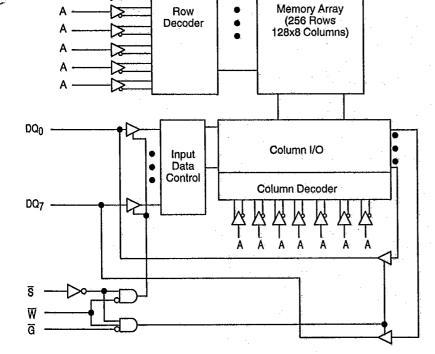
T-46-23-14

Advance Information

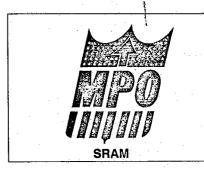
32K x 8 Bit BiCMOS Static **Random Access Memory**

The 6706 is a 262,144 bit static random access memory organized as 32,768 words of 8 bits, fabricated using high performance silicon-gate BiCMOS technology. Static design eliminates the need for external clocks or timing strobes.

Output enable (G) is a special control feature that provides increased system flexibility and eliminates bus contention problems.


The 6706 is available in a 600 mil, 28 lead sidebraze package.

- Single 5.0 V ± 10% Power Supply
- Fully Static No Clock or Timing Strobes Necessary


Row

- All Inputs and Outputs are TTL Compatible
- Three State Outputs
- Fast Access Times: 15/20 ns

BLOCK DIAGRAM

Military 6706

AVAILABLE AS

1) JAN: N/A

2) SMD: N/A 3) 883: 6706 - XX/BXAJC

X = CASE OUTLINE AS FOLLOWS:

PACKAGE: DIL:

XX =Speed in ns (15, 20)

P	PIN NAMES					
Ao - A ₁₄	Address					
W	Write Enable					
S	Chip Select					
G	Output Enable					
DQ ₀ - DQ ₇	Data Input/Output					
Vcc	+5.0 V Power Supply					
V _{SS}	Ground					

. :	Truth Table										
S	S G W		W Mode I/		Cycle						
Н	Х	X	Not Selected	High - Z							
L	Н	Н	Read	High - Z							
L	L	Н	Read	DOUT	Read Cycle						
L	Х	L	Write	D _{IN}	Write Cycle						

X = Don't Care

This document contains information on a new product, Specifications and information herein are subject to change without notice.

10TOROLA 🖼

PIN ASSIGNMENTS							
Function	DIL Case 719-03	Burn-In (Condition-D)					
A ₁₄	1	CP17					
A ₁₂	2	CP4					
A ₇	3	CP5					
A ₆	4	CP6					
A ₅	5	CP7					
A ₄	6	CP8					
Aз	7	CP9					
A ₂	8	CP10					
A ₁	9	CP11					
A ₀	10	CP12					
DQ ₂	11	CP18 to R ₁					
DQ ₁	12	CP18 to R ₁					
DQ ₀	13	CP18 to R ₁					
V _{SS}	14	GND					
DQ3	15	CP18 to R ₁					
DQ ₄	16	CP18 to R ₁					
DQ ₅	17	CP18 to R ₁					
DQ ₆	18	CP18 to R ₁					
DQ ₇	19	CP18 to R ₁					
ริ	20	CP2					
A ₁₀	21	CP13					
G	22	CP1					
A ₁₁	23	CP14					
Ag	24	CP15					
Ag	25	ÇP16					
A ₁₃	26	CP3					
W	27	CP1					
		7					

	T-4	۱.,	-2	2	•
BURN-IN CONDITIONS:	1 11				

													
Vc	V_{CC} = 5.0 V(min)/ 6.0 V(max), R ₁ = 39.2 k Ω ± 20%, C ₁ = 0.1 μ F ± 20%, V_{H} = 3.0 V(min)/5.0 V(max), V_{L} = ~ 0.5 V(min)/0.0 V(max),												
CP1:	100 kHz	CP6:	3.125 kHz	CP11:	97.66 Hz	CP16:	3,052 Hz						
CP2:	50 kHz	CP7:	1.563 kHz	CP12:	48.83 Hz	CP17:	1.526 Hz						
CP3:	25 kHz	CP8:	0.781 kHz	CP13:	24.41 Hz	CP18:	0.763 Hz						
CP4:	12.5 kHz	CP9:	0.391 kHz	CP14:	12.21 Hz	CP19:	0.382 Hz						
CP5:	6.25 kHz	CP10:	0.195 kHz	CP15:	6.104 Hz	CP20:	0.191 Hz						

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

This BiCMOS memory circuit has been designed to meet the do and ac

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 Ifpm is maintained.

