule may result in unwanted and/or unpredictable behaviour.

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 2-11

2.5.4 MCPS Primitives
Alongside the MLME interface, the MCPS interface processes data related messages (see the
figure in Section 2.1). The MCSP interface is used just like the MLME interface. The main
difference is the message types are sent back and forth on the interface. On the MCPS, users
must use Msg_AllocType(nwkToMcpsMessage_t) to allocate a MCPS message as
shown in the following code example.

void App_TransmitUartData_Example(void)
{
 nwkToMcpsMessage_t* pPacket = MSG_AllocType(nwkToMcpsMessage_t);

 if(pPacket != NULL)
 {
 /* If we have a buffer, then get data from the UART. */
 uint8_t msduLength = Uart_Poll(pPacket->msgData.dataReq.msdu);
 if(msduLength)
 {
 /* Data was available in the UART receive buffer. Now create an
 MCPS-Data Request message containing the UART data. */
 pPacket->msgType = gMcpsDataReq_c;
 /* Create the header using coordinator information gained during
 the scan procedure. Also use the short address we were assigned
 by the coordinator during association. */
 memcpy(pPacket->msgData.dataReq.dstAddr, coordInfo.coordAddress, 8);
 memcpy(pPacket->msgData.dataReq.srcAddr, myAddress, 8);
 memcpy(pPacket->msgData.dataReq.dstPanId, coordInfo.coordPanId, 2);
 memcpy(pPacket->msgData.dataReq.srcPanId, coordInfo.coordPanId, 2);
 pPacket->msgData.dataReq.dstAddrMode = coordInfo.coordAddrMode;
 pPacket->msgData.dataReq.srcAddrMode = myAddrMode;
 pPacket->msgData.dataReq.msduLength = msduLength;
 /* Request MAC level acknowledgement of the data packet */
 pPacket->msgData.dataReq.txOptions = gTxOptsAck_c;
 /* Give the data packet a handle. The handle is
 returned in the MCPS-Data Confirm message. */
 pPacket->msgData.dataReq.msduHandle = msduHandle++;

 /* Send the Data Request to the MCPS */
 MSG_Send(NWK_MCPS, pPacket);
 }
 }
}

The application is allowed to allocate multiple data messages using
MSG_AllocType(mcpsMessage_t, …) until this returns NULL. Unless the MAC is
running in non-beacon mode as a device, it reserves a buffer for general receive and for
transmitting beacons.
Because the MCPS interface can manage multiple outstanding data requests, it is possible to use
double (or multiple) buffering for maximum throughput. That is, it is possible to send a data
request to the MCPS and then, before receiving a data confirmation on that request, send another
data request which keeps a constant data flow between the application and the MCPS interface.
Even though it is not supported by the IEEE 802.15.4 Standard, double buffering can also be
used for polling. See Section 3.5.1 for a description of how to optimize data throughput using
double buffering.

2-12 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

When the application receives messages from the MCPS, the messages are received as a type
mcpsToNwkMessage_t in the MCPS_NWK_SapHandler() function as shown in the
following code example.

uint8_t MCPS_NWK_SapHandler(mcpsToNwkMessage_t *pMsg)
{
 /* Put the incoming MCPS message in the applications input queue. */
 MSG_Queue(&mMcpsNwkInputQueue, pMsg);
 return gSuccess_c;
}

The MCPS SAP handler in the application is similar to that of the MLME. However, separate
queues are used for the MCPS and MLME messages because the messages cannot be
differentiated once the SAP handler has finished and the messages have been queued.
MCPS message processing is performed similar to the processing of MLME messages (typically
in the main() function) and the application is responsible of deallocating the MCPS messages.

2.6 ASP interface
The ASP interface is a Freescale proprietary interface that can perform several functions
including power management, access non-volatile (NV) RAM and others. As with the MLME
interface, the ASP interface contains both asynchronous and synchronous messages. In the ASP
interface, a request never results in a confirmation message received on the applications ASP
SAP handler. It is completed synchronously and the result of the command is checked using the
return value of MSG_Send(). ASP messages must be allocated using
Msg_AllocType(appToAspMessage_t)as shown in the following example code.

void App_EnterHibernation_Example(void)
{
 appToAspMessage_t Packet;

 /* Create an ASP-Hibernate Request message. */
 Packet.msgType = gAppAspHibernateReq_c;

 /* No further parameters to fill out */

 /* Send the Hibernate Request to the ASP */
 MSG_Send(NWK_ASP, &Packet);
}

Notice that the application is responsible for de-allocating the messages that it sends to the ASP.
However, as a consequence of the ASP receiving a command (for example, an ASP-
DOZE.request to send the MC 13192 into doze mode), the ASP may at some point send an
indication message to the application (for example, an ASP-WAKE.indication when the
MC13192 wakes up from doze mode). As was the case for the MLME and MCPS interfaces, the
ASP sends back indication messages (of type aspToAppMsg_t) to the application using the
applications ASP SAP handler ASP_APP_SapHandler()as shown in the following example
code.

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 2-13

uint8_t ASP_APP_SapHandler(aspToAppMsg_t *pMsg)
{
 /* Put the incoming ASP message in the applications input queue. */
 MSG_Queue(&mAspAppInputQueue, pMsg);
 return gSuccess_c;
}

Again, the ASP messages are typically processed in the main() function of the application, just
like the MLME and MCPS messages. It is the responsibility of the application to de-allocate the
ASP message.

2-14 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

Freescale Semoconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 3-1

Chapter 3
Creating an Application
This chapter guides users through the steps required to create a basic, non-beacon network with
one coordinator and one device. Throughout this guide there are references to the source code
example applications contained in the My_Wireless_App_demo application example. This
example can be downloaded from the Freescale Zigbee web-site at www.freescale.com/zigbee.
Each source file is a step towards a full wireless UART application. Clear references will be
made to the appropriate source file. The guide focuses on the IEEE 802.15.4 Standard and the
Freescale specific issues and does not in detail explain the state machine that the code contains.
The following source files are available with each new file adding additional functionality until a
fully functional application has been developed for both a coordinator and a device. Files with
names ending in ‘a’ are demonstrating coordinator behaviour and files with names ending in ‘b’
demonstrate device behavior.

• MyApp_Ex01.c: Proper initialization of the MAC is demonstrated and the MLME main
function is called in the main loop. This application does not yet have any real
functionality.

• MyApp_Ex02.c: The Energy Detection Scan is used for scanning a range of channels in
order to select a specific channel to operate a PAN on.

• MyApp_Ex03a.c: This demo application builds on MyApp_Ex02.c. The primary
purpose of this application is to demonstrate how to use the Start feature of the MAC in
order to configure a PAN coordinator.

• MyApp_Ex03b.c: This demo application builds upon MyApp_Ex01.c. The primary
purpose of this application is to demonstrate how to use the Active Scan feature of the
MAC in order to locate a coordinator that we will associate to later.

• MyApp_Ex04a.c: This demo application builds on MyApp_Ex03a.c. In the example we
will enable the coordinator to respond to associate requests from devices.

• MyApp_Ex04b.c: This demo application builds upon MyApp_Ex03b.c. Now that we
have the capability of finding a coordinator, we will associate to one in this demo
application.

• MyApp_Ex05a.c: This demo application builds on MyApp_Ex04a.c. Now that we have
the 802.15.4 features available for building a network, its time to send data.

• MyApp_Ex05b.c: This demo application builds upon MyApp_Ex04b.c. In this demo
application we will send data to the coordinator that we have previously associated to.

