SIEMENS

ICs for Communications

High Voltage Subscriber Line IC
HV-SLIC
PEB/F 4065 Version 3.0

Data Sheet 03.98
DS 1

PEB/F 4065
Revision History:
Current Version: 03.98
Previous Version: 01.96

$\begin{array}{l}\text { Page } \\ \text { (in previous }\end{array}$	$\begin{array}{l}\text { Page } \\ \text { (in current }\end{array}$	Subjects (major changes since last revision)

Version)	Version)

SLICOF ${ }^{\circledR}$ is a registered trademark of SIEMENS AG.

For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide: see our webpage at http:/ /www.siemens.de/Semiconductor/address/address.htm.

Edition 03.98

Published by Siemens AG,
HL SP,
Balanstraße 73,
81541 München
(C) Siemens AG 1998.

All Rights Reserved.

Attention please!

As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies.
The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved.
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group.
Siemens AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components ${ }^{1}$ of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems ${ }^{2}$ with the express written approval of the Semiconductor Group of Siemens AG.
1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.
2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.
Table of Contents Page
1 Overview 4
1.1 Features 4
1.2 Functional Description 5
1.3 Pin Description 9
2 Electrical Characteristics 11
2.1 Absolute Maximum Ratings 11
2.2 Operating Range 12
2.3 Thermal Resistances 12
2.4 Electrical Parameters 13
2.5 AC-Characteristics 18
3 Package Outlines 29

SIEMENS

High Voltage Subscriber Line IC HV-SLIC

Version 1.1 SPT

1 Overview

The High Voltage Subscriber Line IC PEB 4065 is a rugged and reliable interface between the telephone line and the SLICOFI, a low voltage Subscriber Line Interface and Codec Filter IC. It is fabricated in a Smart Power Technology offering a breakthrough voltage of at least 170 V .
The PEB 4065 provides battery feeding between
 -24 V and -80 V and internal ringing injection with a differential ring voltage up to 85 Vrms . In order to achieve these high amplitudes an auxiliary positive battery voltage is used during ringing. This voltage can also be applied in order to drive very long telephone lines.
The SLIC is designed for a voltage feeding - current sensing line interface concept and provides sensing of transversal and longitudinal current on both wires.
A power-down mode offers reduced power consumption at full functionality; in the power denial mode the device is switched off turning the line outputs to a high impedance state.

1.1 Features

- High voltage line feeding
- Internal ring and metering signal injection
- Sensing of transversal and longitudinal line current
- Reliable 170 V Smart Power Technology
- Battery voltage - 24 V ... - 80 V
- Boosted battery mode for long telephone lines and up to 85 Vrms balanced ringing
- Polarity reversal
- Small P-DSO-20-5 power package

Type	Ordering Code	Package
PEB/F 4065	on request	P-DSO-20-5

1.2 Functional Description

Figure 1 Block Diagram
The PEB 4065 supports AC and DC control loops based on feeding a voltage $V_{\text {ab }}$ to the line and sensing the transversal line current I_{ab} (Figure 2).
It converts a unipolar input voltage $V_{2 \mathrm{w}}$ into a differential output voltage $V_{\text {ab }}$ with an AC receiving gain of

$$
|\mathrm{Gr}|=V_{\mathrm{abAC}} / V_{2 \mathrm{WAC}}=40 .
$$

This is accomplished by converting the input voltage to a current which is used to transpose the low voltage signals of the interface to the high voltage line feeding section. This current is reconverted to two voltages of opposite phase which are referenced to the positive and negative supply voltage, respectively. Thus the differential DC line-voltage in all normal polarity modes except ringing is related to the input voltage by

$$
\begin{aligned}
& V_{\mathrm{abDC}}=V_{\mathrm{BAT}}-V_{\mathrm{HINT}}+V_{\text {fix }}-40 \times V_{\text {2WDC }} \\
& V_{\mathrm{BAT}} \text { negative battery voltage } \\
& V_{\text {HINT }} \text { internal positive supply voltage } \\
& V_{\text {fix }} \quad \text { internal voltage drop of supply filter (appr. } 2 \mathrm{~V} \text {). }
\end{aligned}
$$

Depending on the operation mode, $V_{\text {HINT }}$ is switched either to $V_{\mathrm{H}}\left(V_{\mathrm{HINT}}=V_{\mathrm{H}}-1 \mathrm{~V}\right)$ or to BGND ($V_{\text {HINT }}=-0.5 \mathrm{~V}$) via the supply switch.

Overview

Controlled by C 2 , the polarity of V_{ab} can be reversed and the DC-line-voltage then is

$$
V_{\mathrm{abDC}}=-\left(V_{\mathrm{BAT}}-V_{\mathrm{HINT}}+V_{\mathrm{fix}}-40 \times V_{2 \mathrm{WDC}}\right) .
$$

The transversal and longitudinal currents are measured in the buffers and scaled images are provided at the I_{T} and I_{L} pin, respectively:

$$
I_{\mathrm{T}}=\left(I_{\mathrm{a}}+I_{\mathrm{b}}\right) / 100=I_{\mathrm{ab}} / 50 \quad I_{\mathrm{L}}=-\left(I_{\mathrm{a}}-I_{\mathrm{b}}\right) / 100=-I_{\text {Long }} / 50 .
$$

The PEB 4065 operates in four modes controlled by ternary logic signals at the C1 and C2 input. Additionally, in the active modes a polarity reversal of the output voltage can be programmed (see Table 1).

