

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools
 - Audiovisual equipment
 - Home appliance
 - Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - Gas leak detectors and automatic cutoff devices
 - Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - Communications equipment for trunk lines
 - Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

CONTENTS

PAGE	PAGE
0.8mm pitch 48-Ball CSP Pinout	Extended Status Register Definition
Pin Descriptions	Partition Configuration Register Definition 16
Simultaneous Operation Modes Allowed with Four Planes	Partition Configuration
Memory Map	1 Electrical Specifications
Identifier Codes and OTP Address	1.1 Absolute Maximum Ratings
for Read Operation	1.2 Operating Conditions
Identifier Codes and OTP Address for	1.2.1 Capacitance
Read Operation on Partition Configuration 7	1.2.2 AC Input/Output Test Conditions 18
OTP Block Address Map for OTP Program 8	1.2.3 DC Characteristics
Bus Operation 9	1.2.4 AC Characteristics
Command Definitions	- Read-Only Operations
Functions of Block Lock and Block Lock-Down 12	1.2.5 AC Characteristics - Write Operations
Block Locking State Transitions upon Command Write	1.2.6 Reset Operations
Block Locking State Transitions upon	1.2.7 Block Erase, Full Chip Erase,
WP# Transition	(Page Buffer) Program and OTP Program Performance
Status Register Definition	2 Related Document Information

LH28F320BFB-PTTL60 32Mbit (2Mbit×16) Page Mode Dual Work Flash MEMORY

- 32M density with 16Bit I/O Interface
- High Performance Reads
 - 60/25ns 8-Word Page Mode
- Configurative 4-Plane Dual Work
 - Flexible Partitioning
 - Read operations during Block Erase or (Page Buffer)
 Program
 - Status Register for Each Partition
- Low Power Operation
 - 2.7V Read and Write Operations
 - V_{CCO} for Input/Output Power Supply Isolation
 - Automatic Power Savings Mode Reduces I_{CCR} in Static Mode
- Enhanced Code + Data Storage
 - 5µs Typical Erase/Program Suspends
- OTP (One Time Program) Block
 - 4-Word Factory-Programmed Area
 - 4-Word User-Programmable Area
- High Performance Program with Page Buffer
 - 16-Word Page Buffer
 - 5µs/Word (Typ.) at 12V V_{PP}
- Operating Temperature 0°C to +70°C
- CMOS Process (P-type silicon substrate)

- Flexible Blocking Architecture
 - Eight 4K-word Parameter Blocks
 - Sixty-three 32K-word Main Blocks
 - Top Parameter Location
- Enhanced Data Protection Features
 - Individual Block Lock and Block Lock-Down with Zero-Latency
 - All blocks are locked at power-up or device reset.
 - Absolute Protection with V_{PP}≤V_{PPLK}
 - Block Erase, Full Chip Erase, (Page Buffer) Word Program Lockout during Power Transitions
- Automated Erase/Program Algorithms
 - 3.0V Low-Power 11µs/Word (Typ.) Programming
 - 12V No Glue Logic 9μs/Word (Typ.) Production Programming and 0.5s Erase (Typ.)
- Cross-Compatible Command Support
 - · Basic Command Set
 - Common Flash Interface (CFI)
- Extended Cycling Capability
 - Minimum 100,000 Block Erase Cycles
- 0.8mm pitch 48-Ball CSP
- ETOX^{TM*} Flash Technology
- Not designed or rated as radiation hardened

The product, which is 4-Plane Page Mode Dual Work (Simultaneous Read while Erase/Program) Flash memory, is a low power, high density, low cost, nonvolatile read/write storage solution for a wide range of applications. The product can operate at V_{CC} =2.7V-3.6V and V_{PP} =1.65V-3.6V or 11.7V-12.3V. Its low voltage operation capability greatly extends battery life for portable applications.

The product provides high performance asynchronous page mode. It allows code execution directly from Flash, thus eliminating time consuming wait states. Furthermore, its newly configurative partitioning architecture allows flexible dual work operation.

The memory array block architecture utilizes Enhanced Data Protection features, and provides separate Parameter and Main Blocks that provide maximum flexibility for safe nonvolatile code and data storage.

Fast program capability is provided through the use of high speed Page Buffer Program.

Special OTP (One Time Program) block provides an area to store permanent code such as a unique number.

* ETOX is a trademark of Intel Corporation.

2 5 1 3 4 6 8 A17 WP# WE# A A11 (RST#) В A18 V_{PP} A20 \mathbf{C} A7 A19 A_{12} A_4 RY/BY $\left(DQ_{6}\right)$ OE# D DQ_1 (DQ_{10}) DQ_{12} DQ_{15} DQ2 (DQ_{11}) $\left(DQ_{14}\right)$ E DQ_8 Vcc DQ5 (GND DQ9 (DQ_{13}) F DQ_0 DQ_3 DQ4 (DQ7

0.8mm pitch 48-BALL CSP PINOUT 8mm x 8mm TOP VIEW

Figure 1. 0.8mm pitch 48-Ball CSP Pinout

Table 1. Pin Descriptions

Symbol	Type	Name and Function
A ₀ -A ₂₀	INPUT	ADDRESS INPUTS: Inputs for addresses. 32M: A ₀ -A ₂₀
DQ ₀ -DQ ₁₅	INPUT/ OUTPUT	DATA INPUTS/OUTPUTS: Inputs data and commands during CUI (Command User Interface) write cycles, outputs data during memory array, status register, query code, identifier code and partition configuration register code reads. Data pins float to high-impedance (High Z) when the chip or outputs are deselected. Data is internally latched during an erase or program cycle.
CE#	INPUT	CHIP ENABLE: Activates the device's control logic, input buffers, decoders and sense amplifiers. CE#-high (V_{IH}) deselects the device and reduces power consumption to standby levels.
RST#	INPUT	RESET: When low (V_{IL}) , RST# resets internal automation and inhibits write operations which provides data protection. RST#-high (V_{IH}) enables normal operation. After power-up or reset mode, the device is automatically set to read array mode. RST# must be low during power-up/down.
OE#	INPUT	OUTPUT ENABLE: Gates the device's outputs during a read cycle.
WE#	INPUT	WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of CE# or WE# (whichever goes high first).
WP#	INPUT	WRITE PROTECT: When WP# is V_{IL} , locked-down blocks cannot be unlocked. Erase or program operation can be executed to the blocks which are not locked and not locked-down. When WP# is V_{IH} , lock-down is disabled.
RY/BY#	OPEN DRAIN OUTPUT	READY/BUSY#: Indicates the status of the internal WSM (Write State Machine). When low, WSM is performing an internal operation (block erase, full chip erase, (page buffer) program or OTP program). RY/BY#-High Z indicates that the WSM is ready for new commands, block erase is suspended and (page buffer) program is inactive, (page buffer) program is suspended, or the device is in reset mode.
V_{PP}	INPUT	MONITORING POWER SUPPLY VOLTAGE: V_{PP} is not used for power supply pin. With $V_{PP} \le V_{PPLK}$, block erase, full chip erase, (page buffer) program or OTP program cannot be executed and should not be attempted. Applying $12V\pm0.3V$ to V_{PP} provides fast erasing or fast programming mode. In this mode, V_{PP} is power supply pin. Applying $12V\pm0.3V$ to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to $12V\pm0.3V$ for a total of 80 hours maximum. Use of this pin at 12V beyond these limits may reduce block cycling capability or cause permanent damage.
V _{CC}	SUPPLY	DEVICE POWER SUPPLY (2.7V-3.6V): With $V_{CC} \le V_{LKO}$, all write attempts to the flash memory are inhibited. Device operations at invalid V_{CC} voltage (see DC Characteristics) produce spurious results and should not be attempted.
V _{CCQ}	SUPPLY	INPUT/OUTPUT POWER SUPPLY (2.7V-3.6V): Power supply for all input/output pins.
GND	SUPPLY	GROUND: Do not float any ground pins.