Absolute Maximum Ratings: (See Note)								
Rating	Symbol	Value	Unit					
Power Supply Voltage	Vçc	-0.5 to +7.0	٧					
Voltage Relative to VSS for any Pin Except VCC	V _{IN} , VOUT	-0.5 to V _{CC} +0.5	V					
Output Current	lout	±30	mA					
Power Dissipation	PD	2,0	W					
Temperature Under Bias	T _{bias}	-55 to +125	°C					
Operating Temperature	TA	-55 to +125	°C					
StorageTemperature	T _{stg}	-65 to +150	°C					

VCC, C1 to GND

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

Vċc

28

DC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = -55^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

T-46-23-14

RECOMMENDED OPERATING CONDITIONS								
Parameter	Symbol	Min	Тур	Max	Unit			
Supply Voltage (Operating Voltage Range)	Vcc	4.5	5.0	5.5	V			
Input High Voltage	VIH	2.2	_	V _{CC} + 0.3 *	٧			
Input Low Voltage	VĮL	- 0.5 **		0.8	V			

^{*} V_{IH} (max) = V_{CC} + 0.3 V dc; V_{IH} (max) = + 2.0 V ac (pulse width \leq 2.0 ns) for I \leq 20 mA.

^{**} V_{IL} (min) = -0.5 V dc; V_{IL} (min) = -2.0 V ac (pulse width \leq 2.0 ns) for $I \leq$ 20 mA.

DC CHARACTERISTICS							
Parameter Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})		Symbol	Min	Max	Unit		
		lkg(l)		±2.0	μА		
Output Leakage Current ($\overline{S} = V_{IH}$, V_{O}	UT = 0 to VCC)	lkg(O)	_	±2.0	μА		
AC Supply Current (I _{OUT} = 0 mA)	6706-15: t _{AVAV} = 15 ns 6706-20: t _{AVAV} = 20 ns	I _{CCA} I _{CCA}	_	190 180	mA mA		
Output Low Voltage (I _{OL} = 8.0 mA)		V _{OL}		0.4	V		
Output High Voltage ($IOH = -4.0 \text{ mA}$)		VOH	2.4		٧		

Characteristic	Symbol	Max	Unit
Address Input Capacitance	C _{in}	5.0	pF
Control Pin Input Capacitance $(\overline{S}, \overline{G}, \overline{W})$	C _{in}	6.0	pF
I/O Capacitance	C _{I/O}	6.0	рF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = -55^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

AC TEST LOADS

OR EQUIVALENT

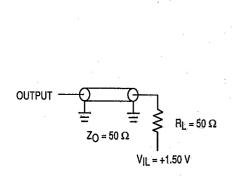


Figure 1A.

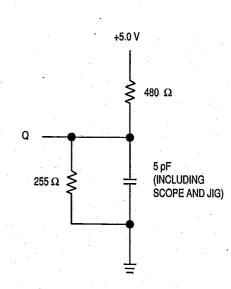
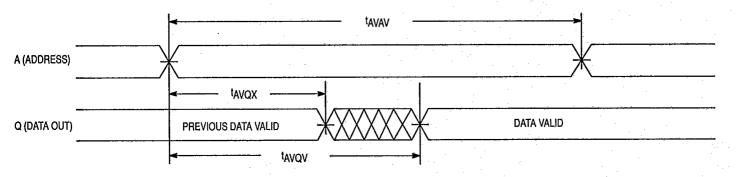


Figure 1B.


ETOM E F 1450800 1257464 E G 344 (DIZANYROMAM) DZ AJOROTOM

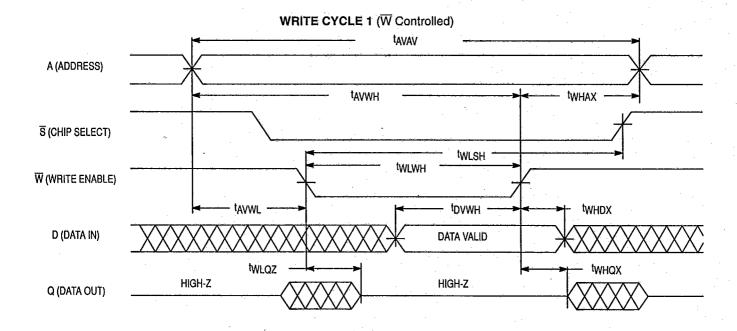
	Symbol	Symbol	670	6706-15		6706-20		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	tavav	tRC	15	_	20		ns	3
Address Access Time	tAVQV	tAA	_	15	_	20	ns	
Chip Select Access Time	tslQV	tACS		15	-	20	ns	-
Output Enable Access Time	tGLQV	^t OE	_	9.0	_	12	ns	
Output Hold from Address Change	tAXQX	tон	3.0		3.0	_	ns	
Chip Select Low to Output Active	tslqx	tLZ	0		0	1	ns	4, 5, 6
Chip Select High to Output High-Z	tsHQZ	tHZ	0	7.0	0	9.0	ns	4, 5, 6
Output Enable to Output Active	tGLQX	tLZ	0		0		ns	4, 5, 6
Output Enable to Output High-Z	tGHQZ	tHZ	0	7.0	0	9.0	ns	4, 5, 6