Power down (PD): Power consumption is reduced by decreasing bias current levels. All functions operate at some small performance reductions. In this mode each of the line outputs can be programmed to show high impedance. HI b switches off the TIP buffer, while the current through the RING output still can be measured by I_{T} or I_{L}. Programming HI a reverses the polarity and switches off the RING buffer.

Conversation (CONV): This is the regular transmit and receive mode for voiceband and teletax. The line driving section is operated between V_{BAT} and BGND.

Boosted battery (BB): In order to drive longer telephone lines an auxiliary positive battery voltage V_{H} is used, enabling a higher DC-voltage across the line.

Ringing (RING): This mode also uses the auxiliary voltage V_{H} in order to provide a balanced ring signal of up to 85 Vrms . The ring tone without any DC-component has to be switched to the $V_{2 w}$ input. Internally a DC-voltage is superimposed. This voltage is proportional to the total supply voltage $V_{\mathrm{H}}-V_{\mathrm{BAT}}$ and amounts to typically 23 V at $V_{\mathrm{H}}-V_{\mathrm{BAT}}=120 \mathrm{~V}$. The current sensing functions are available for ring trip detection.

The Power Denial (PDN) state is intended to reduce power consumption of the linecard to a minimum: the PEB 4065 is switched off completely by connecting the PDN pin to V_{DD}, no operation is available.

With respect to the output impedance of TIP and RING two PDN-modes have to be distinguished. A resistive one (PDNR) provides a connection of $15 \mathrm{k} \Omega$ each from TIP to BGND and RING to $V_{\text {BAT }}$, respectively, while the outputs of the buffers show high impedance (Figure 3).
The other mode (PDNH) offers high impedance at TIP and RING. It is entered when, in addition to connecting PDN to V_{DD}, the programming inputs $\mathrm{C} 1, \mathrm{C} 2$ are tied to V_{IL}. All other combinations of $\mathrm{C} 1, \mathrm{C} 2$ yield the resistive power denial state PDNR.

Table 1 Programming of Operation Modes

Figure 2 Definition of Output Current Directions

Figure 3 TIP and RING Impedance in Power Denial

1.3 Pin Description

Figure 4 Pin Configuration (top view)
Table 2 Pin Definition and Functions

Pin No.	Symbol	Type Input (I) Output (O)	Function
$1,10,11$, 20	$V_{\text {BAT }}$	Supply	Negative battery supply voltage $(-24 \ldots-80 \mathrm{~V})$, referred to BGND
2	RING	O	Subscriber loop connection, negative wire in normal polarity; direction of positive I_{a} current out of this pin
3	TIP	O	Subscriber loop connection, more positive wire in normal polarity; direction of positive I_{b} current into this pin
4	-	N.C.	Not connected
5	Supply	Auxiliary positive battery supply voltage $(0 \ldots+90 \mathrm{~V})$ used in ringing and boosted battery mode	
6	$V_{\text {DD }}$	Supply	Positive supply voltage (+ 5 V$),$ referred to AGND
7	Supply	Battery ground: TIP, RING, $V_{\text {BAT }}$ and V_{H} refer to this pin	

Overview

Table 2 Pin Definition and Functions (cont'd)

Pin No.	Symbol	Type Input (I) Output (O)	Function
8	$V_{2 \mathrm{~W}}$	I	Two wire input voltage; multiplied by + 20 and -20, respectively, it appears at the TIP and RING outputs
9	V_{BIM}	O	Down scaled image of the total supply voltage $\left(V_{\mathrm{HINT}}-V_{\mathrm{BAT}}\right) ;$ scaling factor 40
12	PDN	I/O	Power denial, reference output when connected to ground via a resistor, switches the device off when connected to V_{DD}
13,16	AGND	Supply	Analog ground: $V_{\mathrm{DD}}, V_{\text {SS }}$ and all signal and control pins with exception of TIP and RING refer to AGND
14	C1	I/O	Ternary logic input, controlling the operation mode; in case of thermal overload this pin sinks a current of typ. 550 $\mu \mathrm{A}$
15	C 2	I	Ternary logic input, controlling the operation mode