Table 2. Simultaneous Operation Modes Allowed with Four Planes^(1, 2)

	THEN THE MODES ALLOWED IN THE OTHER PARTITION IS:										
IF ONE PARTITION IS:	Read Array	Read ID/OTP	Read Status	Read Query	Word Program	Page Buffer Program	OTP Program	Block Erase	Full Chip Erase	Program Suspend	Block Erase Suspend
Read Array	X	X	X	X	X	X		X		X	X
Read ID/OTP	X	X	X	X	X	X		X		X	X
Read Status	X	X	X	X	X	X	X	X	X	X	X
Read Query	X	X	X	X	X	X		X		X	X
Word Program	X	X	X	X							X
Page Buffer Program	X	X	X	X							X
OTP Program			X								
Block Erase	X	X	X	X							
Full Chip Erase			X								
Program Suspend	X	X	X	X							X
Block Erase Suspend	X	X	X	X	X	X				X	

NOTES:

"X" denotes the operation available.
 Configurative Partition Dual Work Restrictions:
 Status register reflects partition state, not WSM (Write State Machine) state - this allows a status register for each partition. Only one partition can be erased or programmed at a time - no command queuing.
 Commands must be written to an address within the block targeted by that command.

BLOCK NUMBER ADDRESS RANGE 1FF000H - 1FFFFFH 4K-WORD 4K-WORD 1FE000H - 1FEFFFH 69 68 4K-WORD 1FD000H - 1FDFFFH 4K-WORD 1FC000H - 1FCFFFH 67 4K-WORD 1FB000H - 1FBFFFH 66 65 4K-WORD 1FA000H - 1FAFFFH 1F9000H - 1F9FFFH BLOCK NUMBER ADDRESS RANGE 4K-WORD PLANE) 32K-WORD 0F8000H - 0FFFFFH 4K-WORD 1F8000H - 1F8FFFH 63 32K-WORD 1F0000H - 1F7FFFH 32K-WORD 0F0000H - 0F7FFFH PLANE3 (PARAMETER 32K-WORD 1E8000H - 1EFFFFH 32K-WORD 0E8000H - 0EFFFFH 32K-WORD 28 0E0000H - 0E7FFFH 32K-WORD 1E0000H - 1E7FFFH PLANE1 (UNIFORM PLANE) 32K-WORD 32K-WORD 0D8000H - 0DFFFFH 1D8000H - 1DFFFFH 26 32K-WORD 0D0000H - 0D7FFFH 32K-WORD 1D0000H - 1D7FFFH 32K-WORD 32K-WORD 1C8000H - 1CFFFFH 25 0C8000H - 0CFFFFH 24 32K-WORD 0C0000H - 0C7FFFH 56 32K-WORD 1C0000H - 1C7FFFH 1B8000H - 1BFFFFH 23 32K-WORD 0B8000H - 0BFFFFH 32K-WORD 32K-WORD 0B0000H - 0B7FFFH 32K-WORD 1B0000H - 1B7FFFH 32K-WORD 0A8000H - 0AFFFFH 32K-WORD 1A8000H - 1AFFFFH 53 1A0000H - 1A7FFFH 32K-WORD 0A0000H - 0A7FFFH 32K-WORD 32K-WORD 198000H - 19FFFFH 32K-WORD 098000H - 09FFFFH 32K-WORD 190000H - 197FFFH 32K-WORD 090000H - 097FFFH 18 32K-WORD 088000H - 08FFFFH 32K-WORD 188000H - 18FFFFH 17 48 32K-WORD 180000H - 187FFFH 32K-WORD 080000H - 087FFFH 32K-WORD 178000H - 17FFFFH 32K-WORD 078000H - 07FFFFH 47 15 46 32K-WORD 170000H - 177FFFH 32K-WORD 070000H - 077FFFH 32K-WORD 168000H - 16FFFFH 32K-WORD 068000H - 06FFFFH 32K-WORD 160000H - 167FFFH 32K-WORD 060000H - 067FFFH 44 PLANE2 (UNIFORM PLANE) PLANE0 (UNIFORM PLANE) 43 32K-WORD 158000H - 15FFFFH 32K-WORD 058000H - 05FFFFH 42 32K-WORD 150000H - 157FFFH 32K-WORD 050000H - 057FFFH 32K-WORD 148000H - 14FFFFH 32K-WORD 048000H - 04FFFFH 40 32K-WORD 140000H - 147FFFH 32K-WORD 040000H - 047FFFH 32K-WORD 32K-WORD 138000H - 13FFFFH 038000H - 03FFFFH 32K-WORD 130000H - 137FFFH 32K-WORD 030000H - 037FFFH 37 32K-WORD 128000H - 12FFFFH 32K-WORD 028000H - 02FFFFH 32K-WORD 32K-WORD 020000H - 027FFFH 120000H - 127FFFH 36 32K-WORD 118000H - 11FFFFH 32K-WORD 018000H - 01FFFFH 110000H - 117FFFH 010000H - 017FFFH 34 32K-WORD 32K-WORD 32K-WORD 108000H - 10FFFFH 33 32K-WORD 008000H - 00FFFFH 32K-WORD 32K-WORD 32 100000H - 107FFFH 0 000000H - 007FFFH

Figure 2. Memory Map (Top Parameter)

Table 3. Identifier Codes and OTP Address for Read Operation

	Code	Address [A ₁₅ -A ₀]	Data [DQ ₁₅ -DQ ₀]	Notes
Manufacturer Code	Manufacturer Code	0000Н	00B0H	1
Device Code	Top Parameter Device Code	0001H	00B4H	1, 2
Block Lock Configuration	Block is Unlocked		$DQ_0 = 0$	3
Code	Block is Locked	Block	$DQ_0 = 1$	3
	Block is not Locked-Down	Address + 2	$DQ_1 = 0$	3
	Block is Locked-Down		$DQ_1 = 1$	3
Device Configuration Code	Partition Configuration Register	0006Н	PCRC	1, 4
OTP	OTP Lock	0080Н	OTP-LK	1, 5
	OTP	0081-0088H	OTP	1, 6

NOTES:

- 1. The address A_{20} - A_{16} are shown in below table for reading the manufacturer code, device code, device configuration code and OTP data.
- 2. Top parameter device has its parameter blocks in the plane3 (The highest address).
- 3. Block Address = The beginning location of a block address within the partition to which the Read Identifier Codes/OTP command (90H) has been written. DQ₁₅-DQ₂ are reserved for future implementation.
- 4. PCRC=Partition Configuration Register Code.
- 5. OTP-LK=OTP Block Lock configuration.
- 6. OTP=OTP Block data.

Table 4. Identifier Codes and OTP Address for Read Operation on Partition Configuration⁽¹⁾ (32M-bit device)

Partition C	Configuration I	Register (2)	Address (32M-bit device)			
PCR.10	PCR.9	PCR.8	[A ₂₀ -A ₁₆]			
0	0	0	00H			
0	0	1	00H or 08H			
0	1	0	00H or 10H			
1	0	0	00H or 18H			
0	1	1	00H or 08H or 10H			
1	1	0	00H or 10H or 18H			
1	0	1	00H or 08H or 18H			
1	1	1	00H or 08H or 10H or 18H			

- 1. The address to read the identifier codes or OTP data is dependent on the partition which is selected when writing the Read Identifier Codes/OTP command (90H).
- 2. Refer to Table 12 for the partition configuration register.

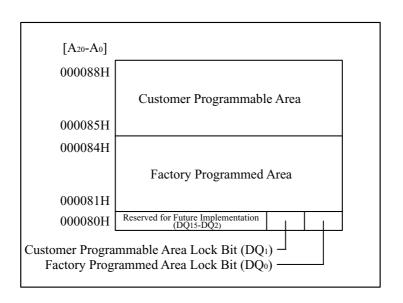


Figure 3. OTP Block Address Map for OTP Program (The area outside 80H~88H cannot be used.)

Table 5. Bus Operation^(1, 2)

Mode	Notes	RST#	CE#	OE#	WE#	Address	V_{PP}	DQ ₀₋₁₅	RY/BY# (8)
Read Array	6	V_{IH}	V_{IL}	V_{IL}	V_{IH}	X	X	D _{OUT}	X
Output Disable		V _{IH}	V_{IL}	V_{IH}	V _{IH}	X	X	High Z	X
Standby		V _{IH}	V_{IH}	X	X	X	X	High Z	X
Reset	3	V _{IL}	X	X	X	X	X	High Z	High Z
Read Identifier Codes/OTP	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	See Table 3 and Table 4	X	See Table 3 and Table 4	X
Read Query	6,7	V _{IH}	V _{IL}	V _{IL}	V _{IH}	See Appendix	X	See Appendix	X
Write	4,5,6	V_{IH}	V _{IL}	V _{IH}	V_{IL}	X	X	D _{IN}	X

- 1. Refer to DC Characteristics. When $V_{PP} \le V_{PPLK}$, memory contents can be read, but cannot be altered. 2. X can be V_{IL} or V_{IH} for control pins and addresses, and V_{PPLK} or $V_{PPH1/2}$ for V_{PP} . See DC Characteristics for V_{PPLK} and $V_{PPH1/2}$ voltages.

