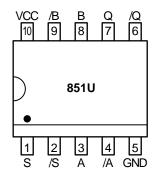
AnyGate[™] CML LOGIC CHIP

SuperLite™ SY55851U

FEATURES

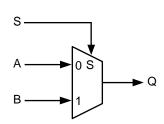
- 2.5GHz min F_{MAX}
- 2.3V to 5.7V power supply
- Provides for any logic function of 2 variables
- Provides for 2-input muxing
- **■** Fully differential
- Source terminated CML outputs for fast edge rates
- Accepts LVDS, PECL, PECL, CML, TTL, LVPECL, input logic levels
- Available in a tiny 10-pin MSOP


DESCRIPTION

The SY55851U is a highly flexible, universal logic gate capable of upto 2.5GHz operation. It's differential inputs and outputs will produce any of 9 possible logic functions of two Boolean variables. It can be configured as any of the following gates: AND, NAND, OR, NOR, XOR, XNOR, DELAY, NEGATION (NOT). Also, the SY55851U can function as a 2-input multiplexer.

SY55851U inputs can be terminated with a single resistor between the true and the complement pins of a given input.

The SY55851U is a member of Micrel's new Super-Lite[™] family of high-speed logic devices. This family features very small packaging, high signal integrity, and operation at many different supply voltages.


PIN CONFIGURATION

APPLICATIONS

- Port bypass
- Data communication systems
- Wireless communication systems
- **■** Telecom systems

FUNCTIONAL BLOCK DIAGRAM

PIN NAMES

Pin	Function
A, /A	Input Data
B, /B	Input Data
Q, /Q	Output Data
S,/S	Input Selector
GND	Ground
V _{CC}	V _{CC}

AnyGate[™] and SuperLite[™] are trademarks of Micrel, Inc.

PIN DESCRIPTIONS

A, /A - CML Input (Differential)

This is one of the inputs to the logic block. For a 2variable logic function, it is either a constant value or a Boolean input. For a 2-input mux, this signal represents the output when S is set to logic zero.

B, /B - CML Input (Differential)

This is one of the inputs to the logic block. For a 2variable logic function, it is either a constant value or a Boolean input. For a 2-input mux, this signal represents the output when S is set to logic one.

Q, /Q - CML Output (Differential)

This is the output of the logic block.

S, /S - CML Input (Differential)

This is one of the inputs to the logic block. It represents either one Boolean input for a 2-variable logic function, or the select input for a 2-input mux.

FUNCTIONAL DESCRIPTION

Establishing Static Logic Inputs

The true pin of an input pair is internally biased to ground through a 75k Ω resistor. The complement pin of an input pair is internally biased halfway between V_{CC} and ground by a voltage divider consisting of two $75k\Omega$ resistors. To keep an input at static logic zero at V_{CC} > 3.0V, leave both

inputs unconnected. For $\rm V_{CC} \leq 3.0V,$ connect the complement input to $\rm V_{CC}$ and leave the true input unconnected. To make an input static logic one, connect the true input to V_{CC}, leave the complement input unconnected. These are the only two safe ways to cause inputs to be at a static value. In particular, no input pin should be directly connected to ground. All NC (no connect) pins should be unconnected.

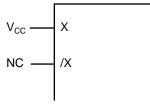
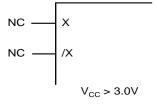
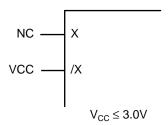
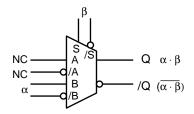
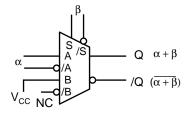
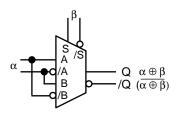
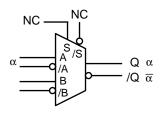



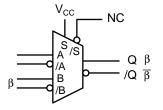
Figure 1. Hard Wiring A Logic "1" (1)

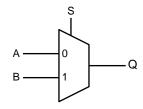
NOTE:

1. X is either A, B, S input. /X is either /A, /B, /S input.


Figure 2. Hard Wiring A Logic "0" (1)


TRUTH TABLES



AND/NAND

A	α B	β S	$egin{array}{c} lpha \cdot eta \ \mathbf{Q} \end{array}$	(α.β) /Q
L	L	L	L	Н
L	Н	L	L	Н
L	L	Н	L	Н
L	Н	Н	Н	L

OR/NOR

α A	В	β S	α + β Q	$(\overline{\alpha + \beta})$ /Q
L	Н	L	L	Н
Н	Н	L	Н	L
L	Н	Н	Н	L
Н	Н	Н	Н	L

XOR/XNOR

α A	В	β S	$\alpha \oplus \beta$ Q	$(\overline{\alpha \oplus \beta})$ /Q
L	Н	L	L	Н
L	Н	Н	Н	L
Н	L	L	Н	L
Н	L	Н	L	Н

DELAY/NEGATION

α A	В	S	α Q	<u>α</u> /Q
L	Χ	L	L	Н
Н	X	L	Н	L

Α	β B	s	β Q	<u>β</u> /Q
Х	L	Н	L	Н
Х	Н	Н	Н	L

2:1 MUX

S	Q
Н	В
L	Α

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Value	Unit
V _{CC}	Power Supply Voltage	-0.5 to +6.0	V
V _I	Input Voltage	–0.5 to V _{CC} +0.5	V
Vo	CML Output Voltage	$V_{\rm CC}$ –1.0 to $V_{\rm CC}$ +0.5	V
T _A	Operating Temperature Range	-40 to +85	°C
T _{store}	Storage Temperature Range	-65 to +150	°C

NOTE:

CML TERMINATION

All inputs accept the output from any other member of this family. All outputs are source terminated 100 Ω CML differential drivers as shown in Figures 3 and 4. SY55851U expects the inputs to be terminated, and that good high

speed design practices be adhered to. SY55851U inputs are designed to accept a termination resistor between the true and complement inputs of a differential pair. 0402 form factor chip resistors will fit with some trace fanout.