2 Electrical Characteristics

2.1 Absolute Maximum Ratings

Table 3

Parameter	Symbol	Limit Values		Unit	Condition
		min.	max.		
Battery voltage	$V_{\text {BAT }}$	-90	0.5	V	referred to BGND
Auxiliary supply voltage	$V_{\text {H }}$	-0.5	90	V	referred to BGND
Total battery supply voltage, continuously	$V_{\mathrm{H}}-V_{\text {BAT }}$	-	160	V	-
Total battery supply voltage, pulse < 1 ms	$V_{\mathrm{H}}-V_{\text {BAT }}$	-	170	V	-
$V_{\text {DD }}$ supply voltage	$V_{\text {DD }}$	-0.4	5.5	V	referred to AGND
$V_{\text {SS }}$ supply voltage	$V_{\text {SS }}$	-5.5	0.4	V	referred to AGND
Ground voltage difference	$V_{\mathrm{BGND}}-V_{\text {AGND }}$	-0.5	0.5	V	-
Junction temperature	T_{j}	-	150	${ }^{\circ} \mathrm{C}$	-
Input voltages	$V_{2 \mathrm{~W}}, V_{\mathrm{C} 1}, V_{\mathrm{C} 2}$	$V_{\text {SS }}-0.3$	$V_{D D}+0.3$	V	-
Voltages on current outputs	$V_{\text {IT }}, V_{\text {IL }}$	-3.5	$V_{D D}+0.3$	V	-
Voltages on PDN	$V_{\text {PDN }}$	-0.3	$V_{D D}+0.3$	V	-
RING, TIP voltages, continuously	$V_{\mathrm{a}}, V_{\mathrm{b}}$	$V_{\text {BAT }}-0.3$	$V_{\mathrm{H}}+0.3$	V	-
RING, TIP voltages, pulse $<1 \mathrm{~ms}^{1)}$	$V_{\mathrm{a}}, V_{\mathrm{b}}$	$V_{\text {BAT }}-10$	$V_{\mathrm{H}}+10$	V	-
RING, TIP voltages, pulse $<1 \mu \mathrm{~s}^{1)}$	$V_{\mathrm{a}}, V_{\mathrm{b}}$	$V_{\text {BAT }}-30$	$V_{\mathrm{H}}+30$	V	-
ESD-voltage, all pins	-	-	1	kV	Human body model

[^0]Note: Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

Electrical Characteristics

2.2 Operating Range

Table 4

Parameter	Symbol	Limit Values		Unit	Condition
		min.	max.		
Battery voltage	V_{BAT}	-80	-24	V	referred to BGND
Auxiliary supply voltage	V_{H}	5	85	V	referred to BGND
Total battery supply voltage	$V_{\mathrm{H}}-V_{\mathrm{BAT}}$	-	150	V	-
V_{DD} supply voltage	V_{DD}	4.75	5.25	V	referred to AGND
V_{SS} supply voltage	V_{SS}	-5.25	-4.75	V	referred to AGND
Ground voltage difference	-	-0.3	0.3	V	-
Ambient temperature	T_{amb}	0 -40	70 8	${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$	PEB 4065 PEF 4065
Voltage compliance $I_{\mathrm{T}}, I_{\mathrm{L}}$	$V_{\mathrm{IT}}, V_{\mathrm{IL}}$	-3	3	V	-
Input range $V_{2 \mathrm{~W}}$	$V_{2 \mathrm{~W}}$	-3.2	+3.2	V	RING
		-3.2	0	V	CONV, PD, BB

Note: In the operating range the functions given in the circuit description are fulfilled.

2.3 Thermal Resistances

Table 5

Parameter	Symbol	Limit Values	Unit	Condition
Junction to case	$R_{\mathrm{th}, \mathrm{j}}$	5	K/W	-
Junction to ambient	$R_{\mathrm{th}, \mathrm{j}}$	20	K/W	with heatsink, typ.

2.4 Electrical Parameters

$\mathrm{Min} /$ max values are valid within the full operating range. If PEB- and PEF-specifications are different, both values can be found in the respective column.
Testing is performed according to the test figures with external circuitry as depicted in Figure 4. Unless otherwise stated, load impedance $R_{\mathrm{L}}=600 \Omega$. Test temperatures are 25 and $70^{\circ} \mathrm{C}$ for PEB, $-40,25$ and $85^{\circ} \mathrm{C}$ for PEF-type (without heatsink). DC line voltages refer to $V_{\mathrm{BAT}}=-70 \mathrm{~V}$ and $V_{\mathrm{H}}=+60 \mathrm{~V}$.

Table 6 Supply Currents and Power Dissipation

No.	Parameter	Symbol	Mode	Limit Values			Unit	Test Fig.
				min.	typ.	max. PEB/PEF		