 3. RST# at GND±0.2V ensures the lowest power consumption.
- 4. Command writes involving block erase, full chip erase, (page buffer) program or OTP program are reliably executed when $V_{PP}=V_{PPH1/2}$ and $V_{CC}=2.7V-3.6V$.

 5. Refer to Table 6 for valid D_{IN} during a write operation.

 6. Never hold OE# low and WE# low at the same timing.

- 7. Refer to Appendix of LH28F320BF series for more information about query code.
- 8. RY/BY# is V_{OL} when the WSM (Write State Machine) is executing internal block erase, full chip erase, (page buffer) program or OTP program algorithms. It is High Z during when the WSM is not busy, in block erase suspend mode (with program and page buffer program inactive), (page buffer) program suspend mode, or reset mode.

Table 6. Command Definitions⁽¹¹⁾

	Bus		I	First Bus Cyc	ele	Second Bus Cycle		
Command	Cycles Req'd	Notes	Oper ⁽¹⁾	Addr ⁽²⁾	Data	Oper ⁽¹⁾	Addr ⁽²⁾	Data ⁽³⁾
Read Array	1		Write	PA	FFH			
Read Identifier Codes/OTP	≥ 2	4	Write	PA	90H	Read	IA or OA	ID or OD
Read Query	≥ 2	4	Write	PA	98H	Read	QA	QD
Read Status Register	2		Write	PA	70H	Read	PA	SRD
Clear Status Register	1		Write	PA	50H			
Block Erase	2	5	Write	BA	20H	Write	BA	D0H
Full Chip Erase	2	5,9	Write	X	30H	Write	X	D0H
Program	2	5,6	Write	WA	40H or 10H	Write	WA	WD
Page Buffer Program	≥ 4	5,7	Write	WA	E8H	Write	WA	N-1
Block Erase and (Page Buffer) Program Suspend	1	8,9	Write	PA	ВОН			
Block Erase and (Page Buffer) Program Resume	1	8,9	Write	PA	D0H			
Set Block Lock Bit	2		Write	BA	60H	Write	BA	01H
Clear Block Lock Bit	2	10	Write	BA	60H	Write	BA	D0H
Set Block Lock-down Bit	2		Write	BA	60H	Write	BA	2FH
OTP Program	2	9	Write	OA	СОН	Write	OA	OD
Set Partition Configuration Register	2		Write	PCRC	60H	Write	PCRC	04H

- 1. Bus operations are defined in Table 5.
- 2. All addresses which are written at the first bus cycle should be the same as the addresses which are written at the second bus cycle.
 - X=Any valid address within the device.
 - PA=Address within the selected partition.
 - IA=Identifier codes address (See Table 3 and Table 4).
 - QA=Query codes address. Refer to Appendix of LH28F320BF series for details.
 - BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit.
 - WA=Address of memory location for the Program command or the first address for the Page Buffer Program command.
 - OA=Address of OTP block to be read or programmed (See Figure 3).
 - PCRC=Partition configuration register code presented on the address A₀-A₁₅.
- 3. ID=Data read from identifier codes. (See Table 3 and Table 4).
 - QD=Data read from query database. Refer to Appendix of LH28F320BF series for details.
 - SRD=Data read from status register. See Table 10 and Table 11 for a description of the status register bits.
 - WD=Data to be programmed at location WA. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.
 - OD=Data within OTP block. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.
 - N-1=N is the number of the words to be loaded into a page buffer.
- 4. Following the Read Identifier Codes/OTP command, read operations access manufacturer code, device code, block lock configuration code, partition configuration register code and the data within OTP block (See Table 3 and Table 4).
 - The Read Query command is available for reading CFI (Common Flash Interface) information.
- 5. Block erase, full chip erase or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when RST# is V_{IH} .
- 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup.
- 7. Following the third bus cycle, input the program sequential address and write data of "N" times. Finally, input the any valid address within the target block to be programmed and the confirm command (D0H). Refer to Appendix of

LH28F320BF series for details.

- 8. If the program operation in one partition is suspended and the erase operation in other partition is also suspended, the suspended program operation should be resumed first, and then the suspended erase operation should be resumed next.
- 9. Full chip erase and OTP program operations can not be suspended. The OTP Program command can not be accepted while the block erase operation is being suspended.
- 10. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when WP# is VIL. When WP# is V_{IH}, lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration.

 11. Commands other than those shown above are reserved by SHARP for future device implementations and should not be

Table 7. Functions of Block Lock⁽⁵⁾ and Block Lock-Down

		(2)			
State	WP#	$DQ_1^{(1)}$	$DQ_0^{(1)}$	State Name	Erase/Program Allowed (2)
[000]	0	0	0	Unlocked	Yes
[001] ⁽³⁾	0	0	1	Locked	No
[011]	0	1	1	Locked-down	No
[100]	1	0	0	Unlocked	Yes
[101] ⁽³⁾	1	0	1	Locked	No
[110] ⁽⁴⁾	1	1	0	Lock-down Disable	Yes
[111]	1	1	1	Lock-down Disable	No

NOTES:

- 1. DQ_0 =1: a block is locked; DQ_0 =0: a block is unlocked. DQ_1 =1: a block is locked-down; DQ_1 =0: a block is not locked-down.
- 2. Erase and program are general terms, respectively, to express: block erase, full chip erase and (page buffer) program operations.
- 3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] (WP#=0) or [101] (WP#=1), regardless of the states before power-off or reset operation.
- 4. When WP# is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.
- 5. OTP (One Time Program) block has the lock function which is different from those described above.

Table 8. Block Locking State Transitions upon Command Write⁽⁴⁾

	Curren	t State		Result after Lock Command Written (Next State)				
State	WP#	DQ ₁	DQ_0	Set Lock ⁽¹⁾	Clear Lock ⁽¹⁾	Set Lock-down ⁽¹⁾		
[000]	0	0	0	[001]	No Change	[011] ⁽²⁾		
[001]	0	0	1	No Change ⁽³⁾	[000]	[011]		
[011]	0	1	1	No Change	No Change	No Change		
[100]	1	0	0	[101]	No Change	[111] ⁽²⁾		
[101]	1	0	1	No Change	[100]	[111]		
[110]	1	1	0	[111]	No Change	[111] ⁽²⁾		
[111]	1	1	1	No Change	[110]	No Change		

- 1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command.
- 2. When the Set Block Lock-Down Bit command is written to the unlocked block (DQ₀=0), the corresponding block is locked-down and automatically locked at the same time.
- 3. "No Change" means that the state remains unchanged after the command written.
- 4. In this state transitions table, assumes that WP# is not changed and fixed V_{IL} or V_{IH} .

Table 9. Block Locking State Transitions upon WP# Transition⁽⁴⁾

D : C++		Current S	State		Result after WP# Transition (Next State)		
Previous State	State	WP#	DQ ₁	DQ_0	WP#=0→1 ⁽¹⁾	WP#= $1 \rightarrow 0^{(1)}$	
-	[000]	0	0	0	[100]	-	
-	[001]	0	0	1	[101]	-	
[110] ⁽²⁾	50113	0	1	1	[110]	-	
Other than [110] ⁽²⁾	[011]				[111]	-	
-	[100]	1	0	0	-	[000]	
-	[101]	1	0	1	-	[001]	
-	[110]	1	1	0	-	[011] ⁽³⁾	
-	[111]	1	1	1	-	[011]	

- 1. "WP#=0 \rightarrow 1" means that WP# is driven to V_{IH} and "WP#=1 \rightarrow 0" means that WP# is driven to V_{II} .
- 2. State transition from the current state [011] to the next state depends on the previous state.
- 3. When WP# is driven to $V_{\rm IL}$ in [110] state, the state changes to [011] and the blocks are automatically locked.
- 4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state.