It is recommended that users download the application example and open the
My_Wireless_App_demo.mcp file. This file is the guide that shows key points in the source
code. However, not all code is explained and the code shown here may be stripped of code that
may not be relevant for the given context. It is assumed that users are familiar with Metrowerks

3-2 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

CodeWarrior and know how to build the project for either the Freescale 13191/92 Developer’s
Starter Kit MC13192DSK or the Freescale evaluation kit MC13193EVK.

3.1 Basic Setup
This section describes the basic setup procedure for any type of device. Refer to the
demonstration application in the source file called MyApp_Ex01.c for full source code.

3.1.1 Initialization
Before the Freescale IEEE 802.15.4 MAC layer can be accessed, it must be initialized by calling
the Init_802_15_4() function which will initialize both the MAC and PHY layers as shown
in the following example code.

Init_802_15_4();

The function call initializes internal variables of the modules, resets state machines among other
things. Once this function is called, the MAC layer services are available and the MAC and PHY
layers are in a known and ready state for further access.

3.1.2 Resetting
After this point, it is always safe to reset the MAC (and thereby also the PHY) layer by using the
service MLME-RESET.request as shown in the following code.

mlmeMessage_t mlmeReset;

/* Create and execute the Reset request */
mlmeReset.msgType = gMlmeResetReq_c;
mlmeReset.msgData.resetReq.setDefaultPib = TRUE;
(void) MSG_Send(NWK_MLME, &mlmeReset);

By calling this service, the MAC layer is reset and brought into the same state as it was right
after having called Init_802_15_4(). The setDefaultPib parameter tells the MAC
layer whether its PIB attributes should be set to their default value (as specified in the IEEE
802,15,4 Standard) or if they are to stay unchanged after the reset. Notice that when requesting
the reset primitive, the reset call is synchronous. That is, there is no confirmation message on the
reset request and the function MSG_Send() simply returns gSuccess_c if the reset was
successful (it always will be). Because the call is synchronous, the message structure need not be
allocated through MSG_AllocType() but can be allocated on the stack. In all circumstances,
it is the responsibility of the calling entity to de-allocate the message. Notice that it is not
necessary to reset the MAC right after having called Init_802_15_4().
MyApp_Ex01.c does not contain any example of code for resetting a device using the MLME-
RESET.request. However, it is a well-defined way of bringing back the MAC and PHY layers to
a known state.

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 3-3

3.1.3 Implementing SAP’s
Before being able to compile the project, it is necessary to create the SAP handlers that process
the messages from the MAC layer to the next higher layer. For now, just create empty functions
and implement the functionality later as shown in this code.

/* The following functions are called by the MAC
 to put messages into the Application's queue.
 They need to be defined even if they are not
 used in order to avoid linker errors. */
uint8_t MLME_NWK_SapHandler(nwkMessage_t *pMsg)
{
 /* This only serves as a temporary way of avoiding a compiler warning.
 Later this will be changed so that we return gSuccess_c instead. */
 return pMsg->msgType;
}

uint8_t MCPS_NWK_SapHandler(mcpsToNwkMessage_t *pMsg)
{
 /* This only serves as a temporary way of avoiding a compiler warning.
 Later this will be changed so that we return gSuccess_c instead. */
 return pMsg->msgType;
}

uint8_t ASP_APP_SapHandler(aspToAppMsg_t *pMsg)
{
 /* This only serves as a temporary way of avoiding a compiler warning.
 Later this will be changed so that we return gSuccess_c instead. */
 return pMsg->msgType;
}

Typically, the SAP handlers buffer the messages in a queue and then process the messages at
regular intervals or whenever appropriate. Section 3.2.1 describes how to process the messages
in the SAP handler.

3.2 Starting a New PAN
Once the MAC and PHY layers are initialized (See Section 3.1.1) it is now safe to access the
MCPS, ASP, and MLME services of the MAC layer. Start by accessing the MLME. The
example code for this is found in the MyApp_Ex02.c source file.
The units are now ready to start up a PAN. First, set up a PAN coordinator because all IEEE
802.15.4 Standard PANs must have a PAN coordinator.

3-4 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

3.2.1 Energy Detection Scan
The first task that a PAN coordinator must perform is to choose which radio frequency to use for
its PAN. This is called the logical channel. This can be a hard-coded value, but a better method
is to choose a channel that is not used by other units. For that purpose, there are primitives that
the PAN coordinator can use for scanning all (or selected) channels. This is called the energy
detection scan (ED scan). The following code shows this task.

uint8_t App_StartScan(uint8_t scanType)
{
 mlmeMessage_t *pMsg;
 mlmeScanReq_t *pScanReq;

 Uart_Print("Sending the MLME-Scan Request message to the MAC...");

 /* Allocate a message for the MLME (We should check for NULL). */
 pMsg = MSG_AllocType(mlmeMessage_t);
 if(pMsg != NULL)
 {
 /* This is a MLME-START.req command */
 pMsg->msgType = gMlmeScanReq_c;
 /* Create the Start request message data. */
 pScanReq = &pMsg->msgData.scanReq;
 /* gScanModeED_c, gScanModeActive_c, gScanModePassive_c, or
gScanModeOrphan_c */
 pScanReq->scanType = scanType;
 /* ChannelsToScan & 0xFF - LSB, always 0x00 */
 pScanReq->scanChannels[0] = (uint8_t)((SCAN_CHANNELS) & 0xFF);
 /* ChannelsToScan>>8 & 0xFF */
 pScanReq->scanChannels[1] = (uint8_t)((SCAN_CHANNELS>>8) & 0xFF);
 /* ChannelsToScan>>16 & 0xFF */
 pScanReq->scanChannels[2] = (uint8_t)((SCAN_CHANNELS>>16) & 0xFF);
 /* ChannelsToScan>>24 & 0xFF - MSB */
 pScanReq->scanChannels[3] = (uint8_t)((SCAN_CHANNELS>>24) & 0xFF);
 /* Duration per channel 0-14 (dc). T[sec] = (16*960*((2^dc)+1))/1000000.
 A scan duration of 5 on 16 channels approximately takes 8 secs. */
 pScanReq->scanDuration = 5;

 /* Send the Scan request to the MLME. */
 if(MSG_Send(NWK_MLME, pMsg) == gSuccess_c)
 {
 Uart_Print("Done\n");
 return errorNoError;
 }
 else
 {
 Uart_Print("Invalid parameter!\n");
 return errorInvalidParameter;
 }
 }
 else
 {
 /* Allocation of a message buffer failed. */
 Uart_Print("Message allocation failed!\n");
 return errorAllocFailed;
 }
}

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 3-5

In this case, the scanType parameter for App_StartScan()must be set to
gScanModeED_c. Other types of scanning are explained later in this chapter. If there is any
activity on a channel at the time the PAN coordinator scans the channel, this shows up in the
result of the scan. A channel that showed no sign of activity at the time of the scan, shows an
energy level of approximately 0x00. The higher the number, the more activity that was detected
on the channel or the closer the other PAN coordinator is to the scanning PAN coordinator.
The previous code example scans all the 16 available channels in the 2.4 GHz band. The
parameter scanChannels is a bit mask where each bit that is set indicates that this channel
must be scanned. Because the 2.4 GHz band contains channel numbers 11 to 26, bits 11 to 26 are
set in the scanChannels bit mask. Lower channel numbers are for other frequency bands and
are ignored if set in the bit bask. Also, the scanDuration parameter tells the MAC how long
to scan on each channel. The numbers 0 to 14 are valid entries for this parameter. The higher the
number, the longer the time spent scanning. The exact scan duration for each channel can be
calculated using this equation:

 Scan duration = 15.36 ms * (2scanDuration + 1)

The scanDuration parameter in the example requests scanning for approximately 0.5
seconds on each of the 16 channels. Once the scan request message has successfully been sent to
the MLME, the scanning commences and a scan confirmation (a nwkMessage_t struct with
msgType == gNwkScanCnf_c) is received asynchronously in the SAP handler for the
messages from the MLME to the NWK. The following code processes the scan confirmation
message.

void App_HandleScanEdConfirm(nwkMessage_t *pMsg)
{
 uint8_t n, minEnergy;
 uint8_t *pEdList;

 Uart_Print("Recevied the MLME-Scan Confirm message from the MAC\n");

 /* Get a pointer to the energy detect results */
 pEdList = pMsg->msgData.scanCnf.resList.pEnergyDetectList;

 /* Set the minimum energy to a large value */
 minEnergy = 0xFF;

 /* Select default channel */
 logicalChannel = 11;

 /* Search for the channel with least energy */
 for(n=0; n<16; n++)
 {
 if(pEdList[n] < minEnergy)
 {
 minEnergy = pEdList[n];
 /* Channel numbering is 11 to 26 both inclusive */
 logicalChannel = n + 11;
 }
 }

 /* Print out the result of the ED scan */
 Uart_Print("ED scan returned the following results:\n [");
 Uart_PrintHex(pEdList, 16, gPrtHexBigEndian_c | gPrtHexCommas_c);
 Uart_Print("]\n\n");

3-6 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

 /* Print out the selected logical channel */
 Uart_Print("Based on the ED scan the logical channel 0x");
 Uart_PrintHex(&logicalChannel, 1, 0);
 Uart_Print(" was selected\n");

 /* The list of detected energies must be freed. */
 MSG_Free(pEdList);
}

Assuming that the scanning was successful, (status == gSuccess_c) and that the
nwkMessage_t struct is pointed to by a pointer pMsg the pEdList = pMsg-
>msgData.scanCnf.resList.pEnergyDetectList points to a byte array of 16 bytes.
One byte for each channel. pEdList[0]contains the result for channel 11, pEdList[1]
contains the result for channel 12 and so on. There will only be a valid result for the channels
that were requested to scan for, so a 0x00 result means that either the channel is probably
available or the channel was not scanned. It is important to remember the channels that the scan
was requested for.
Once the results of the energy detection scan are received, look at the results from all the
channels. Remember, a request was made to scan all the channels and to pick the channel with
the lowest energy level. Store this channel number in a global variable called
logicalChannel.
Do not forget to free not only the scan confirm message (this is done in main() in
MyApp_Ex02.c) but also the data structures pointed to by pEdList – and free pEdList
first (unless you have a local copy of pEdList that you can use for freeing the list of energy
levels).

NOTE

Just because the ED scan returned a result that showed no activity on a
channel it does not mean that another PAN coordinator is not using this
channel. It only means that no transaction(s) took place between this
PAN coordinator and any of its devices while performing the ED scan.
Scanning for a longer time increases the possibility that another PAN
coordinator is on the channel and is detected, but it is not guaranteed!

Notice that in MyApp_Ex02.c there has been added code, as shown in the following code
example, for queuing incoming MLME messages and decoupling the MLME from the
application.

/* Application input queues */
anchor_t mMlmeNwkInputQueue;

uint8_t MLME_NWK_SapHandler(nwkMessage_t * pMsg)
{
 /* Put the incoming MLME message in the applications input queue. */
 MSG_Queue(&mMlmeNwkInputQueue, pMsg);
 return gSuccess_c;
}

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 3-7

Also, in the main loop of the application there is added code for processing incoming messages
from that queue as shown in this code example.

/* Try to get a message from MLME */
if(MSG_Pending(&mMlmeNwkInputQueue))
 pMsgIn = MSG_DeQueue(&mMlmeNwkInputQueue);
else
 pMsgIn = NULL;

… /* Process message if pMsgIn!=NULL */

if(pMsgIn)
{
 /* Messages from the MLME must always be freed. */
 MSG_Free(pMsgIn);
}

By implementing the MLME to NWK SAP handler this way, the MLME and NWK/APP are
completely decoupled. That is, the SAP handler only queues the message but does not do any
processing of the message. In this way, the MLME returns from the call as fast as possible and
the call stack of the MCU is excercised as little as possible reducing the risk of getting a call
stack overflow.

3.2.2 Choosing Short Address
Now the coordinator must assign itself a short address. All units come with a pre-assigned long
address, but a short address must be assigned before starting the PAN. Otherwise, the start
request will fail. Because the PAN coordinator is the first unit to participate in its own PAN, it
can chose any short address for itself. Once the short address is chosen, it is usually hard-coded,
it must be set by setting the macShortAddress PIB attribute. This is done in
App_StartCoordinator() in MyApp_Ex03a.c as shown in the following example code.

uint8_t App_StartCoordinator(void)
{
 /* Message for the MLME will be allocated and attached to this pointer */
 mlmeMessage_t *pMsg;

 Uart_Print("Sending the MLME-Start Request message to the MAC...");

 /* Allocate a message for the MLME (We should check for NULL). */
 pMsg = MSG_AllocType(mlmeMessage_t);
 if(pMsg != NULL)
 {
 /* Pointer which is used for easy access inside the allocated message */
 mlmeStartReq_t *pStartReq;
 /* Return value from MSG_send - used for avoiding compiler warnings */
 uint8_t ret;
 /* Boolean value that will be written to the MAC PIB */
 uint8_t boolFlag;

 /* Set-up MAC PIB attributes. Please note that Set, Get,
 and Reset messages are not freed by the MLME. */

 /* We must always set the short address to something
 else than 0xFFFF before starting a PAN. */
 pMsg->msgType = gMlmeSetReq_c;
 pMsg->msgData.setReq.pibAttribute = gMacPibShortAddress_c;

3-8 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

 pMsg->msgData.setReq.pibAttributeValue = (uint8_t *)shortAddress;
 ret = MSG_Send(NWK_MLME, pMsg);

 … /Lot of other stuff going on here */

 }
 else
 {
 /* Allocation of a message buffer failed. */
 Uart_Print("Message allocation failed!\n");
 return errorAllocFailed;
 }
}

In the previous code example, the short address of the PAN coordinator is set to the value of
shortAddress which is elsewhere set to 0xCAFE. As with the reset request, the MLME-
SET.request is also completed synchronously. So, if ret == gSuccess_c after calling
MSG_Send(), the PIB attribute was set successfully. The pibAttributeValue parameter
is not freed by the MLME.
The short address must be different from 0xFFFF. A short address of 0xFFFE tells the
coordinator to use its long address in all transactions. If the short address is set to anything
different from 0xFFFF and 0xFFFE, the PAN coordinator uses this address instead of its long
address and thus sends shorter packets. A long address is 8 bytes long, a short address is 2 bytes
long.

3.2.3 Choosing PAN ID
After selecting the logical channel, the last thing required before a PAN coordinator can start a
PAN, is for the coordinator to select an identification number for the PAN which is called the
PANid. Trusting that there really is no other PAN using the same logical channel, the new PAN
coordinator can freely choose a PANid. However, users may want to perform an active scan (see
Section 3.3.1) of the channel to see if there really are no other PAN coordinators using the same
logical channel. If so, the PANid used must be different from the one used by the other PAN
coordinator on the same logical channel. In the source example file MyApp_Ex03a.c it is
assumed that no other IEEE 802.15.4 PAN is present and it sets the global variable panId =
0xBEEF.