Power Denial

1.	$V_{\text {DD }}$ current	$I_{\text {DD }}$	PDNH, PDNR	-	50	120/150	$\mu \mathrm{A}$	1
2.	$V_{\text {SS }}$ current	$I_{\text {Ss }}$	PDNH PDNR	-	$\begin{aligned} & \hline 50 \\ & 150 \end{aligned}$	$\begin{aligned} & \hline 120 / 150 \\ & 250 / 300 \end{aligned}$	$\mu \mathrm{A}$	1
3.	$V_{\text {BAT }}$ current	$I_{\text {BAT }}$	PDNH PDNR	-	$\begin{aligned} & \hline 10 \\ & 50 \end{aligned}$	$\begin{array}{\|l\|} \hline 30 \\ 120 \end{array}$	$\mu \mathrm{A}$	1
4.	V_{H} current	$I_{\text {H }}$	PDNH, PDNR	-	1	10	$\mu \mathrm{A}$	1
Power Down							$V_{2 w}=-0.5 \mathrm{~V}^{11}$	
5.	$V_{\text {DD }}$ current	$I_{\text {DD }}$	PD		0.5	1.0	mA	1
6.	$V_{\text {SS }}$ current	$I_{\text {SS }}$	PD	-	0.3	0.4	mA	1
7.	$V_{\text {BAT }}$ current	$I_{\text {BAT }}$	PD	-	3.3	4.3/4.4	mA	1
8.	$V_{\text {H }}$ current	$I_{\text {H }}$	PD	-	1	10	$\mu \mathrm{A}$	1
9.	Quiescent power dissipation	P_{Q}	PD	-	-	315	mW	1
Conversation, Normal and Reverse Polarity							$V_{2 \mathrm{w}}=-0.5 \mathrm{~V}^{1)}$	
10.	$V_{\text {DD }}$ current	$I_{\text {DD }}$	CONV	-	0.8	1.0/1.1	mA	1
11.	$V_{\text {SS }}$ current	$I_{\text {SS }}$	CONV	-	0.4	0.5/0.6	mA	1
12.	$V_{\text {BAT }}$ current	$I_{\text {BAT }}$	CONV	-	4.0	5.8/5.9	mA	1
13.	$V_{\text {H }}$ current	$I_{\text {H }}$	CONV	-	1	10	$\mu \mathrm{A}$	1
14.	Quiescent power dissipation	P_{Q}	CONV	-	-	420	mW	1

Electrical Characteristics

Table 6 Supply Currents and Power Dissipation (cont'd)

No.	Parameter	Symbol	Mode	Limit Values			Unit	Test Fig.
				min.	typ.	max. PEB/PEF		
Boosted Battery Mode Normal and Reverse Polarity							$V_{2 W}=-0.5 \mathrm{~V}^{1)}$	
15.	$V_{\text {DD }}$ current	$I_{\text {DD }}$	BB	-	0.8	1.0	mA	1
16.	$V_{\text {SS }}$ current	$I_{\text {SS }}$	BB	-	1.7	2.0	mA	1
17.	$V_{\text {BAT }}$ current	$I_{\text {BAT }}$	BB	-	4.0	6.1/6.2	mA	1
18.	$V_{\text {H }}$ current	$I_{\text {H }}$	BB	-	3.0	4.8	mA	1
19.	Quiescent power dissipation	P_{Q}	BB	-	-	740	mW	1
Ringing Mode Normal and Reverse Polarity							$V_{2 w}=0 \mathrm{~V}$	
20.	$V_{\text {DD }}$ current	$I_{\text {DD }}$	RING	-	2.3	2.6	mA	1
21.	$V_{\text {SS }}$ current	$I_{\text {SS }}$	RING	-	2.8	3.2	mA	1
22.	$V_{\text {BAT }}$ current	$I_{\text {BAT }}$	RING	-	8.8	12/12.5	mA	1
23.	V_{H} current	$I_{\text {H }}$	RING	-	7.1	10	mA	1
24.	Quiescent power dissipation	P_{Q}	RING	-	1300	1500	mW	1

[^1]Electrical Characteristics
Table 7 DC-Characteristics

No.	Parameter	Symbol	Mode	Limit Values			Unit	Test Fig.	Test Condition
				min. PEB/ PEF	typ.	max. PEB/ PEF			

Line Termination TIP, RING

25.	Power down DC line voltage	$\left\|V_{\mathrm{ab}, \mathrm{Dc}}\right\|$	$\begin{aligned} & \mathrm{PD} \\ & \mathrm{PD} \end{aligned}$	$\begin{aligned} & 46 \\ & -14 \end{aligned}$	49 $\mid-11$	$\begin{gathered} 52 \\ -8 \end{gathered}$	V V	2	$V_{2 \mathrm{~W}}=-0.5 \mathrm{~V}$ $V_{2 \mathrm{w}}=-2 \mathrm{~V}$
27.	Conversation DC line voltage	$\left\|V_{\mathrm{ab}, \mathrm{cc}}\right\|$	CONV	65	66.5	68.5	V	2	$V_{2 \mathrm{~W}}=0 \mathrm{~V}$
28.				46.6			V		$V_{2 \mathrm{~W}}=-0.5 \mathrm{~V}$
29.			CONV	-14	-12.2	-10.4	V		$V_{2 \mathrm{~W}}=-2 \mathrm{~V}$
30.	Ringing DC line voltage	$\left\|V_{\mathrm{ab}, \mathrm{Dc}}\right\|$	RING	22.1	25	27.7	V	2	$V_{2 W}=0 \mathrm{~V}$
31.	Output current limit	$\left\|I_{\mathrm{a}, \text { max }}\right\|$, $\left\|I_{\mathrm{b}, \max }\right\|$	PD others	$\begin{array}{l\|l\|} \hline 85 / 80 \\ 90 / 85 \end{array}$	-	$\begin{aligned} & \hline 130 \\ & 130 / \\ & 135 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	3	$\begin{aligned} & V_{2 \mathrm{w}}=-0.5 \mathrm{~V} \\ & V_{\mathrm{a}}, V_{\mathrm{b}} \text { acc. to } \\ & \text { Test Figure } 3 \end{aligned}$
32.	Loop open resistance TIP to BGND	R_{TG}	PDNR	$12 / 11$	15	18/19	k Ω	9	$I_{\mathrm{b}}=2 \mathrm{~mA}$
33.	Loop open resistance RING to $V_{\text {BAT }}$	$R_{\text {RB }}$	PDNR	12/11	15	18/19	k Ω		$I_{\mathrm{a}}=2 \mathrm{~mA}$
34.	Power denial output leakage current	$I_{\text {Leak,a }}$	PDNH	-30	-	30	$\mu \mathrm{A}$	-	$V_{\mathrm{BAT}}<V_{\mathrm{a}}<V_{\mathrm{H}}$
35.					-	30	$\mu \mathrm{A}$		$V_{\text {BAT }}<V_{\mathrm{a}}<V_{\mathrm{H}}$
36.	High impedance output leakage current	$I_{\text {Leak,a }}$	HI a	-30	-	30	$\mu \mathrm{A}$	-	$V_{\mathrm{BAT}}<V_{\mathrm{a}}<V_{\mathrm{H}-3}$
37.		$I_{\text {eaak,b }}$	HI b	-30	-	30	$\mu \mathrm{A}$		$V_{\text {BAT }}<V_{\mathrm{b}}<V_{\mathrm{H}-3}$