R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8
WSMS	BESS	BEFCES	PBPOPS	VPPS	PBPSS	DPS	R
7	6	5	4	3	2	1	0

SR.15 - SR.8 = RESERVED FOR FUTURE ENHANCEMENTS (R)

NOTES:

SR.7 = WRITE STATE MACHINE STATUS (WSMS)

- 1 = Ready
- 0 = Busy

SR.6 = BLOCK ERASE SUSPEND STATUS (BESS)

- 1 = Block Erase Suspended
- 0 = Block Erase in Progress/Completed

SR.5 = BLOCK ERASE AND FULL CHIP ERASE STATUS (BEFCES)

- 1 = Error in Block Erase or Full Chip Erase
- 0 = Successful Block Erase or Full Chip Erase

SR.4 = (PAGE BUFFER) PROGRAM AND OTP PROGRAM STATUS (PBPOPS)

- 1 = Error in (Page Buffer) Program or OTP Program
- 0 = Successful (Page Buffer) Program or OTP Program

 $SR.3 = V_{PP} STATUS (VPPS)$

- $1 = V_{pp}$ LOW Detect, Operation Abort
- $0 = V_{pp} OK$

SR.2 = (PAGE BUFFER) PROGRAM SUSPEND STATUS (PBPSS)

- 1 = (Page Buffer) Program Suspended
- 0 = (Page Buffer) Program in Progress/Completed

SR.1 = DEVICE PROTECT STATUS (DPS)

- 1 = Erase or Program Attempted on a Locked Block, Operation Abort
- 0 = Unlocked

Status Register indicates the status of the partition, not WSM (Write State Machine). Even if the SR.7 is "1", the WSM may be occupied by the other partition when the device is set to 2, 3 or 4 partitions configuration.

Check SR.7 or RY/BY# to determine block erase, full chip erase, (page buffer) program or OTP program completion. SR.6 - SR.1 are invalid while SR.7="0".

If both SR.5 and SR.4 are "1"s after a block erase, full chip erase, (page buffer) program, set/clear block lock bit, set block lock-down bit, set partition configuration register attempt, an improper command sequence was entered.

SR.3 does not provide a continuous indication of V_{PP} level. The WSM interrogates and indicates the V_{PP} level only after Block Erase, Full Chip Erase, (Page Buffer) Program or OTP Program command sequences. SR.3 is not guaranteed to report accurate feedback when $V_{PP} \neq V_{PPH1}$, V_{PPH2} or V_{PPLK} .

SR.1 does not provide a continuous indication of block lock bit. The WSM interrogates the block lock bit only after Block Erase, Full Chip Erase, (Page Buffer) Program or OTP Program command sequences. It informs the system, depending on the attempted operation, if the block lock bit is set. Reading the block lock configuration codes after writing the Read Identifier Codes/OTP command indicates block lock bit status.

SR.15 - SR.8 and SR.0 are reserved for future use and should be masked out when polling the status register.

SR.0 = RESERVED FOR FUTURE ENHANCEMENTS (R)

Table 11.	Extended	Status	Register	Definition

R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8
SMS	R	R	R	R	R	R	R
7	6	5	4	3	2	1	0

XSR.15-8 = RESERVED FOR FUTURE ENHANCEMENTS (R)

XSR.7 = STATE MACHINE STATUS (SMS)

1 = Page Buffer Program available

0 = Page Buffer Program not available

XSR.6-0 = RESERVED FOR FUTURE ENHANCEMENTS (R)

NOTES:

After issue a Page Buffer Program command (E8H), XSR.7="1" indicates that the entered command is accepted. If XSR.7 is "0", the command is not accepted and a next Page Buffer Program command (E8H) should be issued again to check if page buffer is available or not.

XSR.15-8 and XSR.6-0 are reserved for future use and should be masked out when polling the extended status register.

R

R	R	R	R	R	PC2	PC1	PC0
15	14	13	12	11	10	9	8

Table 12. Partition Configuration Register Definition

R

PCR.15-11 = RESERVED FOR FUTURE
ENHANCEMENTS (R)

PCR.10-8 = PARTITION CONFIGURATION (PC2-0)

000 = No partitioning. Dual Work is not allowed.

001 = Plane1-3 are merged into one partition. (default in a bottom parameter device)

010 = Plane 0-1 and Plane2-3 are merged into one partition respectively.

100 = Plane 0-2 are merged into one partition. (default in a top parameter device)

011 = Plane 2-3 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.

110 = Plane 0-1 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.

101 = Plane 1-2 are merged into one partition. There are three partitions in this configuration. Dual work operation is available between any two partitions.

111 = There are four partitions in this configuration.

Each plane corresponds to each partition respectively. Dual work operation is available between any two partitions.

PCR.7-0 = RESERVED FOR FUTURE ENHANCEMENTS (R)

NOTES:

After power-up or device reset, PCR10-8 (PC2-0) is set to "001" in a bottom parameter device and "100" in a top parameter device.

See Figure 4 for the detail on partition configuration.

PCR.15-11 and PCR.7-0 are reserved for future use and should be masked out when checking the partition configuration register.

PC2 PC1 PC0	PARTITIONING FOR DUAL WORK	PC2 PC1 PC0 PARTITIONING FOR DUAL WORK
0 0 0	PLANE3 PLANE P	PARTITION2 PARTITION1 PARTITION0 0 1 1 EBURDE CHAPTER LANGE CHAPTER PARTITION2 PARTITION1 PARTITION0 PARTITION2 PARTITION1 PARTITION0 PARTITION2 PARTITION1 PARTITION0
0 0 1	PLANE3 BLANE3 PLANE3 BLANE0 BLANE0	PARTITION2 PARTITION1 PARTITION0 1 1 0 EBUNET BETWEEN PARTITION P
0 1 0	0/O/OITITRAP I/OITITRAP I/OITITRA	PARTITION2 PARTITION1 PARTITION0 1 0 1 PARTITION2 PARTITION1 PARTITION0 PARTITION PARTITION0 1 0 1
1 0 0	PARTITION1 PARTITION0 DECEMBER PARTITION PARTIT	PARTITION3 PARTITION2 PARTITION1 PARTITION0 1 1 1 1 LANGE STATE OF THE PARTITION PAR

Figure 4. Partition Configuration

1 Electrical Specifications

1.1 Absolute Maximum Ratings*

Operating Temperature

During Read, Erase and Program 0°C to +70°C (1)

Storage Temperature

During under Bias.....-10°C to +80°C During non Bias....-65°C to +125°C

Voltage On Any Pin

(except V_{CC} and V_{PP}).....-0.5V to V_{CC} +0.5V (2)

 V_{CC} and V_{CCO} Supply Voltage -0.2V to +3.9V (2)

 V_{PP} Supply Voltage-0.2V to +12.6V $^{(2, 3, 4)}$

Output Short Circuit Current......100mA (5)

*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.

NOTES:

- 1. Operating temperature is for commercial temperature product defined by this specification.
- 2. All specified voltages are with respect to GND. Minimum DC voltage is -0.5V on input/output pins and -0.2V on V_{CC} and V_{PP} pins. During transitions, this level may undershoot to -2.0V for periods <20ns. Maximum DC voltage on input/output pins is V_{CC} +0.5V which, during transitions, may overshoot to V_{CC} +2.0V for periods <20ns.
- 3. Maximum DC voltage on V_{PP} may overshoot to +13.0V for periods <20ns.
- 4. V_{PP} erase/program voltage is normally 2.7V-3.6V. Applying 11.7V-12.3V to V_{PP} during erase/program can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. V_{PP} may be connected to 11.7V-12.3V for a total of 80 hours maximum.
- 5. Output shorted for no more than one second. No more than one output shorted at a time.

1.2 Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Operating Temperature	T_A	0	+25	+70	°C	
V _{CC} Supply Voltage	V _{CC}	2.7	3.0	3.6	V	1
I/O Supply Voltage	V_{CCQ}	2.7	3.0	3.6	V	1
V _{PP} Voltage when Used as a Logic Control	V_{PPH1}	1.65	3.0	3.6	V	1
V _{PP} Supply Voltage	V_{PPH2}	11.7	12	12.3	V	1, 2
Main Block Erase Cycling: V _{PP} =V _{PPH1}		100,000			Cycles	
Parameter Block Erase Cycling: V _{PP} =V _{PPH1}		100,000			Cycles	
Main Block Erase Cycling: V _{PP} =V _{PPH2} , 80 hrs.				1,000	Cycles	
Parameter Block Erase Cycling: V _{PP} =V _{PPH2} , 80 hrs.				1,000	Cycles	
Maximum V _{PP} hours at V _{PPH2}				80	Hours	

- 1. See DC Characteristics tables for voltage range-specific specification.
- 2. Applying V_{PP} =11.7V-12.3V during a erase or program can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. A permanent connection to V_{PP} =11.7V-12.3V is not allowed and can cause damage to the device.

