

MICROCIRCUIT DATA SHEET

MNCLC406A-X REV 0A0

Original Creation Date: 02/10/99 Last Update Date: 09/08/99 Last Major Revision Date:

WIDEBAND, LOW POWER MONOLITHIC OP AMP

General Description

The CLC406 is a wideband monolithic operational amplifier designed for low-gain applications where power and cost are of primary concern. Operating from $\pm 5V$ supplies, the CLC406 consumes only 50mW of power yet maintains a 160MHz small signal bandwidth and a 1500V/us slew rate. Benefitting from Comlinear's current feedback architecture, the CLC406 offers a gain range of ± 1 to ± 10 while providing stable, oscillation free operation without external compensation, even at unity gain.

With its exceptional differential gain and phase, typically 0.02% and 0.02 degrees at 3.58MHz, the CLC406 is designed to meet the performance and cost requirements of high volume composite video applications. The CLC406's large signal bandwidth, high slew rate and high drive capability are features well suited for RGB video applications.

Providing a 12ns settling time to 0.05% (1/2 LSB in 10-bit systems) and -68/-75dBc 2nd/3rd harmonic distortion (2Vpp at 10MHz, Rl = 1kOhms), the CLC406 is an excellent choice as a buffer or driver for high speed A/D and D/A converter systems.

Commercial remote sensing applications and battery powered radio transceivers requiring a high performance, low power amplifier will find the CLC406 to be an attractive, cost-effective solution.

Industry Part Number

CLC406A

NS Part Numbers CLC406AJ-QML

Prime Die

UB1373C

Controlling Document

5962-9200401MPA

Processing

MIL-STD-883, Method 5004

Quality Conformance Inspection

MIL-STD-883, Method 5005

Subgrp	Description	Temp	(°C)
1	Static tests at	+25	
2	Static tests at	+125	
3	Static tests at	-55	
4	Dynamic tests at	+25	
5	Dynamic tests at	+125	
6	Dynamic tests at	-55	
7	Functional tests at	+25	
8A	Functional tests at	+125	
8B	Functional tests at	-55	
9	Switching tests at	+25	
10	Switching tests at	+125	
11	Switching tests at	-55	

Features

- 160MHz small signal bandwidth
- 50mW power (±5V supplies)
- 0.02%/0.02degrees differential gain/phase
- 12ns settling to 0.05%
- 1500V/us slew rate
- 2.2ns rise and fall time (2Vpp)
- 70mA output current

Applications

- Video distribution amp
- HDTV amplifier
- Flash A/D driver
- D/A transimpedance buffer
- Pulse amplifier
- Photodiode amp
- LAN amplifier

(Absolute Maximum Ratings)

Supply voltage (Vcc)				
(NOCE 1)		<u>+</u> 7 V dc		
Output current (Io)		<u>+</u> 70 mA		
Common mode input voltage	e (Vcm)	<u>+</u> Vcc		
Differential input voltag	re	+10 V dc		
Maximum Power Dissipation (Note 2)	ı (Pd)			
		1.2W		
Lead Temperature (solderi	+300C			
Junction temperature (Tj)		+175C		
Storage temperature range	2	-65C to +150C		
Thermal Resistance Junction -to-ambient Ceramic DIP Junction -to-case Ceramic DIP	(ThetaJA) (Still Air) (500 LFPM) (ThetaJC)	TBD TBD TBD		
Package Weight (typical) Ceramic DIP		TBD		
ESD Tolerance ESD Rating (Note 3)		2000V		

Note 1: Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 3: Human body model, 100 pF discharged through 1.5K Ohms.

Recommended Operating Conditions

Supply voltage (Vcc)	
	<u>+</u> 5 V dc
Gain Range	1 +- 10
Ambient Operating Temperature Pange (Ta)	<u>+</u> 1 LO <u>+</u> 10
Ambrene Operating remperature Range (1a)	-55C to +125C

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax - TA) / ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower.

Electrical Characteristics

AC/DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.)
DC: Rl = 100 Ohms, Vcc = ±5 V dc, Av = +6, Rf (feedback resistor) = 500 Ohms, Rg (gain resistor) = 100
Ohms, -55C ≤ Ta ≤ +125C (note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Ibn	Input bias				-12	12	uA	1, 2
	noninverting				-24	24	uA	3
DIBN	Input bias current, average		1		-50	50	nA/C	2
	temperature coefficient, noninverting		1		-125	125	nA/C	3
Ibi	Input bias current,				-15	15	uA	1
	inverting				-20	20	uA	2
					-23	23	uA	3
DIBI	Input bias currrent, average		1		-50	50	nA/C	2
	temperature coefficient, inverting		1		-100	100	nA/C	3
Vio	Input offset				-6	6	mV	1
	Voreage				-12	12	mV	2
					-10	10	mV	3
DVIO	Input offset voltage, average temperature coefficient		1		-60	60	uV/C	2, 3
Icc	Supply current no load					6.0	mA	1, 2
						6.4	mA	3
PSRR	Power supply rejection ratio	-Vcc = -4.5 V to $-5.0 V$, $+Vcc = +4.5 V$ to $+5.0 V$	2		46		dB	1, 3
			2		44		dB	2
+IO	Output current		1		45		mA	1, 2
			1		25		mA	3
-Io	Output current		1			-45	mA	1, 2
			1			-25	mA	3
+Vo	Output voltage range				2.7		V	1, 2
					2.0		V	3
-Vo	Output voltage range					-2.7	V	1, 2
						-2.5	V	3