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 3-9

3.2.4 Starting a PAN
After choosing a logical channel, PANid, and short address, it is time to start up the PAN using
the MLME_START.request primitive.
The panCoordinator parameter indicates whether the start request is to start up a PAN for a
PAN coordinator or for a coordinator without PAN coordinator capability. For an explanation of
the difference, see the IEEE 802.15.4 Standard. Because this example is starting up a PAN
coordinator, this parameter is set to 0x01, where 0x01 means yes, and 0x00 means no.
The beaconOrder and superFrameOrder parameters are set to 0x0F because users want
to start a non-beacon network. See the 802.15.4 Standard about how to start a beacon network.
Any combination of beaconOrder and superFrameOrder where beaconOrder is set to
0x0F creates a non-beacon network.
The batteryLifeExt parameter is ignored for now and is set to 0x00.
The coordRealignment parameter tells the MLME whether it should send out a coordinator
realignment command prior to starting up the PAN. For now, users should set this to 0x00 (no
coordinator realignment command) because it is not relevant for this example.
Finally, the securityEnable parameter tells the MLME if it should apply any security to the
transactions taking place over the air. For now, users should leave this set to 0x00 (no security).
App_StartCoordinator() in MyApp_Ex03a.c contains the code for starting a PAN.

/* Message for the MLME will be allocated and attached to this pointer */
mlmeMessage_t *pMsg;

Uart_Print("Sending the MLME-Start Request message to the MAC...");

/* Allocate a message for the MLME (We should check for NULL). */
pMsg = MSG_AllocType(mlmeMessage_t);
if(pMsg != NULL)
{
/* Pointer which is used for easy access inside the allocated message */
mlmeStartReq_t *pStartReq;
/* Return value from MSG_send - used for avoiding compiler warnings */
uint8_t ret;
/* Boolean value that will be written to the MAC PIB */
uint8_t boolFlag;

… /* Various MAC PIB attributes are set up. */

/* This is a MLME-START.req command */
pMsg->msgType = gMlmeStartReq_c;

/* Create the Start request message data. */
pStartReq = &pMsg->msgData.startReq;
/* PAN ID - LSB, MSB. The example shows a PAN ID of 0xBEEF. */
memcpy(pStartReq->panId, (void *)panId, 2);
/* Logical Channel - the default of 11 will be overridden */
pStartReq->logicalChannel = logicalChannel;
/* Beacon Order - 0xF = turn off beacons */
pStartReq->beaconOrder = 0x0F;
/* Superframe Order - 0xF = turn off beacons */
pStartReq->superFrameOrder = 0x0F;
/* Be a PAN coordinator */
pStartReq->panCoordinator = TRUE;
/* Dont use battery life extension */
pStartReq->batteryLifeExt = FALSE;

3-10 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

/* This is not a Realignment command */
pStartReq->coordRealignment = FALSE;
/* Dont use security */
pStartReq->securityEnable = FALSE;

/* Send the Start request to the MLME. */
if(MSG_Send(NWK_MLME, pMsg) == gSuccess_c)
{
 Uart_Print("Done\n");
 return errorNoError;
}
else
{
 /* One or more parameters in the Start Request message were invalid. */
 Uart_Print("Invalid parameter!\n");
 return errorInvalidParameter;
}

A start confirmation is received asynchronously on the SAP that handles the messages from the
MLME to the NWK. If the PAN was started successfully, a status code of gSuccess_c is
returned. The MLME-START.confirm message is processed in MyApp_Ex03a.c in the state
stateStartCoordinatorWaitConfirm. As shown in the following code.

case stateStartCoordinatorWaitConfirm:
 /* Stay in this state until the Start confirm message
 arrives, and then goto the Listen state. */
 ret = App_WaitMsg(pMsgIn, gNwkStartCnf_c);
 if(ret == errorNoError)
 {
 Uart_Print("Started the coordinator with PAN ID 0x");
 Uart_PrintHex((uint8_t *)panId, 2, 0);
 Uart_Print(", and short address 0x");
 Uart_PrintHex((uint8_t *)shortAddress, 2, 0);
 Uart_Print(".\n");
 state = stateListen;
 }
 break;

After successfully starting a PAN, the macRxOnWhenIdle PIB has been set to 0x01. This means
that whenever the PAN coordinator is not transmitting a packet, it is listening for incoming
packets. This behavior is Freescale proprietary and is implemented this way because it is not
logical to start a PAN and then not start listening for incoming association requests or beacon
requests from devices performing active scans. However, if this behavior is unwanted, the
macRxOnWhenIdle PIB can be set back to its default value of 0x00.
All that needs to be done on the PAN coordinator is that the PIB attribute macAssociationPermit
must be set to 0x01 in order to ensure that devices are allowed to associate to the PAN
coordinator. If this PIB is left untouched, or at any time set to 0x00, any incoming association
requests from a device will be ignored by the MAC (see App_StartCoordinator()) as
shown in the following code.

/* We must set the Association Permit flag to TRUE
 in order to allow devices to associate to us. */
pMsg->msgType = gMlmeSetReq_c;
pMsg->msgData.setReq.pibAttribute = gMacPibAssociationPermit_c;
boolFlag = TRUE;
pMsg->msgData.setReq.pibAttributeValue = &boolFlag;
ret = MSG_Send(NWK_MLME, pMsg);

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 3-11

As was the case when setting the macShortAddress PIB, the ret variable contains
gSuccess_c if the PIB was successfully set.
In the source code example in MyApp_Ex03a.c, the allocated message pMsg was used
repeatedly for setting PIB attributes and for starting the PAN. When setting PIB attributes the
message is not freed by the MLME so it can be used again for things like setting another PIB
attribute or starting the PAN. But as soon as pMsg is used for requesting the startup of a PAN,
the message is no longer valid in the application context. Now the message is owned by the
MLME and is freed by the MLME. So, in App_StartCoordinator(), pMsg is never
freed because this is eventually done by the MLME.

3.3 Joining a PAN
The next step in creating a PAN is to associate a device with the PAN coordinator that was just
started up. The association between the device and the PAN coordinator is necessary because the
PAN coordinator is the only device type that is allowed to assign short addresses to devices and
coordinators and a device must have a short address assigned. Also, during the (successful)
association procedure, the logical channel and PANid that the device is going to use when
transmitting data is set. The following code examples are taken from MyApp_Ex03b.c.

3.3.1 Active Scan
Before associating to a PAN coordinator, the device first needs to find a PAN coordinator that is
accepting incoming association requests. For that purpose, the device must use the active scan
feature. This feature is initiated much the same way as the energy detection (ED) scan and users
can reuse the function App_StartScan() as described in Section 3.2.1. The only difference
is that the scanType parameter must now be set to gScanModeActive_c.
The device could also do an ED scan prior to doing the active scan in order to estimate which
logical channels would be worth doing active scan on. However, because the PAN that was set
up by the PAN coordinator is non-beacon and thus no air-traffic is available to detect in the ED
scan because there is also no other data on the air, users should not do an ED scan on the device.
After receiving the active scan request, the MLME starts sending out beacon requests on the
requested channels (in the scanChannels parameter) and starts listening for beacons from
(PAN) coordinators for as long as indicated in the scanDuration parameter. Basically,
sending a beacon request is like asking, “Are there any PAN coordinators out there that have a
PAN on this channel?” and a PAN coordinator sending back a beacon means, “Yes, I have a
PAN, here is my PAN information”.
Because the device does not know which channel the PAN coordinator chose after performing
the ED scan, the device will be scanning all channels. Assuming that only the PAN coordinator
that was just started is in the vicinity of our device and it did see the beacon request, a scan
confirm with the status == gSuccess_c and resultListSize == 1 is returned. If no answer was
received, then status == gNoBeacon_c.
After receiving the scan confirmation, now look at the pPanDescriptor pointer in the scan
confirmation message and the data it is pointing to. The pPanDescriptor pointer points to an