1.2.1 Capacitance⁽¹⁾ (T_A=+25°C, f=1MHz)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Capacitance	C_{IN}	V _{IN} =0.0V		4	7	pF
Output Capacitance	C _{OUT}	V _{OUT} =0.0V		6	10	pF

NOTE:

1. Sampled, not 100% tested.

1.2.2 AC Input/Output Test Conditions

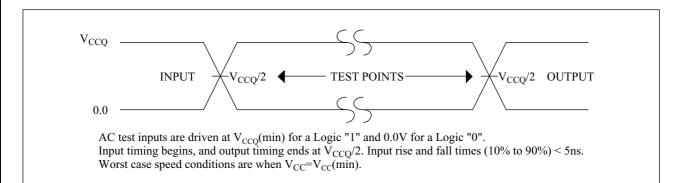


Figure 5. Transient Input/Output Reference Waveform for V_{CC} =2.7V-3.6V

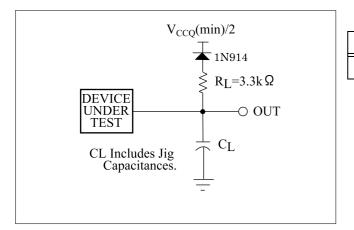


Figure 6. Transient Equivalent Testing Load Circuit

Table 13. Configuration Capacitance Loading Value

Test Configuration	$C_L(pF)$
V _{CC} =2.7V-3.6V	50

1.2.3 DC Characteristics

 V_{CC} =2.7V-3.6V

Symbol	Paran	neter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
I_{LI}	Input Load Current		1	-1.0		+1.0	μA	V _{CC} =V _{CC} Max.,
I_{LO}	Output Leakage Cur	rent	1	-1.0		+1.0	μА	$V_{CCQ} = V_{CCQ}Max.,$ $V_{IN}/V_{OUT} = V_{CCQ}$ or GND
I_{CCS}	V _{CC} Standby Curren	V _{CC} Standby Current			4	20	μΑ	$V_{CC}=V_{CC}Max.,$ $CE\#=RST\#=$ $V_{CCQ}\pm0.2V,$ $WP\#=V_{CCQ}$ or GND
I _{CCAS}	V _{CC} Automatic Pow	V _{CC} Automatic Power Savings Current			4	20	μΑ	V _{CC} =V _{CC} Max., CE#=GND±0.2V, WP#=V _{CCQ} or GND
I_{CCD}	V _{CC} Reset Power-Do	own Current	1		4	20	μА	RST#=GND±0.2V
I	Average V _{CC} Read Current Normal Mode		1,7		15	25	mA	V _{CC} =V _{CC} Max., CE#=V _{IL} ,
I_{CCR}	Average V _{CC} Read Current Page Mode	8 Word Read	1,7		5	10	mA	OE#=V _{IH} , f=5MHz
I_{CCW}	V _{CC} (Page Buffer) P	rooram Current	1,5,7		20	60	mA	$V_{PP}=V_{PPH1}$
1CCW	VCC (Tage Bullet) T	rogram Current	1,5,7		10	20	mA	V _{PP} =V _{PPH2}
Lagr	V _{CC} Block Erase, Fu	ıll Chip	1,5,7		10	30	mA	$V_{PP}=V_{PPH1}$
I_{CCE}	Erase Current		1,5,7		4	10	mA	V _{PP} =V _{PPH2}
I _{CCWS} I _{CCES}	V _{CC} (Page Buffer) P Block Erase Suspend		1,2,7		10	200	μА	CE#=V _{IH}
I _{PPS} I _{PPR}	V _{PP} Standby or Read	d Current	1,6,7		2	5	μА	$V_{PP} \leq V_{CC}$
I	V _{PP} (Page Buffer) Pr	rogram Current	1,5,6,7		2	5	μA	$V_{PP}=V_{PPH1}$
I_{PPW}	v pp (1 age Bullet) 1	rogram Current	1,5,6,7		10	30	mA	V _{PP} =V _{PPH2}
Inne	V _{PP} Block Erase, Fu	ll Chip	1,5,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
I_{PPE}	Erase Current		1,5,6,7		5	15	mA	V _{PP} =V _{PPH2}
Innuia	V _{PP} (Page Buffer) Program		1,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
I_{PPWS}	Suspend Current		1,6,7		10	200	μA	V _{PP} =V _{PPH2}
Innec	V _{PP} Block Erase Sus	snend Current	1,6,7		2	5	μΑ	V _{PP} =V _{PPH1}
I_{PPES}	v pp Block Blase Sus	spena Carrent	1,6,7		10	200	μΑ	V _{PP} =V _{PPH2}

DC Characteristics (Continued)

$V_{CC} = 2.7 \text{V} - 3.6 \text{V}$

Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
V_{IL}	Input Low Voltage	5	-0.4		0.4	V	
V _{IH}	Input High Voltage	5	2.4		V _{CCQ} + 0.4	V	
V _{OL}	Output Low Voltage	5,8			0.2	V	$\begin{aligned} &V_{CC} = &V_{CC}Min., \\ &V_{CCQ} = &V_{CCQ}Min., \\ &I_{OL} = &100\mu A \end{aligned}$
V _{OH}	Output High Voltage	5	V _{CCQ} -0.2			V	$\begin{aligned} &V_{CC} = &V_{CC}Min., \\ &V_{CCQ} = &V_{CCQ}Min., \\ &I_{OH} = &-100\mu A \end{aligned}$
V _{PPLK}	V _{PP} Lockout during Normal Operations	3,5,6			0.4	V	
V _{PPH1}	V _{PP} during Block Erase, Full Chip Erase, (Page Buffer) Program or OTP Program Operations	6	1.65	3.0	3.6	V	
V _{PPH2}	V _{PP} during Block Erase, Full Chip Erase, (Page Buffer) Program or OTP Program Operations		11.7	12	12.3	V	
V_{LKO}	V _{CC} Lockout Voltage		1.5			V	

- 1. All currents are in RMS unless otherwise noted. Typical values are the reference values at V_{CC} =3.0V and T_A =+25°C unless V_{CC} is specified.
- 2. I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or (page buffer) program is executed while in block erase suspend mode, the device's current draw is the sum of I_{CCES} and I_{CCR} or I_{CCW} . If read is executed while in (page buffer) program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR} .
- buffer) program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR}.

 3. Block erase, full chip erase, (page buffer) program and OTP program are inhibited when V_{PP}≤V_{PPLK}, and not guaranteed in the range between V_{PPLK}(max.) and V_{PPH1}(min.), between V_{PPH1}(max.) and V_{PPH2}(min.) and above V_{PPH2}(max.).
- 4. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVOV}) provide new data when addresses are changed.
- 5. Sampled, not 100% tested.
- 6. V_{PP} is not used for power supply pin. With V_{PP}≤V_{PPLK}, block erase, full chip erase, (page buffer) program and OTP program cannot be executed and should not be attempted.
 - Applying $12V\pm0.3V$ to V_{PP} provides fast erasing or fast programming mode. In this mode, V_{PP} is power supply pin and supplies the memory cell current for block erasing and (page buffer) programming. Use similar power supply trace widths and layout considerations given to the V_{CC} power bus.
 - Applying $12V\pm0.3V$ to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to $12V\pm0.3V$ for a total of 80 hours maximum.
- 7. The operating current in dual work is the sum of the operating current (read, erase, program) in each plane.
- 8. Includes RY/BY#.