Table 7 DC-Characteristics (cont'd)

No.	Parameter	Symbol	Mode	Limit Values			Unit	Test Fig.	Test Condition
				min. PEB/ PEF	typ.	max. PEB/ PEF			

Reference Voltage Outputs PDN, $V_{\text {BIM }}$

38.	Output voltage on PDN	$V_{\text {ref }}$	all	1.15	1.25	1.35	V	1	-
39.	Battery image voltage	$V_{\text {BIM }}$	CONV, PD	-1.75	-1.7	-1.65	V	1	-
40.		BB, RING	-3.25	-3.18	-3.1	V			

Two-wire Input $V_{2 w}$

41.	Input current	$I_{2 \mathrm{~W}}$	all	-30	-	30	$\mu \mathrm{~A}$	-	$-3.2 \mathrm{~V}<V_{2 \mathrm{~W}}<3.2 \mathrm{~V}$
42.	Input capacitance	-	-	-	-	20	pF	-	-

43.	I_{T} output current	$\left\|I_{T}\right\|$	PD, CONV		-	15	$\mu \mathrm{A}$	2	$I_{\mathrm{a}}=I_{\mathrm{b}}=0$
44.			PD, CONV	380		420	$\mu \mathrm{A}$		$I_{\mathrm{a}}=I_{\mathrm{b}}=20 \mathrm{~mA}^{1)}$
45.			CONV	0.95		1.05	mA		$I_{\mathrm{a}}=I_{\mathrm{b}}=50 \mathrm{~mA}^{1)}$
46.			RING			20	$\mu \mathrm{A}$		$I_{\mathrm{a}}=I_{\mathrm{b}}=0$
47.	I_{L} output current	$\left\|I_{L}\right\|$	PD, CONV	-	-	30	$\mu \mathrm{A}$	2	$I_{\mathrm{a}}=I_{\mathrm{b}}=0$
48.			PD, CONV			30	$\mu \mathrm{A}$		$I_{\mathrm{a}}=I_{\mathrm{b}}=20 \mathrm{~mA}^{1)}$
49.			PD, CONV	65		135	$\mu \mathrm{A}$		$\begin{aligned} & I_{\mathrm{a}}=15 \mathrm{~mA}, \\ & I_{\mathrm{b}}=25 \mathrm{~mA} \end{aligned}$
50.			CONV	180		320	$\mu \mathrm{A}$		$\begin{aligned} & I_{\mathrm{a}}=37.5 \mathrm{~mA}, \\ & I_{\mathrm{b}}=62.5 \mathrm{~mA} \end{aligned}$

Electrical Characteristics

Table 7 DC-Characteristics (cont'd)

No.	Parameter	Symbol	Mode	Limit Values			Unit	Test Fig.	Test Condition
				min. PEB/ PEF	typ.	max. PEB/ PEF			

Control Inputs C1, C2

51.	H-input voltage	V_{IH}	all	2	-	-	V	-	-
52.	Z-input voltage	V_{IZ}	all	-0.8	-	0.8	V	-	-
53.	L-input voltage	V_{IL}	all	-	-	-2	V	-	-
54.	Input leakage current	$I_{\text {Leak }}$	all	-5	-	5	$\mu \mathrm{~A}$	-	$-5 \mathrm{~V}<V_{\mathrm{C} 1(2)}<+5 \mathrm{~V}$
55.	Thermal overload current C 1	$I_{\text {therm }}$	all	500	550	-	$\mu \mathrm{A}$	-	$V_{\mathrm{C} 1}=-3.2 \mathrm{~V}$
56.	Switching Temperature (guaranteed by design)	$T_{\text {joff }}$ $T_{\text {jon }}$	all all	-	-	165	-	${ }^{\circ} \mathrm{C}$	
${ }^{\circ} \mathrm{C}$	-	-							

${ }^{1)}$ Polarity of I_{a} and I_{b} is reversed for measurement in reverse polarity mode
Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_{A}=25^{\circ} \mathrm{C}$ and the given supply voltage.