\$100Ω

50Ω

≶ 50Ω

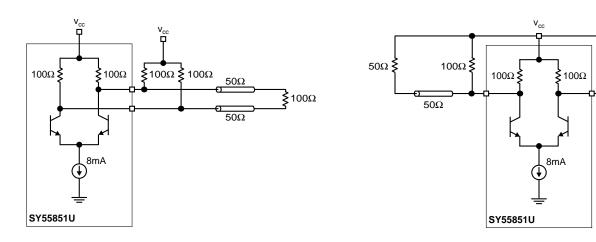


Figure 3a. Differentially Terminated (50 Ω Load CML Output)

Figure 3b. Individually Terminated (50 Ω Load CML Output)

Figure 4. 100Ω Load CML Output

^{1.} Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $V_{CC} = 2.3V$ to 5.7V; GND = 0V

		T _A = -40°C		$T_A = 0^{\circ}C \qquad T_A$		T _A = +25°C		T _A = +85°C		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{CC}	Power Supply Voltage	2.3	5.7	2.3	5.7	2.3	5.7	2.3	5.7	mA
I _{CC}	Power Supply Current	_	40	_	40	_	40	_	40	mA

CML DC ELECTRICAL CHARACTERISTICS

 $V_{CC} = 2.3 \text{V to } 5.7 \text{V}; \text{ GND} = 0 \text{V}; T_{A} = -40 ^{\circ} \text{C to } +85 ^{\circ} \text{C}^{(1)}$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
V _{ID}	Differential Input Voltage	100	_	_	mV	
V _{IH}	Input HIGH Voltage	1.6	_	V _{cc}	V	
V _{IL}	Input LOW Voltage	1.5	_	V _{CC} - 0.1	V	
V _{OH}	Output HIGH Voltage	V _{CC} - 0.020	V _{CC} – 0.010	V _{cc}	V	No Load
V _{OL}	Output LOW Voltage	V _{CC} – 0.97	V _{CC} – 0.825	$V_{CC} - 0.700$	V	No Load
V _{OS}	Output Voltage Swing ⁽²⁾	0.700	0.800 0.400 0.200	0.950	V	No Load 100 Ω Environment ⁽⁴⁾ 50 Ω Environmnet ⁽³⁾
R _{DRIVE}	Output Source Impedance	80	100	120	Ω	

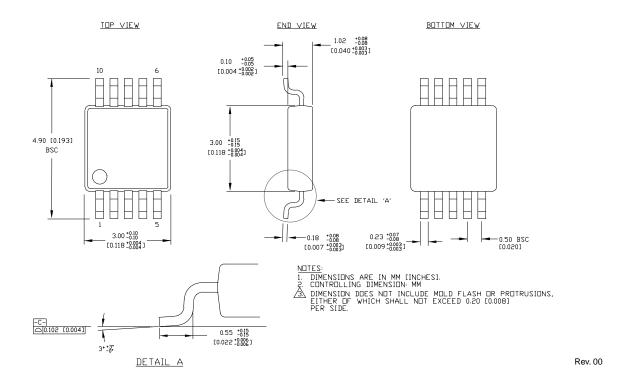
NOTES:

- 1. Equilibrium temperature.
- 2. Actual voltage levels and differential swing will depend on customer termination scheme. Typically, a 400mV swing is available in the 100Ω environment and a 200mV swing in the 50Ω environment. Refer to the "CML Termination" diagram for more details.
- 3. See Figure 3a and 3b.
- 4. See Figure 4.

AC ELECTRICAL CHARACTERISTICS

 V_{CC} = 2.3V to 5.7V; GND = 0V; T_A = -40°C to +85°C

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition ⁽¹⁾
f _{MAX}	Max. Operating Frequency	2.5		_	GHz	
t _{PIN0}	Propagation Delay, S to Q			350	ps	
t _{PIN1}	Propagation Delay, A to Q	_	_	350	ps	
t _{PIN2}	Propagation Delay, B to Q	_	_	350	ps	
t _r	CML Output Rise/Fall Times (20% to 80%)	TBD		110	ps	


NOTE:

1. Tested using environment of Figure 3b, 50Ω load CML output.

PRODUCT ORDERING CODE

Ordering	Package	Operating
Code	Type	Range
SY55851UKC	K10-1	Commercial

10 LEAD MSOP (K10-1)

SuperLite™ SY55851U

Micrel

MICREL-SYNERGY 3250 SCOTT BOULEVARD SANTA CLARA CA 95054 USA

TEL + 1 (408) 980-9191 FAX + 1 (408) 914-7878 WEB http://www.synergysemi.com http://www.micrel.com

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

© 2000 Micrel Incorporated