1.2.4 AC Characteristics - Read-Only Operations⁽¹⁾

$$V_{CC}$$
=2.7V-3.6V, T_{A} =0°C to +70°C

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Read Cycle Time		60		ns
t _{AVQV}	Address to Output Delay			60	ns
$t_{\rm ELQV}$	CE# to Output Delay	3		60	ns
t _{APA}	Page Address Access Time			25	ns
$t_{ m GLQV}$	OE# to Output Delay	3		20	ns
t_{PHQV}	RST# High to Output Delay			150	ns
t_{EHQZ}, t_{GHQZ}	CE# or OE# to Output in High Z, Whichever Occurs First	2		20	ns
$t_{\rm ELQX}$	CE# to Output in Low Z	2	0		ns
t_{GLQX}	OE# to Output in Low Z	2	0		ns
t _{OH}	Output Hold from First Occurring Address, CE# or OE# change	2	0		ns
t _{AVEL} , t _{AVGL}	Address Setup to CE#, OE# Going Low for Reading Status Register	4, 6	10		ns
$t_{\rm ELAX},t_{\rm GLAX}$	Address Hold from CE#, OE# Going Low for Reading Status Register	5, 6	30		ns
$t_{\rm EHEL}, t_{\rm GHGL}$	CE#, OE# Pulse Width High for Reading Status Register	6	15		ns

- 1. See AC input/output reference waveform for timing measurements and maximum allowable input slew rate.
- 2. Sampled, not 100% tested.

- Sampled, not 100% tested.
 OE# may be delayed up to t_{ELQV}—t_{GLQV} after the falling edge of CE# without impact to t_{ELQV}.
 Address setup time (t_{AVEL}, t_{AVGL}) is defined from the falling edge of CE# or OE# (whichever goes low last).
 Address hold time (t_{ELAX}, t_{GLAX}) is defined from the falling edge of CE# or OE# (whichever goes low last).
 Specifications t_{AVEL}, t_{AVGL}, t_{ELAX}, t_{GLAX} and t_{EHEL}, t_{GHGL} for read operations apply to only status register read operations.

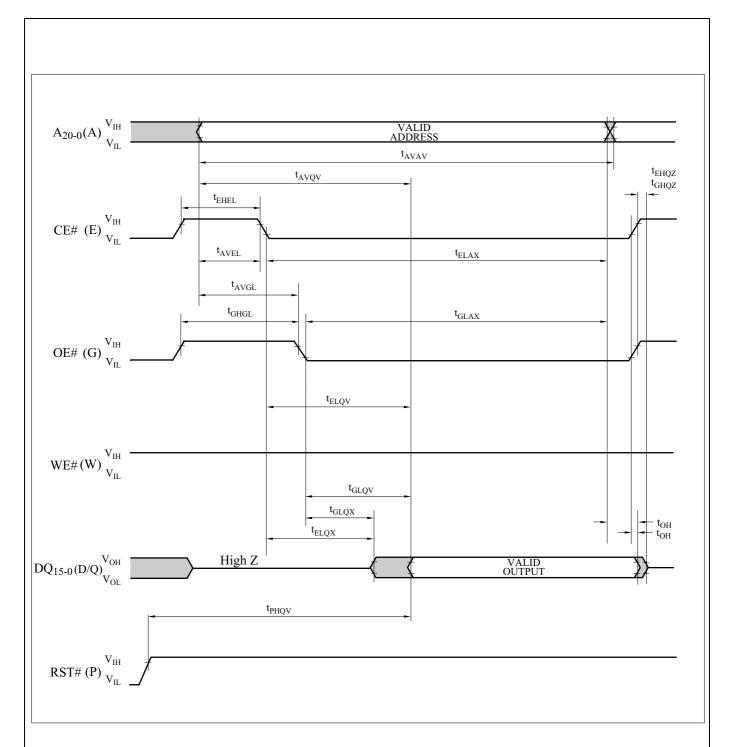


Figure 7. AC Waveform for Single Asynchronous Read Operations from Status Register, Identifier Codes, OTP Block or Query Code

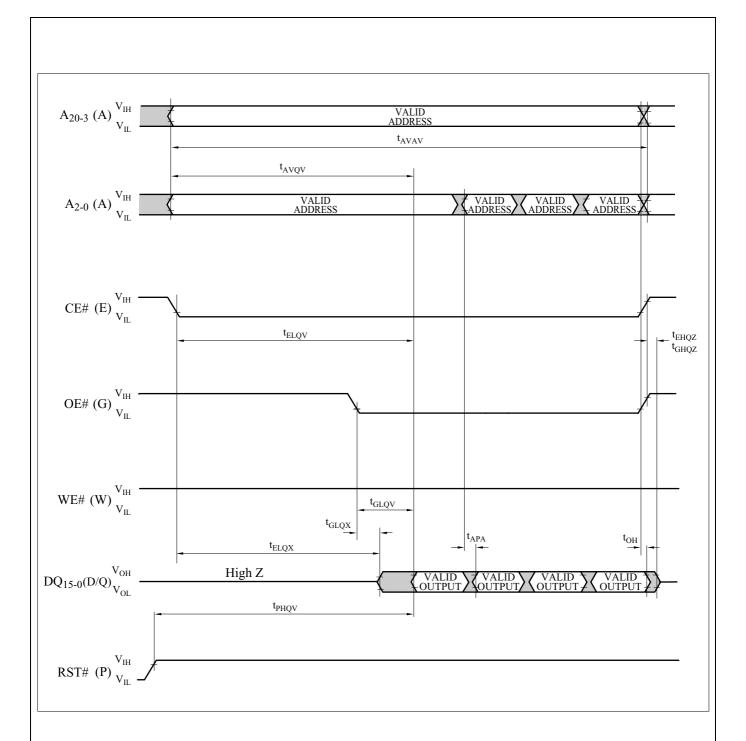


Figure 8. AC Waveform for Asynchronous 4-Word Page Mode Read Operations from Main Blocks or Parameter Blocks

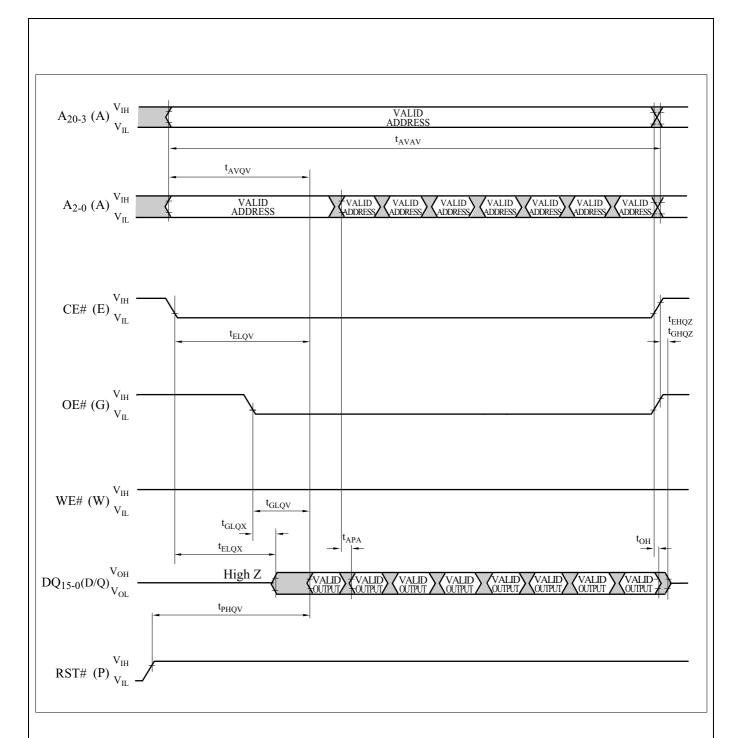
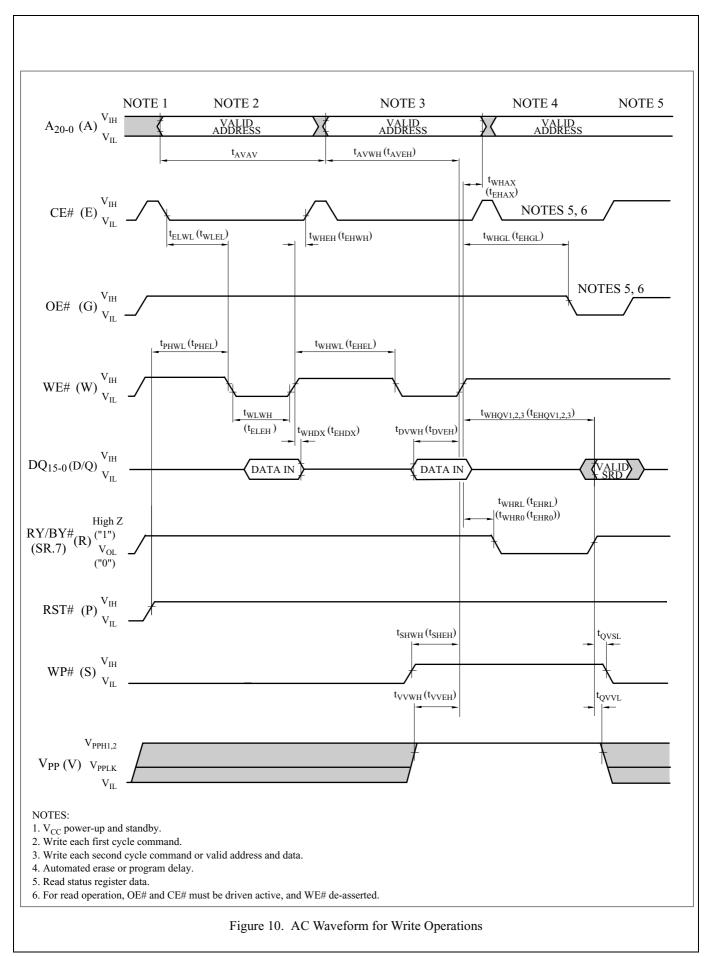