Electrical Characteristics

2.5 AC-Characteristics

(Normal and reverse polarity unless otherwise stated)

Table 8

No.	Parameter	Symbol	Mode	Limit Values			Unit	$\begin{array}{\|l\|} \hline \text { Test } \\ \text { Fig. } \end{array}$	Test Condition
				min.	typ.	$\begin{array}{\|l\|} \hline \text { max. } \\ \text { PEB/ } \\ \text { PEF } \end{array}$			

Line Termination TIP, RING

57. 58.	Receive gain	Gr	CONV, BB CONV	$\begin{array}{\|l\|} \hline 31.92 \\ 31.88 \\ \hline \end{array}$	$\begin{aligned} & 32.04 \\ & 32.04 \end{aligned}$	$\begin{array}{\|l} 32.16 \\ 32.2 \\ \hline \end{array}$	dB dB	4	$\begin{aligned} & V_{2 \mathrm{~W}, \mathrm{AC}}=50 \mathrm{mVrms} \\ & f=1015 \mathrm{~Hz} \\ & I_{\mathrm{ab}}=20 \mathrm{~mA} \\ & \\ & I_{\mathrm{ab}}=50 \mathrm{~mA} \end{aligned}$
59.	Gain flatness (guaranteed by design)	dGr	CONV, BB	-0.05	-	0.05	dB	-	$\begin{aligned} & 300 \mathrm{~Hz}<f<3400 \mathrm{~Hz} \\ & V_{2 \mathrm{~W}, \mathrm{AC}}=50 \mathrm{mVrms} \end{aligned}$
60.	Gain tracking (guaranteed by design)	dGr	CONV	-0.2	-	0.2	dB	-	$\begin{aligned} & 3 \mathrm{dBm0}>V_{\mathrm{ab}}> \\ & -20 \mathrm{dBm0} \\ & f=1015 \mathrm{~Hz} \end{aligned}$
61.	Total harmonic distortion V_{ab}	THD	CONV	-	-	0.3	\%	4	$\begin{aligned} & V_{2 \mathrm{WW}, \mathrm{AC}}=50 \mathrm{mVrms} \\ & f=1015 \mathrm{~Hz} \\ & I_{\mathrm{ab}}=20 \mathrm{~mA} \\ & \hline \end{aligned}$
62. 63. 64.	Teletax distortion	THDTTX	CONV			$\begin{aligned} & 3 \\ & 3 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \% \end{aligned}$	5	$\begin{aligned} & \hline f=16 \mathrm{kHz} \\ & R_{\mathrm{L}}=200 \Omega \\ & I_{\mathrm{ab}}=50 \mathrm{~mA} \\ & V_{\mathrm{ab}, \mathrm{AC}}=2 \mathrm{Vrms} \\ & V_{\mathrm{ab}, \mathrm{AC}}=5 \mathrm{Vrms} \\ & I_{\mathrm{ab}}=0 \mathrm{~mA}, \\ & V_{\mathrm{ab}}=55 \mathrm{~V} \\ & V_{\mathrm{ab}, \mathrm{AC}}=2 \mathrm{Vrms} \\ & \hline \end{aligned}$
65.	Psophometric noise	$N_{\mathrm{P}}, V_{\mathrm{ab}}$	CONV	-	-	-75	dBmp	4	$I_{\mathrm{ab}}=30 \mathrm{~mA}$
66.	Longitudinal to transversal rejection ratio $V_{\text {long }} / V_{\text {ab }}$	LTRR	CONV	61/58	-	-	dB	6	$\begin{aligned} & V_{\text {long }}=3 \mathrm{Vrms} \\ & 300 \mathrm{~Hz}<f<3.4 \mathrm{kHz} \\ & I_{\mathrm{ab}}=30 \mathrm{~mA} \end{aligned}$
67.	Transversal to longitudinal rejection ratio $V_{\mathrm{ab}} / V_{\text {long }}$	TLRR	CONV	50	-	-	dB	7	$\begin{aligned} & V_{2 \mathrm{~W}, \mathrm{AC}}=150 \mathrm{mVrms} \\ & 300 \mathrm{~Hz}<f<3.4 \mathrm{kHz} \\ & I_{\mathrm{ab}}=30 \mathrm{~mA} \end{aligned}$

Table 8 (cont'd)

