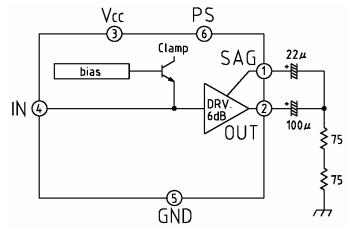
**TIGER ELECTRONIC CO.,LTD** 

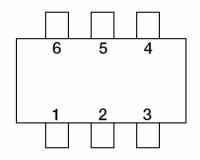
# 6dB Amplifier with 75Ω Driver MM1510

## DESCRIPTION

This IC is for video signal/chroma signal  $75\Omega$  driver, It is ideal for video signal output in devices ranging from portable digital still cameras to stationary equipment such as DVD players. The built-in amp gain on this IC is 6dB and also with input clamp, allowing support for a range of video signals, not just composite signals.


#### FEATURE

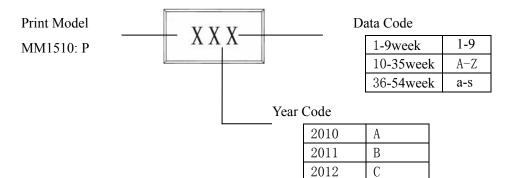
- Low power consumption achieved.
- Low power supply voltage realized.
- Frequency bandwidth without  $75\Omega$  driver: 10 MHz with  $75\Omega$  driver: 7 MHz
- Cross talk 70dB When 4.43Mhz
- With SAG measures  $pin(75\Omega \text{ driver and } Y/C \text{ mix driver})$


# APPLICATIONS

- TV
- VTR
- Video camera
- Digital still camera
- Other visual equipment

#### **BLOCK DIAGRAM**




#### **PIN ASSIGNMENT**



| 1 | SAG |
|---|-----|
| 2 | OUT |
| 3 | Vcc |
| 4 | IN  |
| 5 | GND |
| 6 | PS  |

SOT23-6

#### **MARKING INFORMATION:**



#### ABSOLUTE MAXIMUM RATING (Tamb=25°C)

| (                     | Symbol                | Value          | Unit    |    |  |
|-----------------------|-----------------------|----------------|---------|----|--|
| Power supply vol      | Vcc                   | 15             | V       |    |  |
| Allowable loss        | When alone            | р              | 200     | mW |  |
|                       | When mounted on board | P <sub>D</sub> | 350 *   |    |  |
| Operating temperature |                       | Tstg           | -30~+75 | °C |  |
| Storage temperatu     | Topr                  | -40~+125       | °C      |    |  |

\* Board size 100mm×100mm t=1.6s

#### **RECOMMENDED OPERATING CONDITIONS**

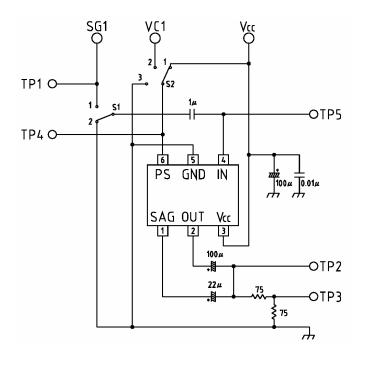
| Characteristics      | Symbol | Min. | Typ. | Max | Unit |
|----------------------|--------|------|------|-----|------|
| Power supply voltage | Vcc    | 4.5  |      | 13  | V    |

# **ELECTRICAL CHARACTERISTICS**

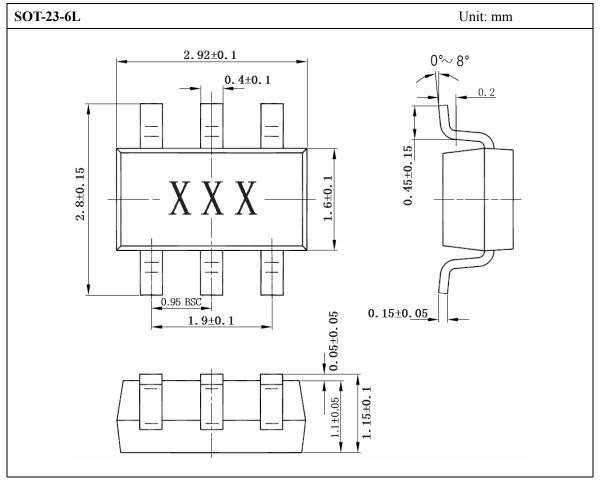
(Unless otherwise specified, Vcc=5V,Ta=25 $^\circ\!\!\mathrm{C}$ )