Figure 9. AC Waveform for Asynchronous 8-Word Page Mode Read Operations from Main Blocks or Parameter Blocks

1.2.5 AC Characteristics - Write Operations^{(1), (2)}

 V_{CC} =2.7V-3.6V, T_{A} =0°C to +70°C


Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Write Cycle Time		60		ns
t _{PHWL} (t _{PHEL})	RST# High Recovery to WE# (CE#) Going Low	3	150		ns
t _{ELWL} (t _{WLEL})	CE# (WE#) Setup to WE# (CE#) Going Low		0		ns
t _{WLWH} (t _{ELEH})	WE# (CE#) Pulse Width	4	45		ns
t _{DVWH} (t _{DVEH})	Data Setup to WE# (CE#) Going High	8	40		ns
t _{AVWH} (t _{AVEH})	Address Setup to WE# (CE#) Going High	8	45		ns
t _{WHEH} (t _{EHWH})	CE# (WE#) Hold from WE# (CE#) High		0		ns
t _{WHDX} (t _{EHDX})	Data Hold from WE# (CE#) High		0		ns
$t_{ m WHAX} (t_{ m EHAX})$	Address Hold from WE# (CE#) High		0		ns
t _{WHWL} (t _{EHEL})	WE# (CE#) Pulse Width High	5	15		ns
t _{SHWH} (t _{SHEH})	WP# High Setup to WE# (CE#) Going High	3	0		ns
t _{VVWH} (t _{VVEH})	V _{PP} Setup to WE# (CE#) Going High	3	200		ns
t _{WHGL} (t _{EHGL})	Write Recovery before Read		30		ns
t _{QVSL}	WP# High Hold from Valid SRD, RY/BY# High Z	3, 6	0		ns
t _{QVVL}	V _{PP} Hold from Valid SRD, RY/BY# High Z	3, 6	0		ns
t _{WHR0} (t _{EHR0})	WE# (CE#) High to SR.7 Going "0"	3, 7		t _{AVQV} + 50	ns
$t_{WHRL} (t_{EHRL})$	WE# (CE#) High to RY/BY# Going Low	3		100	ns

NOTES:

1. The timing characteristics for reading the status register during block erase, full chip erase, (page buffer) program and OTP program operations are the same as during read-only operations. Refer to AC Characteristics for read-only operations.

- 2. A write operation can be initiated and terminated with either CE# or WE#.
- 3. Sampled, not 100% tested.
- 4. Write pulse width (t_{WP}) is defined from the falling edge of CE# or WE# (whichever goes low last) to the rising edge of CE# or WE# (whichever goes high first). Hence, twp=twlwH=teleH=twleH=telwH.
- 5. Write pulse width high (t_{WPH}) is defined from the rising edge of CE# or WE# (whichever goes high first) to the falling
- edge of CE# or WE# (whichever goes low last). Hence, twpH=twHwL=teHeL=twHeL=teHwL.

 6. Vpp should be held at Vpp=VppH1/2 until determination of block erase, full chip erase, (page buffer) program or OTP program success (SR.1/3/4/5=0).
- 7. t_{WHR0} (t_{EHR0}) after the Read Query or Read Identifier Codes/OTP command=t_{AVOV}+100ns.
- 8. Refer to Table 6 for valid address and data for block erase, full chip erase, (page buffer) program, OTP program or lock bit configuration.

1.2.6 Reset Operations

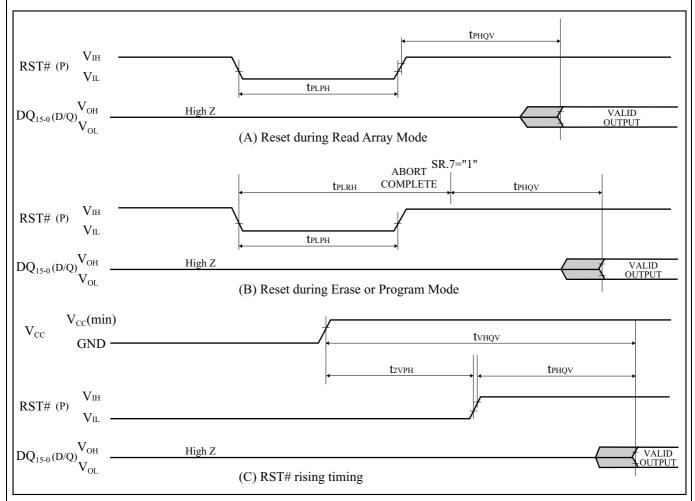


Figure 11. AC Waveform for Reset Operations

Reset AC Specifications (V_{CC} =2.7V-3.6V, T_A =0°C to +70°C)

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{PLPH}	RST# Low to Reset during Read (RST# should be low during power-up.)	1, 2, 3	100		ns
t _{PLRH}	RST# Low to Reset during Erase or Program	1, 3, 4		22	μs
t _{2VPH}	V _{CC} 2.7V to RST# High	1, 3, 5	100		ns
t_{VHQV}	V _{CC} 2.7V to Output Delay	3		1	ms

- 1. A reset time, t_{PHQV}, is required from the later of SR.7 (RY/BY#) going "1" (High Z) or RST# going high until outputs are valid. Refer to AC Characteristics Read-Only Operations for t_{PHQV}.
- 2. t_{PLPH} is <100ns the device may still reset but this is not guaranteed.
- 3. Sampled, not 100% tested.
- 4. If RST# asserted while a block erase, full chip erase, (page buffer) program or OTP program operation is not executing, the reset will complete within 100ns.
- 5. When the device power-up, holding RST# low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there.

1.2.7 Block Erase, Full Chip Erase, (Page Buffer) Program and OTP Program Performance⁽³⁾

$$V_{CC}$$
=2.7V-3.6V, T_A =0°C to +70°C

Symbol	Parameter	Notes	Page Buffer Command is		_{PP} =V _{PPI} n System		V _{PP} =V _{PPH2} (In Manufacturing)			Unit
			Used or not Used	Min.	Typ.(1)	Max. ⁽²⁾	Min.	Typ.(1)	Max. ⁽²⁾	
t_{WPB}	4K-Word Parameter Block	2	Not Used		0.05	0.3		0.04	0.12	s
WPB	Program Time	2	Used		0.03	0.12		0.02	0.06	s
twa	32K-Word Main Block	2	Not Used		0.38	2.4		0.31	1.0	s
t_{WMB}	Program Time	2	Used		0.24	1.0		0.17	0.5	S
t _{WHQV1} /	Word Program Time	2	Not Used		11	200		9	185	μs
$t_{\rm EHQV1}$	word Frogram Time	2	Used		7	100		5	90	μs
$t_{\mathrm{WHOV1}}/$ t_{EHOV1}	OTP Program Time	2	Not Used		36	400		27	185	μs
$t_{\mathrm{WHQV2}}/$ t_{EHQV2}	4K-Word Parameter Block Erase Time	2	-		0.3	4		0.2	4	s
t _{WHQV3} / t _{EHQV3}	32K-Word Main Block Erase Time	2	-		0.6	5		0.5	5	S
	Full Chip Erase Time	2			40	350		33	350	S
t _{WHRH1} / t _{EHRH1}	(Page Buffer) Program Suspend Latency Time to Read	4	-		5	10		5	10	μs
t _{WHRH2} / t _{EHRH2}	Block Erase Suspend Latency Time to Read	4	-		5	20		5	20	μs
$t_{ m ERES}$	Latency Time from Block Erase Resume Command to Block Erase Suspend Command	5	-	500			500			μs

^{1.} Typical values measured at V_{CC} =3.0V, V_{PP} =3.0V or 12V, and T_A =+25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization.