No.	Parameter	Symbol	Mode	Limit Values			Unit	Test Fig.	Test Condition
				min.	typ.	max. PEB/ PEF			
	Power supply rejection ratio	PSRR	$\begin{array}{\|l\|} \hline \text { CONV, } \\ \mathrm{BB} \\ \mathrm{PD} \end{array}$	33	40			4	$\begin{aligned} & 300 \mathrm{~Hz}<f<3.4 \mathrm{kHz} \\ & V_{\text {Supply, AC }}=100 \mathrm{mVp} \\ & I_{\mathrm{ab}}=30 \mathrm{~mA} \end{aligned}$
68.	$V_{\mathrm{BAT}} / V_{\mathrm{ab}}$								
				30/28	-	-	dB		
69.	$V_{\mathrm{H}} / V_{\mathrm{ab}}$		BB	33/30	40	-	dB		
70.	$V_{\mathrm{DD}} / V_{\mathrm{ab}}$		CONV, BB	33	50	-	dB		
71.	$V_{\mathrm{SS}} / V_{\mathrm{ab}}$		CONV,	33	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$		
72.	Ringing voltage	$V_{\text {RING }}$	RING	67	-	-	Vrms, diff	8	$\begin{aligned} & R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & C_{\mathrm{L}}=1 \mu \mathrm{~F} \\ & f=66 \mathrm{~Hz} \\ & V_{2 \mathrm{~W}}=1.7 \mathrm{Vrms} \end{aligned}$
73.	Ringing voltage with extended V_{H}			84	-	-	Vrms, diff	8	$\begin{aligned} & V_{\mathrm{H}}=80 \mathrm{~V} \\ & f=20 \mathrm{~Hz} \\ & V_{2 \mathrm{~W}}=2.2 \mathrm{Vrms} \end{aligned}$
74.	Ringing distortion	THD	RING	-	-	4	\%	8	$\begin{aligned} & f=66 \mathrm{~Hz} \\ & V_{2 \mathrm{w}}=1.7 \mathrm{Vrms} \end{aligned}$

Transversal Current Output I_{T}

75. 76.	Transversal current ratio	Git	$\left\|\begin{array}{l} \mathrm{CONV}, \\ \mathrm{BB} \\ \mathrm{CONV} \end{array}\right\|$	$\begin{aligned} & 33.89 \\ & 33.89 \end{aligned}$	$\begin{aligned} & 33.98 \\ & 33.98 \end{aligned}$	$\begin{array}{r} 34.07 \\ 34.07 \end{array}$	dB dB	4	$\begin{aligned} & V_{2 \mathrm{~W}}=50 \mathrm{mVrms} \\ & f=1015 \mathrm{~Hz} \\ & I_{\mathrm{ab}}=20 \mathrm{~mA} \\ & \\ & I_{\mathrm{ab}}=50 \mathrm{~mA} \end{aligned}$
77.	Gain flatness (guaranteed by design)	dGit	CONV, BB	-0.05	-	0.05	dB	-	$\begin{aligned} & 300 \mathrm{~Hz}<f<3400 \mathrm{~Hz} \\ & V_{2 \mathrm{w}, \mathrm{Ac}}=50 \mathrm{mVrms} \\ & I_{\mathrm{ab}}=20 \mathrm{~mA} \\ & \hline \end{aligned}$
78.	Gain tracking (guaranteed by design)	dGit	CONV	-0.2	-	0.2	dB	-	$\begin{aligned} & 3 \mathrm{dBm0}>V_{\mathrm{ab}}> \\ & -20 \mathrm{dBm0} \\ & f=1015 \mathrm{~Hz} \end{aligned}$
79.	Total harmonic distortion $V_{\text {IT }}$	THD, $I_{\text {T }}$	CONV	-	0.01	0.3	\%	4	$\begin{aligned} & \mathrm{V}_{2 \mathrm{w}, \mathrm{AC}}=50 \mathrm{mVrms} \\ & f=1015 \mathrm{~Hz} \\ & I_{\mathrm{ab}}=15 \mathrm{~mA} \\ & \hline \end{aligned}$

Table 8 (cont'd)

