
DGTL GND 110

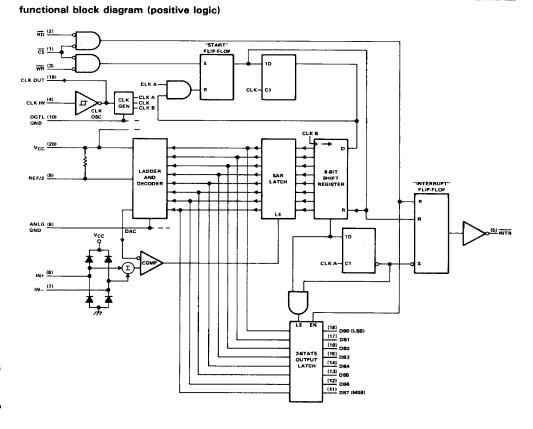
11 DB7 (MSB)

- 8-Bit Resolution
- Ratiometric Conversion
- 100 μs Conversion Time
- 135 ns Access Time
- Guaranteed Monotonicity
- High Reference Ladder Impedance
 8 kΩ Typical
- No Zero Adjust Requirement
- On-Chip Clock Generator
- Single 5-Volt Power Supply
- Operates With Microprocessor or as Stand-Alone
- Designed to be Interchangeable with National Semiconductor ADC0801, ADC0802, ADC0803, ADC0805

description

The ADC0801, ADC0802, ADC0803, and ADC0805 are CMOS 8-bit successive-approximation analog-to-digital converters that use a modified potentiometric (256R) ladder. These devices are designed to operate from common microprocessor control buses, with the three-state output latches driving the data bus. The devices can be made to appear to the microprocessor as a memory location or an I/O port.

A differential analog voltage input allows increased common-mode rejection and offset of the zero-input analog voltage value. Although a reference input (REF/2) is available to allow 8-bit conversion over smaller analog voltage spans or to make use of an external reference, ratiometric conversion is possible with the REF/2 input open. Without an external reference, the conversion takes place over a span from VCC to analog ground (ANLG GND). The devices can operate with an external clock signal or, with an additional resistor and capacitor, can operate using an on-chip clock generator.


The ADC08011, ADC08021, ADC08031, and ADC08051 will be characterized for operation from -40 °C to 85 °C.

Data Acquisition

7

1183

Texas Instruments 1183

POST DEFICE BOX 225012 . DALLAS, TEXAS 75265

TYPES ADC0801, ADC0802, ADC0803, ADC0805 8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH DIFFERENTIAL INPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC (see Note 1)
Input voltage range CS, RD, WR0.3 V to 18 V
Other inputs
Output voltage range
Continuous total power dissipation at 25 °C free-air temperature (see Note 2)
Operating free-air temperature range
Storage temperature range65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

NOTES: 1. All voltage values are with respect to digital ground (DGTL GND) with DGTL GND and ANLG GND connected together (unless otherwise noted).

2. For operation above 25°C free-air temperature, refer to Dissipation Derating Curves, section 2.

recommended operating conditions

1183

	MIN	NOM	MAX	UNIT
9	4.5	5	6.3	٧
F/2 (see Note 3)	0.25	2.5		٧
ut voltage at CS, RD, or WR	2		15	>
t voltage at CS, RD, or WR			0.8	>
voltage (see Note 4)	-0.05	0	1	>
/oltage (see Note 5)	GND - 0.05		V _{CC} + 0.05	٧
equency (see Note 6)	100	640	1460	kHz
ove 640 kHz (see Note 6)	40		60	%
clock input (high or low)	275	781		ns
, WR input low	100			ns
-air temperature	-40 .		85	°C
	d voltage (see Note 4) voltage (see Note 5) sequency (see Note 6) ove 640 kHz (see Note 6) clock input (high or low) , WR input low -air temperature	Voltage (see Note 4)	voltage (see Note 4)	Voltage (see Note 4)

NOTES: 3. Proper operation is achieved over a differential input range of 0 V to V_{CC} when the REF/2 input is open.