3-12 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

array of structures of type panDescriptor_t as many as are indicated in the
resultListSize parameter as shown in the following code example.

typedef struct panDescriptor_tag {
 uint8_t coordAddress[8];
 uint8_t coordPanId[2];
 uint8_t coordAddrMode;
 uint8_t logicalChannel;
 bool_t securityUse;
 uint8_t aclEntry;
 bool_t securityFailure;
 uint8_t superFrameSpec[2];
 bool_t gtsPermit;
 uint8_t linkQuality;
 uint8_t timeStamp[3];
} panDescriptor_t;

Using the list of panDescriptor_t structure pointed to by pPanDescriptor, the device
can decide which coordinator to associate to. For now, skip the parameters that are irrelevant for
this example because this example does not run a beacon PAN and does not use security. The
securityUse, aclEntry , securityFailure, gtsPermit, and timeStamp
parameters are not used in this example.
The coordAddrMode denotes whether the coordinator is using its long address or is using a
short address. If set to gAddrModeShort_c the PAN, the coordinator uses a 16 bit short
address and only the first two bytes in coordAddress are valid and contains (in little endian
mode) the short address of the PAN coordinator. If coordAddrMode is set to
gAddrModeLong_c all 8 bytes of the coordAddress parameter are valid and contains (in
little endian mode) the full address of the PAN coordinator. In this example, coordAddrMode
equals gAddrModeShort_c and coordAddress equals 0xCAFE.
The logicalChannel denotes the logical channel where the PAN coordinator can be found.
This value can vary in this example, but it is probably set to 0x0B. See Section 3.2.1 for more
details. The coordPanId contains the PANid of the PAN that the PAN coordinator has set up.
In this example, it is 0xBEEF. See Section 3.2.4. The linkQuality contains a value in the
range of 0x00 to 0xFF – the larger the value, the better the signal strength from the PAN
coordinator. In most cases this means the closer the PAN coordinator is to the device.
The last parameter that the device must look at is the superFrameSpec parameter. This
parameter contains the information as shown in Table 9.

Table 9. superFrameSpec Parameter Contents
Bits: 0-3 4-7 8-11 12 13 14 15
Beacon
order

Superframe
order

Final CAP
slot

Battery life
extension

Reserved PAN
coordinator

Association
permit

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 3-13

The bit definition is covered later in this Chapter. However, Beacon order bit and Superframe
order bit must correspond to the beacon order and superframe order used when starting the PAN
coordinator. See Section 3.2.4. In this non-beacon example, they are both 0xF. The PAN
coordinator bit must also be set as this bit is set as shown in Section 3.2.4. The last bit that is
required to look at is the Association permit bit. This bit indicates if the PAN coordinator will
process any incoming association requests. If set, it will process the requests, if not set, the
association requests are ignored. This bit follows the macAssociatePermit PIB attribute of the
coordinator as shown in Section 3.2.4.
The following code example from MyApp_Ex03b.c shows how an incoming scan
confirmation on an active scan is handled.

uint8_t App_HandleScanActiveConfirm(nwkMessage_t *pMsg)
{
 uint8_t panDescListSize = pMsg->msgData.scanCnf.resultListSize;
 panDescriptor_t *pPanDesc = pMsg-
>msgData.scanCnf.resList.pPanDescriptorList;
 uint8_t rc = errorNoScanResults;

 /* Check if the scan resulted in any coordinator responses. */
 if(panDescListSize != 0)
 {
 /* Initialize link quality to very poor. */
 uint8_t i, bestLinkQuality = 0;

 /* Check all PAN descriptors. */
 for(i=0; i<panDescListSize; i++, pPanDesc++)
 {
 /* Only attempt to associate if the coordinator
 accepts associations and is non-beacon. */
 if((pPanDesc->superFrameSpec[1] & gSuperFrameSpecMsbAssocPermit_c) &&
 ((pPanDesc->superFrameSpec[0] & gSuperFrameSpecLsbBO_c) == 0x0F))
 {
 /* Find the nearest coordinator using the link quality measure. */
 if(pPanDesc->linkQuality > bestLinkQuality)
 {
 /* Save the information of the coordinator candidate. If we
 find a better candiate, the information will be replaced. */
 memcpy(&coordInfo, pPanDesc, sizeof(panDescriptor_t));
 bestLinkQuality = pPanDesc->linkQuality;
 rc = errorNoError;
 }
 }
 }
 }
 /* ALWAYS free the PAN descriptor list */
 MSG_Free(pMsg->msgData.scanCnf.resList.pPanDescriptorList);

 return rc;
}

As this code example shows, the device stores the PAN descriptor for the chosen coordinator in
a global variable called coordInfo. The contents of this PAN descriptor will be used in the
next section when the device requests to be associated with the coordinator.
Remember to free not only the scan confirm message (this is done in main() in the example
application) but also the data structures pointed to by pMsg-
>msgData.scanCnf.resList.pPanDescriptorList – and free pMsg-

3-14 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

>msgData.scanCnf.resList.pPanDescriptorList first. That is, unless users have
a local copy that they can use for freeing the list of PAN descriptors.

3.3.2 Associating to a PAN
From the PAN descriptor that was returned by the PAN coordinator, users can see that the PAN
coordinator does accept incoming association requests and there is also a short address and a
PANid of its PAN. Next, users can associate the device to the PAN coordinator. Use the
association request message (see MyApp_Ex04b.c) to accomplish this as shown in the
following code example.

uint8_t App_SendAssociateRequest(void)
{
 mlmeMessage_t *pMsg;
 mlmeAssociateReq_t *pAssocReq;

 Uart_Print("Sending the MLME-Associate Request message to the MAC...");

 /* Allocate a message for the MLME message. */
 pMsg = MSG_AllocType(mlmeMessage_t);
 if(pMsg != NULL)
 {
 /* This is a MLME-ASSOCIATE.req command. */
 pMsg->msgType = gMlmeAssociateReq_c;

 /* Create the Associate request message data. */
 pAssocReq = &pMsg->msgData.associateReq;

 /* Use the coordinator info we got from the Active Scan. */
 memcpy(pAssocReq->coordAddress, coordInfo.coordAddress, 8);
 memcpy(pAssocReq->coordPanId, coordInfo.coordPanId, 2);
 pAssocReq->coordAddrMode = coordInfo.coordAddrMode;
 pAssocReq->logicalChannel = coordInfo.logicalChannel;
 pAssocReq->securityEnable = FALSE;
 /* We want the coordinator to assign a short address to us. */
 pAssocReq->capabilityInfo = gCapInfoAllocAddr_c;

 /* Send the Associate Request to the MLME. */
 if(MSG_Send(NWK_MLME, pMsg) == gSuccess_c)
 {
 Uart_Print("Done\n");
 return errorNoError;
 }
 else
 {
 /* One or more parameters in the message were invalid. */
 Uart_Print("Invalid parameter!\n");
 return errorInvalidParameter;
 }
 }

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 3-15

 else
 {
 /* Allocation of a message buffer failed. */
 Uart_Print("Message allocation failed!\n");
 return errorAllocFailed;
 }
}

Most of the parameters in the association request message are recognizable from previous
sections. One parameter that is new is the capabilityInfo parameter. This bit mask is
described in Table 10.