No.	Parameter	Symbol	Mode	Limit Values			Unit	Test Fig.	Test Condition
				min.	typ.	$\begin{array}{\|l\|} \text { max. } \\ \text { PEB/ } \\ \text { PEF } \end{array}$			
80.	Psophometric noise	$N_{\mathrm{P}}, V_{\text {IT }}$	CONV	-	-	$\begin{array}{\|l\|} \hline-100 \\ -97 \\ \hline \end{array}$	dBmp	4	$\begin{aligned} & I_{\mathrm{ab}}=30 \mathrm{~mA}, \mathrm{~T}>0^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C}<\mathrm{T}<0^{\circ} \mathrm{C} \end{aligned}$
$\begin{aligned} & 81 . \\ & 82 . \end{aligned}$	Frequency response $V_{\text {IT }} / V_{2 \mathrm{~W}}$ (guaranteed by design) Amplitude Phase	-	CONV	$\begin{aligned} & -0.5 \\ & 100 \end{aligned}$	$\begin{aligned} & 1.7 \\ & - \end{aligned}$	$\left.\right\|_{-} ^{1.95}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{deg} \end{aligned}$	4	$\begin{aligned} & f=200 \mathrm{kHz} \\ & V_{2 \mathrm{~W}, \mathrm{AC}}=50 \mathrm{mVrms} \\ & I_{\mathrm{Line}}=20 \mathrm{~mA} \\ & C_{\mathrm{s}}=0.2 \mathrm{nF} \end{aligned}$
$\begin{aligned} & 83 . \\ & 84 . \end{aligned}$	Longitudinal to transversal current output rejection ratio $V_{\text {long }} / V_{\text {IT }}$	LITRR	CONV	$\begin{aligned} & 75 \\ & 81 \end{aligned}$		\|-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	6	$\begin{aligned} & V_{\text {long }}=3 \mathrm{Vrms} \\ & I_{\mathrm{ab}}=30 \mathrm{~mA} \\ & \\ & \\ & 300 \mathrm{~Hz}<f<3.4 \mathrm{kHz} \\ & f=1015 \mathrm{~Hz} \end{aligned}$
85. 86. 87. 88.	Power supply rejection ratio $V_{\mathrm{BAT}} / V_{\text {IT }}$ $V_{\mathrm{H}} / V_{\text {IT }}$ $V_{\mathrm{DD}} / V_{\mathrm{IT}}$ $V_{\text {SS }} / V_{\text {IT }}$	PSRR	$\begin{array}{\|l} \text { CONV, } \\ \text { PD } \\ \text { BB } \\ \text { CONV } \\ \text { CONV } \end{array}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \\ & 60 \\ & 60 \end{aligned}$		dB dB dB dB	4	$\begin{aligned} & 300 \mathrm{~Hz}<f<3.4 \mathrm{kHz} \\ & V_{\text {supply } \mathrm{AC}}=100 \mathrm{mVp} \\ & I_{\mathrm{ab}}=30 \mathrm{~mA} \end{aligned}$

Electrical Characteristics

Table 9 External Elements in the Application Circuit (Figure 5)
Typical values are used in the test circuits, unless otherwise specified.

Ext. Part	Function	Typ. Value	Tolerance	Limit Values		Comment
				min.	max.	
R_{1}	Biasing, current reference	$25 \mathrm{k} \Omega$	-	-	$50 \mathrm{k} \Omega$	power dissipation increases with smaller R_{1}
R_{2}, R_{3}	$I_{\mathrm{T}}, I_{\mathrm{L}}$ gain adjustment	$1 \mathrm{k} \Omega$	0.1\% (rel.)	-	-	clipping for $I_{\mathrm{T}} \times R_{2}>3 \mathrm{~V}$ or $I_{\mathrm{L}} \times R_{3}>3 \mathrm{~V}$
$R_{\text {S }}$	Protection, isolation of capacitive load	50Ω	0.1\% (rel.)	30Ω	-	-
R_{5}, R_{6}	Protection	50Ω	0.1\% (rel.)	-	-	-
C_{1}	C for the internal supply voltage filter	$\begin{aligned} & 22 \mu \mathrm{~F} \\ & \left(f_{3 \mathrm{~dB}} \approx 3 \mathrm{~Hz}\right) \end{aligned}$	20\%	10 nF	-	$f_{3 \mathrm{~dB}}$ increases with smaller C_{1}, causing worse low frequency PSRR from $V_{\text {BAT }}$
$C_{\text {S }}$	Suppression of voltage spikes, frequency compensation	15 nF	5\% (rel.)	200 pF	20 nF	-
$\overline{C_{2}, C_{3}}$	$V_{\mathrm{DD}}, V_{\mathrm{SS}}$ supply voltage blocking	$1 \mu \mathrm{~F}$	20\%	10 nF	-	$C_{2}, C_{3}>1 \mu \mathrm{~F}$ $\text { and } C_{4} \approx C_{5}$ allows arbitrary switching
C_{4}	V_{H} blocking	100 nF	-	-	-	sequence of all supply voltages incl.
C_{5}	$V_{\text {BAT }}$ blocking	100 nF	20\%	100 nF	-	ground

Note: Exceeding the min./max. limits can cause stability problems!

Electrical Characteristics

Figure 5 Application Circuit

Test Figure 1 DC Characteristics and Power Dissipation

Electrical Characteristics

Test Figure 2 DC Line Voltage and Currents

Electrical Characteristics

Test Figure 3 Output Current Limit

Test Figure 4 Receive Gain, Transversal Current Ratio, THD, Noise and Power Supply Rejection

Test Figure 5 Teletax Distortion

Test Figure 6 Longitudinal to Transversal Rejection Ratio

Test Figure 7 Transversal to Longitudinal Rejection Ratio

Test Figure 8 Ringing

Test Figure 9 Output Resistance in PDNR Mode

Test Figure 10 TIP, RING Overvoltage Pulses

$3 \quad$ Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

[^0]: 1) See Test Figure 10.
[^1]: 1) I_{BAT} and I_{H} depend on the value of $V_{2 \mathrm{w}}$:
 $I_{\text {BAT }}\left(V_{2 w}\right)=I_{\text {BAT }(0)}+\left|V_{2 w}\right| / 440 \Omega \quad$ typ. (PD, CONV, BB)
 $I_{\mathrm{H}}\left(V_{2 \mathrm{~W}}\right)=I_{\mathrm{H}(0)}+\left|V_{2 \mathrm{~W}}\right| / 440 \Omega \quad$ typ. (BB)