4. These values are with respect to digital ground (pin 10).

5. When the positive analog input with respect to the negative analog input (Vin + Vin - 1 is zero or negative, the output code is 0000 0000.

6. Total unadjusted error is guaranteed only at an f_{clock} of 640 kHz with a duty cycle of 40% to 60% (pulse duration 625 ns to 937 ns). For frequencies above this limit or pulse duration below 625 ns, error may increase. The duty cycle limits should be observed for an f_{clock} greater than 640 kHz. Below 640 kHz, this duty cycle limit can be exceeded provided t_{W(CLK)} remains within limits.

PARAMETER			TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT	
Vон	High-level	All outputs	$V_{CC} = 4.75 \text{ V},$	I _{OH} = -360 μA	2.4			v	
	output voltage	DB and INTR	$V_{CC} = 4.75 \text{ V},$	I _{OH} = -10 μA	4.5			1 °	
VOL	Low-level	Data outputs	$V_{CC} = 4.75 \text{ V},$	I _{OL} = 1.6 mA			0.4		
	output	INTR output	$V_{CC} = 4.75 V$,	IOL = 1 mA			0.4	_ v	
	voltage	CLK OUT	$V_{CC} = 4.75 V$,	I _{OL} = 360 μA			0.4	1	
V _{T+}	Clock positive-going threshold voltage				2.7	3.1	3.5	٧	
V _T –	Clock negative-going threshold voltage				1.5	1.8	2.1	V	
V _{T+} -V _{T-} Clock input hysteresis				0.6	1.3	2	V		
I _{IH}	High-level input current			· · · · · · · · · · · · · · · · · · ·		0.005	1	μΑ	
IIL	Low-level input current					-0.005	1	μА	
	Off-state output current		V _O = 0				-3	μА	
loz			V _O = 5 V				3] #^	
lons	Short-current output current	Output high	V _O = 0,	T _A = 25 °C	-4.5	- 6		mA	
lors	Short-circuit output current	Output low	V _O = 5 V,	T _A = 25°C	9	16		mA	
Icc	Supply current plus reference current		V _{REF/2} = open, CS at 5 V	T _A = 25°C,		1.1	1.8	mA	
R _{REF/2}	Input resistance to reference ladder		See Note 7		2.5	8		kΩ	
Ci	Input capacitance (control)					5	7.5	pF	
Со	Output capacitance (DB)				T	5	7.5	pF	

NOTE 7: Resistance is calculated from the current drawn from a 5-volt supply applied to pins 8 and 9.

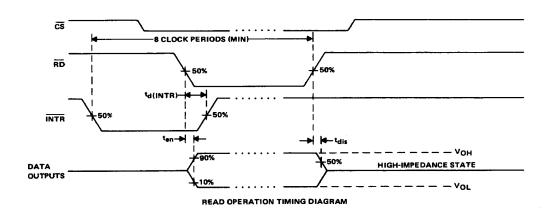
operating characteristics over recommended operating free-air temperature, $V_{CC}=5$ V, $V_{REF/2}=2.5$ V, $f_{clock}=640$ kHz (unless otherwise noted)

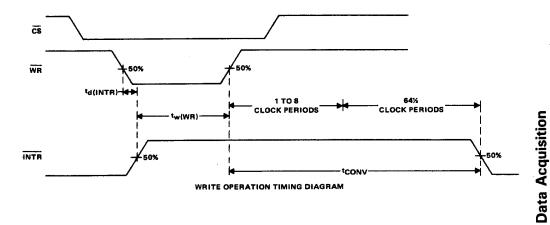
	PARAMETER Supply-voltage-variation error		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
			V _{CC} = 4.5 V to 5.5 V, See Note 8			± 1/16	± 1/8	LSB
	Total adversed some	ADC0801	With full-scale adjust, See Notes 8 and 9			± 1/4	LSB	
	Total adjusted error	ADC0803		See Notes 6 and 9			± 1/2	LOB
	Total upadjusted error	ADC0802	$V_{REF/2} = 2.5 V$,	See Notes 8 and 9			± 1/2	LSB
		ADC0805	VREF/2 open,	See Notes 8 and 9	T		± 1	LSB
	DC common-mode error		See Note 8 and 9			± 1/16	± 1/8	LSB
ten	Output enable time		C _L = 100 pF			135	200	ns
^t dis	Output disable time		C _L = 10 pF,	R _L = 10 kΩ		125	200	ns
td(INTR)	Delay time to reset INTR					300	450	ns
tconv	Conversion cycle time		f _{clock} = 100 kHz to 1.46 MHz, See Note 10		66		73	clock cycles
CR	Free-running conversion rate		INTR connected to WR, CS at 0 V				8770	conv/s