Table 10. capabilityInfo Parameter
Bit 0 Bit 1 Bit 2 Bit 3 Bit 4-5 Bit 6 Bit 7

Alternate
PAN

coordinator

Device type Power
source

Receiver on
when idle

Reserved Security
capability

Allocate
address

Table 11. capabilityInfo Field Definitions

Field Name Setting
Alternate PAN coordinator 1 = If device is capable of being a PAN coordinator

0 = If device is not capable of being a PAN coordinator

Device Type 1 = If device is an Radio Frequency Device (RFD)

0 = If device is not an Radio Frequency Device (RFD)

Power Source 1 = If device is receiving power from AC power

0 = If device is not receiving power from AC power

Receiver on when idle 1= If device does not disable its receiver during idle periods

0 = If device does disable its receiver during idle periods

Reserved

Secure Capability 1 = If device is capable of sending and receiving MAC frames using the
security suite.

0 = If device is not capable of sending and receiving MAC frames using
the security suite.

Field is one bit in length.

Allocate Address 1 = If device wants the coordinator to allocate a short address as a
result of the association procedure.

0 = The special short address (0xFFFE) is allocated to the device and
returned through the association response command.

In this case, the device communicates on the PAN using only its 64 bit
extended address.

Field is one bit in length.

In this example, the device that users are trying to associate will only have the allocate address
subfield set to 1, all others are set to 0. The capabilityInfo parameter is set to
gCapInfoAllocAddr_c (0x80).
After sending the association request message to the MLME, an association request is sent from
the device to the PAN coordinator. Assuming that the PAN coordinator receives, accepts, and

3-16 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

responds positively to the association request by sending an association response as described in
Section 3.4, the application on the device receives an association confirmation with status
gSuccess_c and the assocShortAddress parameter set to the short address that the PAN
coordinator has assigned to the device. In this case the device short address has been set to
0x0001 (assocShortAddress[0] = 0x00, assocShortAddress[1] = 0x01) as shown in the
following example code.

void App_HandleAssociateConfirm(nwkMessage_t *pMsg)
{
 /* This is our own extended address (MAC address). It cannot be modified. */
 extern const uint8_t aExtendedAddress[8];

 /* If the coordinator assigns a short address of 0xfffe then,
 that means we must use our own extended address in all
 communications with the coordinator. Otherwise, we use
 the short address assigned to us. */
 if((pMsg->msgData.associateCnf.assocShortAddress[0] >= 0xFE) &&
 (pMsg->msgData.associateCnf.assocShortAddress[1] == 0xFF))
 {
 myAddrMode = 3;
 memcpy(myAddress, (void *)aExtendedAddress, 8);
 }
 else
 {
 myAddrMode = 2;
 memcpy(myAddress, pMsg->msgData.associateCnf.assocShortAddress, 2);
 }
}

As the example code shows, the address assigned to the device by the coordinator is stored in
myAddress and the addressing mode that is used is stored in myAddrMode. If the coordinator
assigns the short address 0xFFFE to the device, the device must always use its long (8 byte)
address.
In this particular scenario there is no checking the
pMsg->msgData.associateCnf.status parameter because the coordinator always
accepts incoming association requests. However, in a more extensive application it would be
necessary to check on this parameter.

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 3-17

3.4 Adding a Device to the PAN
Until now this example has ignored what happens on the PAN coordinator when the association
request from the device is received by the PAN coordinator and passed up to the application as
an association indication. The association indication contains the extended device address (in the
deviceAddress parameter) of the associating device and a copy of the capability
information that the device passed to the MLME in the association request message. The
capability information is stored in the capabilityInfo parameter as described in Section
3.3.2.
As the allocate address bit is set in the capabilityInfo parameter, the PAN coordinator
must assign a short address to the device. Because the PAN coordinator is the only unit in the
PAN that is allowed to assign short addresses to a device it can freely choose anything in the
0x0000-0xFFFD range. 0xFFFF is an invalid short address and 0xFFFE is the short address that
must be assigned to devices that do not request a short address or that always must use a long
address. In this example the incoming association indication is accepted and the short address
0x0001 is chosen for the device. As shown in the following code, this message must be sent to
the MLME.

uint8_t App_SendAssociateResponse(nwkMessage_t *pMsgIn)
{
 mlmeMessage_t *pMsg;
 mlmeAssociateRes_t *pAssocRes;

 Uart_Print("Sending the MLME-Associate Response message to the MAC...");

 /* Allocate a message for the MLME */
 pMsg = MSG_AllocType(mlmeMessage_t);
 if(pMsg != NULL)
 {
 /* This is a MLME-ASSOCIATE.res command */
 pMsg->msgType = gMlmeAssociateRes_c;

 /* Create the Associate response message data. */
 pAssocRes = &pMsg->msgData.associateRes;

 /* Assign a short address to the device. In this example we simply
 choose 0x0001. Though, all devices and coordinators in a PAN must have
 different short addresses. However, if a device do not want to use
 short addresses at all in the PAN, a short address of 0xFFFE must
 be assigned to it. */
 if(pMsgIn->msgData.associateInd.capabilityInfo & gCapInfoAllocAddr_c)
 {
 /* Assign a unique short address less than 0xfffe if the device requests
so. */
 pAssocRes->assocShortAddress[0] = 0x01;
 pAssocRes->assocShortAddress[1] = 0x00;
 }
 else
 {
 /* A short address of 0xfffe means that the device is granted access to
 the PAN (Associate successful) but that long addressing is used.*/
 pAssocRes->assocShortAddress[0] = 0xFE;
 pAssocRes->assocShortAddress[1] = 0xFF;
 }
 /* Get the 64 bit address of the device requesting association. */

3-18 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

 memcpy(pAssocRes->deviceAddress, pMsgIn-
>msgData.associateInd.deviceAddress, 8);
 /* Association granted. May also be gPanAtCapacity_c or
gPanAccessDenied_c. */
 pAssocRes->status = gSuccess_c;
 /* Do not use security */
 pAssocRes->securityEnable = FALSE;

 /* Save device info. */
 memcpy(deviceShortAddress, pAssocRes->assocShortAddress, 2);
 memcpy(deviceLongAddress, pAssocRes->deviceAddress, 8);

 /* Send the Associate Response to the MLME. */
 if(MSG_Send(NWK_MLME, pMsg) == gSuccess_c) …

This concludes the association procedure for the PAN coordinator and completes the association
procedure. Had users not accepted the association request, the status parameter would have
been set to gPanAccessDenied_c. If the PAN coordinator does not want to see any
incoming association requests, it can set the PIB attribute macAssociatePermit to 0x00 (FALSE).
See Section 3.2.4 for details. As was the case for the device, the PAN coordinator must store the
extended 8 byte address of the device contained in the deviceAddress parameter so that it
can later disassociate from the device if it needs to.
As an indication of a successful association procedure the coordinator receives a MLME-
COMM-STATUS.indication message which must be managed as shown in the following code
example.

uint8_t App_HandleMlmeInput(nwkMessage_t *pMsg)
{
 if(pMsg == NULL)
 return errorNoMessage;

 /* Handle the incoming message. The type determines the sort of
processing.*/
 switch(pMsg->msgType) {
 case gNwkAssociateInd_c:
 Uart_Print("Received an MLME-Associate Indication from the MAC\n");
 /* A device sent us an Associate Request. We must send back a response.
*/
 return App_SendAssociateResponse(pMsg);
 break;

 case gNwkCommStatusInd_c:
 /* Sent by the MLME after the Association Response has been transmitted.
*/

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 3-19

Uart_Print("Received an MLME-Comm-Status Indication from the MAC\n");
 break;
 }
 return errorNoError;
}

The example code does not expect that the association procedure fails and does not check on the
status code of the MLME-COMM-STATUS.indication. However, the MLME-COMM-
STATUS.indication also contains other parameters such as the addresses of the coordinator and
the device, their addressing modes, and the PANid used by the association procedure. See the
802.15.4 MAC/PHY Software Reference Manual , 802154MPSRM/D for more information.