| Characteristics            | Symbol           | Test conditions                 | Min. | Typ. | Max  | Unit |
|----------------------------|------------------|---------------------------------|------|------|------|------|
| Consumption current        | I <sub>CC1</sub> | Refer to measurement procedures |      | 6.4  | 8.3  | mA   |
| Current consumption for PS | I <sub>CC2</sub> | Refer to measurement procedures |      | 20   | 30   | μA   |
| PS input voltage L         | $V_{PSL}$        | Refer to measurement procedures |      |      | 0.3  | V    |
| PS input voltage H         | $V_{PSH}$        | Refer to measurement procedures | 1.8  |      |      | V    |
| Input pin voltage          | $V_{IN}$         | No-signal,no-load               | 1.15 | 1.35 | 1.55 | V    |
| Output pin voltage         | VOUT             | No-signal,no-load               |      | 1.15 |      | V    |
| Voltage gain               | Gv               | Refer to measurement procedures | 5.5  | 6.0  | 6.5  | dB   |
| Frequency characteristic   | fc               | Refer to measurement procedures | - 1  | 0    | +1   | dB   |
| Differential gain          | D <sub>G</sub>   | Refer to measurement procedures | -3   | 0    | +3   | %    |
| Differential phase         | D <sub>P</sub>   | Refer to measurement procedures | -3   | 0    | +3   | deg  |
| Output dynamic range       | VD               | Refer to measurement procedures | 2.6  | 3.0  |      | V    |

## **MEASUREMENT PROCEDURES**


Switch Status

| Item                          | Symbol            | Switch<br>status |                | Item                        | Symbol  | Switch<br>status |    |
|-------------------------------|-------------------|------------------|----------------|-----------------------------|---------|------------------|----|
|                               | Symoor            | <b>S</b> 1       | S2             |                             | Synteer | S1               | S2 |
| Consumption current           | I <sub>CC1</sub>  | 2                | 1 Voltage gain |                             | Gv      | 1                | 1  |
| Consumption current<br>for PS | I <sub>CC2</sub>  | 2                | 3              | Frequency<br>characteristic | fc      | 1                | 1  |
| 1PS input voltage L           | $V_{IL}$          | 2 2              |                | Differential gain           | $D_{G}$ | 1                | 1  |
| PS input voltage H            | $V_{\mathrm{IH}}$ |                  |                | Output dynamic range        | VD      | 1                | 1  |
| Differential phase            | D <sub>P</sub>    | 1                | 1              |                             |         |                  |    |


#### **Measurement Procedures**

| Consumption current for PS          | I <sub>CC1</sub> | Connect a DC ammeter to the VCC pin and measure.                                                                                                                                                                                                                                                                                      |
|-------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Consumption current for PS          | I <sub>CC2</sub> | Connect a DC ammeter to the VCC pin and measure.                                                                                                                                                                                                                                                                                      |
| PS input voltage                    | VI               | Connect a DC ammeter to the VCC pin. Gradually<br>lower from VC1 =VCC. VC1 voltage when<br>consumption current is reduced from ICC1 to<br>110% of ICC2 is VIL. Gradually raise from VC1 =<br>0V. VC1 voltage when consumption current<br>increases from ICC2 to 90% of ICC1 is VIH.<br>From here on, short the ammeter when using it. |
| Voltage gain                        | $G_{\rm V}$      | Input a 1.0VP-P, 100kHz sine wave to SG1. If TP1 voltage is V1 and TP2 voltage is V2, find GV by the following formula: $GV = 20LOG (V2/V1) dB$                                                                                                                                                                                       |
| Frequency characteristic            | fc               | In the above GV measurement, if TP2 voltage at 7MHz is V3, find fc by the following formula. $fc = 20LOG (V3/V2) dB$                                                                                                                                                                                                                  |
| Differential gain I                 |                  | Input a 1.0VP-P staircase to SG1 and measure differential gain at TP2. APL = $10 \sim 90\%$                                                                                                                                                                                                                                           |
| Differential phase                  | D <sub>P</sub>   | The same as for DG, but measure differential phase.                                                                                                                                                                                                                                                                                   |
| Output dynamic range V <sub>D</sub> |                  | Input a 100kHz sine wave to SG1. Measure DR, the maximum amplitude under THD 1%, at TP2.                                                                                                                                                                                                                                              |

## **TEST CIRCUIT**



## **OUTLINE DRAWING**