 † Ail typical values are at $T_{A} = 25\,^{\circ}$ C.

NOTES: 8. These parameters are guaranteed over the recommended analog input voltage range.

9. All errors are measured with reference to an ideal straight line through the end-points of the analog-to-digital transfer characteristic.


10. Although internal conversion is completed in 84 clock periods, a CS or WR low-to-high transition is followed by 1 to 8 clock periods before


Although internal conversion is completed in 84 clock periods, a CS or WR low-to-high transition is followed by 1 to 8 clock periods before
conversion starts. After conversion is completed, part of another clock period is required before a high-to-low transition of INTR completes the cycle.

1183

Data Acquisition

PARAMETER MEASUREMENT INFORMATION

7

TEXAS
INSTRUMENTS
POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

7-9

1183

PRINCIPLES OF OPERATION

The ADC0801, ADC0802, ADC0803, and ADC0805 each contain a circuit equivalent to a 256-resistor network. Analog switches are sequenced by successive approximation logic to match an analog differential input voltage ($V_{in} + -V_{in} - 1$) to a corresponding tap on the 256R network. The most-significant bit (MSB) is tested first. After eight comparisons (64 clock periods), an eight-bit binary code (1111 1111 = full scale) is transferred to an output latch and the interrupt (\overline{INTR}) output goes low. The device can be operated in a free-running mode by connecting the \overline{INTR} output to the write (\overline{IWR}) input and holding the conversion start (\overline{CS}) input at a low level. To ensure start-up under all conditions, a low-level \overline{WR} input is required during the power-up cycle. Taking \overline{CS} low anytime after that will interrupt a conversion in process.

When the \overline{WR} input goes low, the internal successive approximation register (SAR) and eight-bit shift register are reset. As long as both \overline{CS} and \overline{WR} remain low, the analog-to-digital converter will remain in a reset state. One to eight clock periods after \overline{CS} or \overline{WR} makes a low-to-high transition, conversion starts.

When the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ inputs are low, the start flip-flop is set and the interrupt flip-flop and eight-bit register are reset. The next clock pulse transfers a logic high to the output of the start flip-flop. The logic high is ANDed with the next clock pulse placing a logic high on the reset input of the start flip-flop. If either $\overline{\text{CS}}$ or $\overline{\text{WR}}$ have gone high, the set signal to the start flip-flop is removed causing it to be reset. A logic high is placed on the D input of the eight-bit shift register and the conversion process is started. If the $\overline{\text{CS}}$ and $\overline{\text{WR}}$ inputs are still low, the start flip-flop, the eight-bit shift register, and the SAR remain reset. This action allows for wide $\overline{\text{CS}}$ and $\overline{\text{WR}}$ inputs with conversion starting from one to eight clock periods after one of the inputs goes high.

When the logic high input has been clocked through the eight-bit shift register, completing the SAR search, it is applied to an AND gate controlling the output latches and to the D input of a flip-flop. On the next clock pulse, the digital word is transferred to the three-state output latches and the interrupt flip-flop is set. The output of the interrupt flip-flop is inverted to provide an INTR output that is high during conversion and low when the conversion is completed.

When a low is at both the \overline{CS} and \overline{RD} inputs, an output is applied to the DB0 through DB7 outputs and the interrupt flip-flop is reset. When either the \overline{CS} or \overline{RD} inputs return to a high state, the DB0 through DB7 outputs are disabled (returned to the high-impedance state). The interrupt flip-flop remains reset.

Texas Instruments