3.5 Data Transfer
Now that the PAN coordinator and the device are associated, data must be transferred between
the units.
In IEEE 802.15.4 Standard PANs, most communications are driven by the devices in a network.
The devices are typically battery powered and must be able to control the data flow in order to
optimize battery life. This is accomplished by the device polling for data from the coordinator
and transmitting the data directly to the coordinator. The coordinator only sends data to a device
when it knows it is listening, for example, when a device has requested data.

3.5.1 Direct Data
In many user scenarios, there will be one PAN coordinator with several devices associated to it
and the PAN coordinator will be powered with AC power, where the devices will be powered by
a battery. Also, the devices will decide when to transfer data. Therefore, the normal set up is to
have the PAN coordinator listen for data all the time (except when it is transmitting) and have
the devices initiate all data transfers. This behavior is implemented in the PAN coordinator by
setting the macRxOnWhenIdle PIB attribute to 0x01 (TRUE - the default value is 0x00 (FALSE)
which corresponds to not listening). This PIB is automatically set to 0x01 when the coordinator
starts the PAN. See Section 3.2.4 for details.
Sending data using the MCPS interface is achieved similar to sending commands on the MLME
interface. However, there is one major difference. The data may be required to be sent using high
bandwidth. On the MLME interface, there can only be one outstanding command packet at a
time. Only when a confirmation message has been received is the application allowed to send a
new command. However, on the MCPS interface, there can be multiple outstanding data packets
(as many as can be allocated by the application) at a time, keeping the throughput at a maximum.
In non-beacon mode, direct data, as opposed to indirect data, is sent immediately and is sent
from the device to the coordinator. The device can send any time because the coordinator is
always listening. The coordinator is AC powered and does not need to conserve battery power.
As shown in the following code example, MyApp_Ex05b.c shows how to send data from the
device to the coordinator and achieve maximum throughput while sending data.

3-20 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

void App_TransmitUartData(void)
{
 /* Use multi buffering for increased TX performance. It does not really
 have any effect at a UART baud rate of 19200bps but serves as an
 example of how the throughput may be improved in a real-world
 application where the data rate is of concern. */
 if((numPendingPackets < MAX_PENDING_DATA_PACKETS) && (pPacket == NULL))
 {
 /* If the maximum number of pending data buffes is below maximum limit
 and we do not have a data buffer already then allocate one. */
 pPacket = MSG_AllocType(nwkToMcpsMessage_t);
 }

 if(pPacket != NULL)
 {
 /* If we have a buffer, then get data from the UART. */
 uint8_t msduLength = Uart_Poll(pPacket->msgData.dataReq.msdu);
 if(msduLength)
 {
 /* Data was available in the UART receive buffer. Now create an
 MCPS-Data Request message containing the UART data. */
 pPacket->msgType = gMcpsDataReq_c;
 /* Create the header using coordinator information gained during
 the scan procedure. Also use the short address we were assigned
 by the coordinator during association. */
 memcpy(pPacket->msgData.dataReq.dstAddr, coordInfo.coordAddress, 8);
 memcpy(pPacket->msgData.dataReq.srcAddr, myAddress, 8);
 memcpy(pPacket->msgData.dataReq.dstPanId, coordInfo.coordPanId, 2);
 memcpy(pPacket->msgData.dataReq.srcPanId, coordInfo.coordPanId, 2);
 pPacket->msgData.dataReq.dstAddrMode = coordInfo.coordAddrMode;
 pPacket->msgData.dataReq.srcAddrMode = myAddrMode;
 pPacket->msgData.dataReq.msduLength = msduLength;
 /* Request MAC level acknowledgement of the data packet */
 pPacket->msgData.dataReq.txOptions = gTxOptsAck_c;
 /* Give the data packet a handle. The handle is
 returned in the MCPS-Data Confirm message. */
 pPacket->msgData.dataReq.msduHandle = msduHandle++;

 /* Send the Data Request to the MCPS */
 NR MSG_Send(NWK_MCPS, pPacket);
 /* Prepare for another data buffer */
 pPacket = NULL;
 numPendingPackets++;
 }
 }
}

As this code example shows, the function TransmitUartData() must be called at regular
intervals (typically when also calling Mlme_Main()) in order to keep the throughput at a
maximum. Also, the number of outstanding data packets in the example has been limited by a
constant MAX_PENDING_DATA_PACKETS. To make this limitation is a matter of design and
may influence the throughput if it is set too low depending on the data transfer scenario.
Most of the parameters in the data request message have already been explained in previous
sections and basically just contain addresses and addressing modes. However, the txOptions,
msduHandle, and msduLength require some explanation.

• The msduHandle parameter is a unique identifier for the data packet. This identifier
can be used when receiving the MCPS-DATA.confirm message to identify which data

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 3-21

packet the MCPS-DATA.message refers to. The msduHandle parameter must be
chosen so that it can uniquely identify the outstanding data packets. The value is only
typically increased between each data packet that is sent as shown throughout this
example.

• The msduLength parameter indicates how many valid data bytes the data buffer
pPacket->msgData.dataReq.msdu contains. The pPacket-
>msgData.dataReq.msdu contains the data that must be transferred, up to 102
bytes.

• The txOptions parameter is a bit mask that tells the MCPS how to transfer the data. In
this example, only the data packet was required to be acknowledged along with no GTS,
no indirect transmission, and no security options enabled.

The txOptions bit mask is encoded as shown in Table 12.

Table 12. txOptions Parameter Encoding
Bit 0 Bit 1 Bit 2 Bit 3 Bits 4-7

Acknowledge
required

GTS transmission Indirect
transmission

Security enabled 0

The data sent by the device to the coordinator is sent as soon as possible because direct
transmission is used. The coordinator is always listening and must acknowledge the reception of
the data packet if it was received successfully. If the coordinator was not listening, the device
will get a MCPS-DATA.confirm message indicating that no acknowledge was received.
However, in the demo application it is assumed that the data was transferred successfully and a
counter that keeps track of the number of outstanding data packets is decreased.

void App_HandleMcpsInput(mcpsToNwkMessage_t *pMsgIn)
{
 switch(pMsgIn->msgType)
 {
 /* The MCPS-Data confirm is sent by the MAC to the network
 or application layer when data has been sent. */
 case gMcpsDataCnf_c:
 if(numPendingPackets)
 numPendingPackets--;
 break;
 }
}

On the coordinator side (see MyApp_Ex05a.c) the data that the device sent is received much
the same way, only it is receiving MCPS-DATA. indications instead of MCPS-DATA.confirms.
The coordinator just passes the received data on to the UART.

void App_HandleMcpsInput(mcpsToNwkMessage_t *pMsgIn)
{
 switch(pMsgIn->msgType)
 {
 case gMcpsDataInd_c:
 /* The MCPS-Data indication is sent by the MAC to the network
 or application layer when data has been received. We simply
 copy the received data to the UART. */
 Uart_Tx(pMsgIn->msgData.dataInd.msdu, pMsgIn->msgData.dataInd.msduLength);

3-22 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

 break;
 }
}

For data transfer to actually take place, the SAP handler for the MCPS interface on both the
coordinator and the device must now be implemented just like the MLME SAP handler did.

uint8_t MCPS_NWK_SapHandler(mcpsToNwkMessage_t *pMsg)
{
 /* Put the incoming MCPS message in the applications input queue. */
 MSG_Queue(&mMcpsNwkInputQueue, pMsg);
 return gSuccess_c;
}

The MCPS SAP handler uses its own queue and does not share queue with the MLME SAP
handler because the message formats are different and cannot easily be distinguished by looking
at the message. The processing of the messages in the MCPS queue starts in the main loop of the
application and on both the coordinator and device it follows the pattern as shown in the
following example code.

if(MSG_Pending(&mMcpsNwkInputQueue))
{
 pMsgIn = MSG_DeQueue(&mMcpsNwkInputQueue);
 … /* Process the MCPS packet appripriately */
 /* ALWAYS free messages from MCPS */
 MSG_Free(pMsgIn);
}

NOTE

The MCPS message must be freed by the application.