^{2.} Excludes external system-level overhead.

^{3.} Sampled, but not 100% tested.

^{4.} A latency time is required from writing suspend command (WE# or CE# going high) until SR.7 going "1" or RY/BY# going High Z.

^{5.} If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished.

2 Related Document Information⁽¹⁾

Document No.	Document Name
FUM00701	LH28F320BF series Appendix

1	International	customers	should	contact their	· local	SHARP	or d	listribution s	sales offices
1.	michianonai	Customers	Silvuiu	comact mer	iocai	SHAIN	$o_1 \iota$	nsurounon s	saics offices.

LH28F320BFXX-XXXXXX Flash MEMORY ERRATA

1. AC Characteristics

PROBLEM

The table below summarizes the AC characteristics.

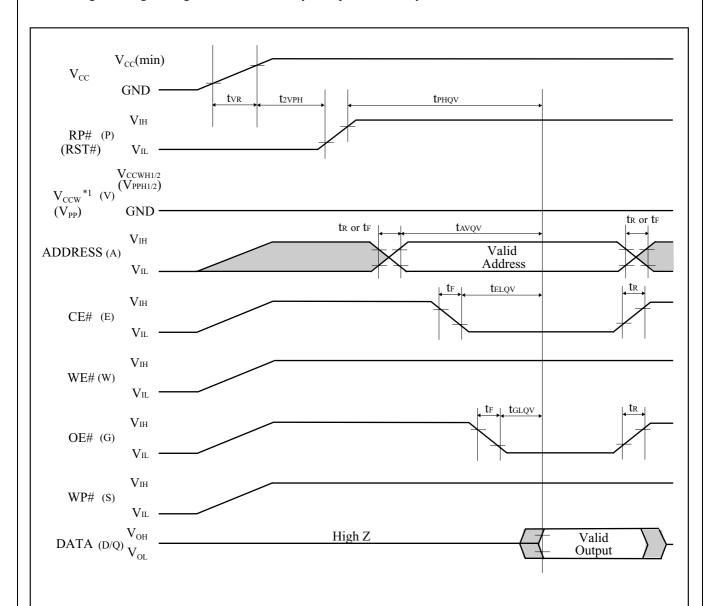
AC Characteristics - Write Operations

$$V_{CC} = 2.7 V - 3.6 V$$

Page	Symbol	Parameter		Min.	Max.	Unit
25	t _{AVAV}	Write Cycle Time		75		ns
25	t _{WLWH} (t _{ELEH})	WE# (CE#) Pulse Width	t _{AVAV} =75ns	50		ns
25	$t_{WHWL} (t_{EHEL})$	WE# (CE#) Pulse Width High		25		ns

WORKAROUND

System designers should consider these specifications.


STATUS

This is intended to be fixed in future devices.

A-1 RECOMMENDED OPERATING CONDITIONS

A-1.1 At Device Power-Up

AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly.

*1 To prevent the unwanted writes, system designers should consider the design, which applies V_{CCW} (V_{PP}) to 0V during read operations and $V_{CCWH1/2}$ ($V_{PPH1/2}$) during write or erase operations. See the application note AP-007-SW-E for details.

Figure A-1. AC Timing at Device Power-Up

For the AC specifications t_{VR} , t_R , t_F in the figure, refer to the next page. See the "ELECTRICAL SPECIFICATIONS" described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page.

A-1.1.1 Rise and Fall Time

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{VR}	V _{CC} Rise Time	1	0.5	30000	μs/V
t _R	Input Signal Rise Time	1, 2		1	μs/V
t _F	Input Signal Fall Time	1, 2		1	μs/V

- 1. Sampled, not 100% tested.
- 2. This specification is applied for not only the device power-up but also the normal operations.

A-1.2 Glitch Noises

Do not input the glitch noises which are below V_{IH} (Min.) or above V_{IL} (Max.) on address, data, reset, and control signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a).

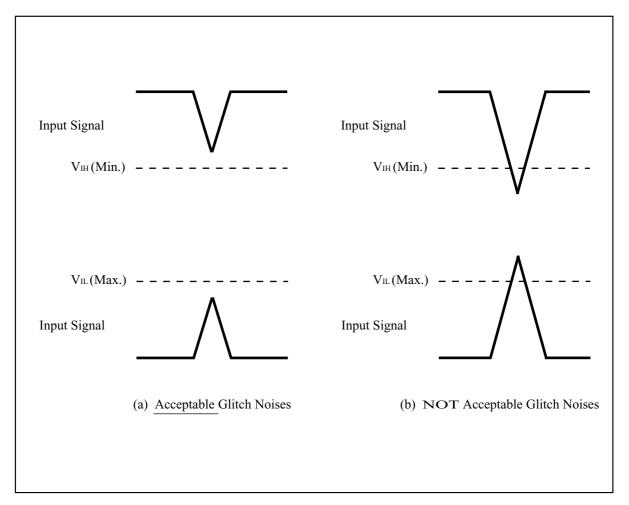


Figure A-2. Waveform for Glitch Noises

See the "DC CHARACTERISTICS" described in specifications for V_{IH} (Min.) and V_{IL} (Max.).

A-2 RELATED DOCUMENT INFORMATION⁽¹⁾

Document No.	Document Name
AP-001-SD-E	Flash Memory Family Software Drivers
AP-006-PT-E	Data Protection Method of SHARP Flash Memory
AP-007-SW-E	RP#, V _{PP} Electric Potential Switching Circuit

l. International customers should contact their local SHARP or distribution sales $lpha$
--

A-3 STATUS REGISTER READ OPERATIONS

If AC timing for reading the status register described in specifications is not satisfied, a system processor can check the status register bit SR.15 instead of SR.7 to determine when the erase or program operation has been completed.

Table A-3-1. Status Register Definition (SR.15 and SR.7)

$SR.15 = WRITE STATE MACHINE STATUS: (DQ_{15})$

- 1 = Ready in All Partitions
- 0 = Busy in Any Partition

SR.7 = WRITE STATE MACHINE STATUS FOR EACH PARTITION: (DQ₇)

- 1 = Ready in the Addressed Partition
- 0 = Busy in the Addressed Partition

NOTES:

SR.15 indicates the status of WSM (Write State Machine). If SR.15="0", erase or program operation is in progress in any partition.

SR.7 indicates the status of the partition. If SR.7="0", erase or program operation is in progress in the addressed partition. Even if the SR.7 is "1", the WSM may be occupied by the other partition.

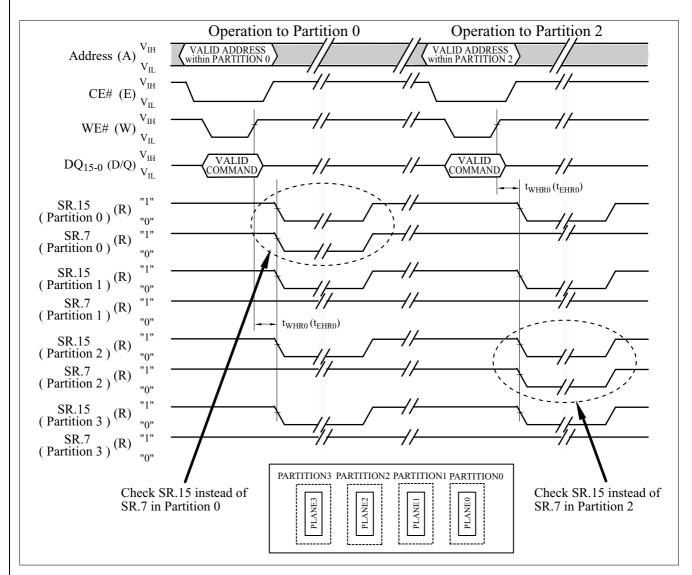


Figure A-3-1. Example of Checking the Status Register (In this example, the device contains four partitions.)