NOTES:

- 1. \overline{W} is high for read cycle.
- 2. Product sensitivities to noise require proper grounding and decoupling of the power supplies as well as minimization or elimination of the buss contention conditions during the read and write cycles.
- 3. All read cycle timing is referenced from the last valid address to the first transitioning address.
- 4. At any given voltage and temperature, tSHQZ max is less than tSLQX min, and tGHQX max is less than tGHQX min, both for a given device and from device to device.
- 5. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B.
- 6. These parameters are periodically sampled and not 100% tested.
- 7. Device is continuously selected ($\overline{S} = V_{IL}$, $\overline{G} = V_{IL}$).
- 8. Address valid prior to coincident with \overline{S} going low.

READ CYCLE 1 (See Note 7)

READ CYCLE 2 (See Note 8)

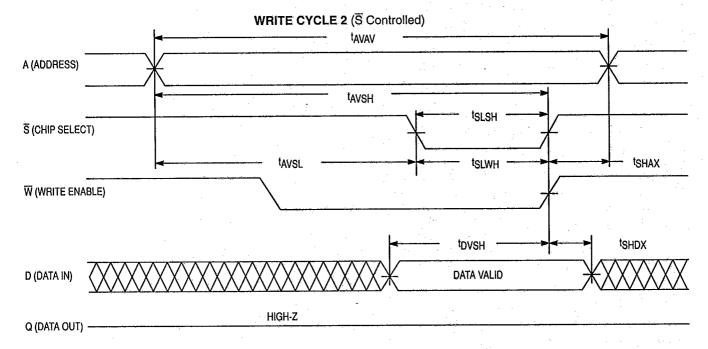


MOTOROLA SC (MEMORY/ASIC) 46E D 6367251 0080265 5 MOT3

	Symbol	Symbol	670	6706-15		6-20		23-14
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	t _{AVAV}	twc	15	[-	20		ns	3
Address Setup Time	†AVWL	t _{AS}	0		0		ns	
Address Valid to End of Write	tavwh	tAW	10	-	12	_	ns	
Write Pulse Width	tWLWH, tWLSH	tWΡ	9.0	_	11		ns	_
Data Valid to End of Write	tDVWH	tDW	6.0	_	8.0		ns	. .
Data Hold Time	twhox	[†] DH	0	<u> </u>	0	_	ns	
Write Low to Data High-Z	twlqz	twz	0	7.0	_	9.0	ns	4, 5, 6
Write High to Output Active	twhax	tow	0	_	0	_	ns	4, 5, 6
Write Recovery Time	twhax	twn	1.0	_	1.0	_	ns	

NOTES:

- 1. A write occurs during the overlap of \overline{S} low and \overline{W} low.
- 2. Product sensitivities to noise require proper grounding and decoupling of the power supplies as well as minimization or elimination of the buss contention conditions during the read and write cycles.
- 3. All write cycle timing is referenced from the last valid address to the first transitioning address.
- 4. Transition is measured ±500 mV from steady-state voltage with load of Figure 1B.
- 5. Parameters is sampled and not 100% tested.
- 6. At any given voltage and temperature, tWLQZ max is less than tWHQX min both for a given device and from device to device.



T-46-23-14

	Symbol	Symbol	6706-15		670	6706-20		
Parameter	Standard	Alternate	Min	Max	Min	Max	Unit	Notes
Write Cycle Time	tavav	twc	15		20	_	ns	3 (above)
Address Setup Time	tAVSL	t _{AS}	0	_	0		ns	
Address Valid to End of Write	tAVSH	taw	10	-	12	-	ns	_
Chip Select to End of Write	tslwh, tslsh	tcw	9.0	_	11	_	ns	1, 2 (below)
Data Valid to End of Write	tDVSH	tDW	7.0		9.0		ns	
Data Hold Time	tSHDX	tDH	0		0		ns	
Write Recovery Time	tSHAX	tWR	1,0	_	1.0	_	ns	

NOTES:

- 1. If \overline{S} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance condition.
- 2. If \overline{S} goes high coincident with or before \overline{W} goes high, the output will remain in a high impedance condition.

TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

Motorola reserves the right to make changes without further notice to any products herein to Improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life; or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall Indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. Is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