3.5.2 Indirect Data
Sending data from the coordinator to the device is different than sending data from the device to
the coordinator because the device is not necessarily listening. The device is usually battery
powered and may shut down its transceiver at any time. This requires that the coordinator send
its data indirectly. That is, the coordinator sends its data and the data is buffered until the device
polls for it. The data is not sent immediately. The data message is created and set as was shown
in Section 3.5.1 except from the txOptions parameter (see MyApp_Ex06a.c) as shown in
the following example code.

/* Request MAC level acknowledgement, and
 indirect transmission of the data packet */
pPacket->msgData.dataReq.txOptions = gTxOptsAck_c | gTxOptsIndirect_c;

The coordinator needs to set the gTxOptsIndirect_c bit in the txOptions parameter. If
this bit is not set, the data is transmitted directly and immediately. This means that the data
would probably be lost as the device is probably not listening. In non-beacon mode, the
coordinator typically uses indirect data transmission.
By using the gTxOptsAck_c bit, the coordinator (and the device) will not only get a MCPS-
DATA.confirm message stating that the packet was sent successfully, but they will also get a

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 3-23

message if the data packet was not acknowledged and hence not received by the intended
receiver. This allows for an opportunity to retransmit the data packet.
Because the coordinator sends its data indirectly, the device must poll the data out of the
coordinator when the device decides that it is in a state where is it ready to receive and process a
message from the coordinator. This is done using the MLME-POLL.request message (see
MyApp_Ex06b.c) as shown in the following example code.

/* This is an MLME-POLL.req command. */
mlmeMessage_t *pMlmeMsg = MSG_AllocType(mlmeMessage_t);
if(pMlmeMsg)
{
 /* Create the Poll Request message data. */
 pMlmeMsg->msgType = gMlmePollReq_c;

 /* Use the coordinator information we got from the Active Scan. */
 memcpy(pMlmeMsg->msgData.pollReq.coordAddress, coordInfo.coordAddress, 8);
 memcpy(pMlmeMsg->msgData.pollReq.coordPanId, coordInfo.coordPanId, 2);
 pMlmeMsg->msgData.pollReq.coordAddrMode = coordInfo.coordAddrMode;
 pMlmeMsg->msgData.pollReq.securityEnable = FALSE;

 /* Send the Poll Request to the MLME. */
 if(MSG_Send(NWK_MLME, pMlmeMsg) == gSuccess_c)
 {
 /* Do not allow another Poll request before the confirm is received. */
 waitPollConfirm = TRUE;
 /* Restart timer. */
 Timer_Reset();
 }
}

Sending this request means that the device is asking the coordinator if there is any data avilable
in the coordinator for the device. The coordinator sends back an answer in a MLME-
POLL.response, resulting in a MLME-POLL.confirm on the device as shown in the following
example code.

uint8_t App_HandleMlmeInput(nwkMessage_t *pMsg)
{
 if(pMsg == NULL)
 return errorNoMessage;

 /* Handle the incoming message. The type determines the sort of
processing.*/
 switch(pMsg->msgType) {
 case gNwkPollCnf_c:
 if(pMsg->msgData.pollCnf.status != gSuccess_c)
 {
 /* The Poll Confirm status was not successful. Usually this happens if
 no data was available at the coordinator. In this case we start
 polling at a lower rate to conserve power. */
 pollInterval = POLL_INTERVAL_SLOW;

 /* If we get to this point, then no data was available, and we
 allow a new poll request. Otherwise, we wait for the data
 indication before allowing the next poll request. */
 waitPollConfirm = FALSE;
 }
 break;
 }

3-24 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

 return errorNoError;
}

As this code example shows, a status parameter different from gSuccess_c indicates that
there is no data available for the device on the coordinator. In this example, the device uses a
timer for polling the coordinator at regular intervals. If the coordinator does not have any data,
the polling rate is decreased until the coordinator starts transmitting data again and then the
polling interval is again increased. Using this polling scheme conserves power in the device (the
transceiver is on less often) but other applications may want to use another polling scheme and
may choose to poll differently.
Should the coordinator send back a MLME-POLL.response that indicates that it has data queued
for the device, the coordinator will, immediately after the MLME-POLL.response, send its data
to the device, which in turn will receive the data packet on the MCPS interface. The application
does not need to take any action on a MLME-POLL.confirm message with
status==gSuccess_c). This extends the App_HandleMcpsInput() function on the
device that as shown earlier in this chapter. See the MyApp_Ex06b.c file for more details.

void App_HandleMcpsInput(mcpsToNwkMessage_t *pMsgIn)
{
 switch(pMsgIn->msgType)
 {
 /* The MCPS-Data confirm is sent by the MAC to the network
 or application layer when data has been sent. */
 case gMcpsDataCnf_c:
 if(numPendingPackets)
 numPendingPackets--;
 break;

 case gMcpsDataInd_c:
 /* Copy the received data to the UART. */
 Uart_Tx(pMsgIn->msgData.dataInd.msdu, pMsgIn->msgData.dataInd.msduLength);
 /* Since we received data, the coordinator might have more to send. We
 reduce the polling interval to raise the throughput while data is
 available. */
 pollInterval = POLL_INTERVAL_FAST;
 /* Allow another MLME-Poll request. */
 waitPollConfirm = FALSE;
 break;
 }
}

As was the case for the coordinator, the device simply passes the data to the UART and
completes the transparent UART example.

3.6 Summary
Users should now be able to understand the basic steps in creating and managing a simple, non-beacon
IEEE 802.15.4 PAN.

1. Starting and initializing the Freescale IEEE 802.15.4 MAC software.

2. Performing and energy detection (ED) scan.

Freescale Semiconductor 802.15.4 MAC/PHY Software Users Guide, Rev. 0.0 3-25

3. Starting a non-beacon PAN.

4. Performaing an active scan.

5. Associating a device and a coordinator.

6. Performing a direct and indirect data transfer.

When writing their own application, users may choose to employ a less complex data transfer
model. That is, only one outstanding data request at a time or use a different polling scheme. The
design depends upon what the application is supposed to do and the performance criteria
imposed on the application. Items to consider are code size, power consumption, throughput,
among others. This example is intended to introduce just the basic concepts of a non-beacon
IEEE 802.15.4 PAN though there are many other ways of achieving the same functionality, the
basic concepts remain the same.

3-26 802.15.4 MAC/PHY Software User’s Guide, Rev. 0.0 Freescale Semiconductor