Electrical Characteristics

AC/DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.)
DC: Rl = 100 Ohms, Vcc = ±5 V dc, Av = +6, Rf (feedback resistor) = 500 Ohms, Rg (gain resistor) = 100
Ohms, -55C ≤ Ta ≤ +125C (note 3)

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Rin	Noninverting input resistance		1		500		k Ohms	1, 2
			1		300		k Obme	3
CMRR	Common mode	Vcm = <u>+</u> 1.0 V	1		45		dB	4,6
	rejection ratio		1		43		dB	5
SSBW	Small signal	-3 dB bandwidth, Vout < 2 Vpp .			110		MHz	4
	bandwidth		2		90		MHz	5
			2		110		MHz	6
LSBW	Large signal	-3 dB bandwidth, Vout < 5 Vpp .	1		95		MHz	4, 6
	Dandwidth		1		80		MHz	5
GFPL	Gain flatness	0.1 MHz to 25 MHz , Vout < 2 Vpp				0.2	dB	4
	peaking					0.2	dB	5,6
GFPH	Gain flatness	> 25MHz, Vout < 2 Vpp				0.5	dB	4
peaking			2			0.5	dB	5,6
GFR	Gain flatness	0.1 MHz to 50 MHz, Vout < 2 Vpp				1	dB	4
	1011011		2			1.3	dB	5
			2			1	dB	6
LPD	Linear phase	0.1 MHz to 75 MHz	1			0.8	Deg	4, 6
	deviation		1			1.2	Deg	5
DG	Differential gain	Rl = 150 Ohms, 3.58 MHz, 4.43 MHz, Av = +2	1			0.04	010	4, 5, 6
DP1	Differential	Rl = 150 Ohms, 3.58 MHz, Av = +2	1			0.04	Deg	4, 6
	pliase		1			0.08	Deg	5
DP2	Differential	Rl = 150 Ohms, 4.43 MHz, Av = +2	1			0.05	Deg	4, 6
	pliase		1			0.10	Deg	5
HD2	2nd harmonic	2 Vpp at 20 MHz				-42	dBc	4
	distortion		2			-38	dBc	5
			2			-42	dBc	6
HD2L	2nd harmonic	2 Vpp at 10 MHz, Rl = 1 kOhms	1			-62	dBc	4, б
			1			-60	dBc	5

Electrical Characteristics

AC/DC PARAMETERS(Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.)
DC: Rl = 100 Ohms, Vcc = ±5 V dc, Av = +6, Rf (feedback resistor) = 500 Ohms, Rg (gain resistor) = 100
Ohms, -55C ≤ Ta ≤ +125C (note 3)

SYMBOL	PARAMETER	PARAMETER CONDITIONS				MAX	UNIT	SUB- GROUPS
HD3	3rd harmonic	2 Vpp at 20 MHz				-46	dBc	4
	distortion		2			-42	dBc	5
			2			-46	dBc	6
HD3L	3rd harmonic	2 Vpp at 10 MHz, Rl = 1 kOhms	1			-70	dBc	4, б
	distortion		1			-65	dBc	5
Trs	Rise and fall	2 V step, Cl < 10 pf, measured between	1			3.0	ns	9, 11
	time	10% and 90% points	1			3.9	ns	10
Trl	Rise and fall	4 V step Cl < 10 pF measured between	1			3.6	ns	9 11
111	time	10% and 90% points	1			5.0	ng	10
			1			5.0	115	10
Ts	Settling time	CI < 10 pF, 2 V step at 0.05% of the final value	1			18	ns	9, 11
			1			20	ns	10
OS	Overshoot	2 V step, Cl < 10 pF	1			15	olo	9, 10, 11
SR	Slew Rate	Vout = 4 V step, measured at ± 1 V, C1	1		1200		V/us	4, б
		< 10 pr	1		1000		V/us	5
VN	Equivalent input noise,	> 1 MHz	1			3.4	nV/So	[4, 6
	noninverting voltage		1			3.8	nV/Sc	[5
							RtHz	
ICN	Equivalent input	> 1 MHz	1			13.9	pA/Sc	г4, б
	current					45.5	RtHz	-
			1			15.5	pA/Se	£ 5
NCN	Equivalent input	> 1 MHz	1			2.6	RtHz pA/Sc	r 4, 6
	noise,						RtHz	. , .
	current		1			3.0	pA/Sc	£ 5
							RtHz	
SNF	Equivalent input	> 1 MHz	1			-156	dBm	4, 6
	noise floor						(1Hz)	
			1			-155	dBm	5
	Fauivalent innut	1 MHZ to 100 MHZ	1			38	(1Hz)	4 6
774 A	noise, total integrated noise		1			42	uV	5

Note 1: Guaranteed, if not tested.

Note 2: This parameter is group A sample tested only and is excluded from final electrical testing, but is guaranteed to the limits specified.

(Continued)

Note 3: The algebraic convention, whereby the most negative value is a minimum and the most positive a maximum, is used in this table. Negative current shall be defined as conventional current flow out of a device terminal.

Graphics and Diagrams

GRAPHICS#	DESCRIPTION
07081HRA3	CERDIP (J), 8 LEAD (B/I CKT)
J08ARL	CERDIP (J), 8 LEAD (P/P DWG)
P000418A	CERDIP (J), 8 LEAD (PINOUT)

See attached graphics following this page.

CLC406J 8 - LEAD DIP CONNECTION DIAGRAM TOP VIEW P000418A

2900 SEMICONDUCTOR DRIVE SANTA CLARA, CA 95050

Revision History

Rev	ECN #	Rel Date	Originator	Changes
0A0	M0003524	09/08/99	Rose Malone	Initial MDS Release