

CYU01M16SCG MoBL3™

16-Mbit (1M x 16) Pseudo Static RAM

Features

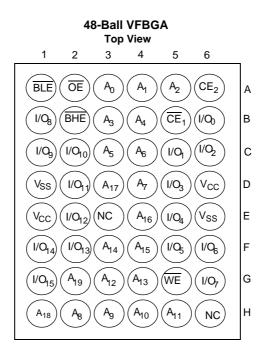

- Wide voltage range: 2.2V-3.6V
- Access Time: 70 ns
- Ultra-low active power
 - Typical active current: 3 mA @ f = 1 MHz
 - Typical active current: 18 mA @ f = f_{max}
- · Ultra low standby power
- Automatic power-down when deselected
- CMOS for optimum speed/power
- Offered in a 48-ball BGA Package
- Operating Temperature: -40°C to +85°C

Functional Description^[1]

The CYU01M16SCG is a high-performance CMOS Pseudo Static RAM organized as 1M words by 16 bits that supports an asynchronous memory interface. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life[™] (MoBL[®]) in portable applications such as cellular telephones. The device can be put into standby mode when deselected (\overline{CE}_1 HIGH or CE_2 LOW or both BHE and BLE are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (CE_1 HIGH or CE_2 LOW), outputs are disabled (OE HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a write operation (\overline{CE}_1 LOW and CE_2 HIGH and WE LOW).

To write to the device, take Chip Enable (\overline{CE}_1 LOW and CE_2 HIGH) and Write Enable (WE) input LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified <u>on the</u> address pins (A₀ through A₁₉). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₉).

To read from the device, take Chip Enables (\overline{CE}_1 LOW and CE₂ HIGH) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (\overline{WE}) HIGH. If Byte Low Enable (\overline{BLE}) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. Refer to the truth table for a complete description of read and write modes.


Note:

1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Cypress Semiconductor Corporation Document #: 001-09739 Rev. ** 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised August 7, 2006

Pin Configuration^[2, 3]

Product Portfolio^[4]

					Power Dissipation			n		
				Speed	Operating I _{CC} (mA)					
Product	V _{CC} Range (V)		(ns)	f = 1	f = 1MHz		f = f _{max}		Standby I _{SB2} (µA)	
CYU01M16SCG	Min.	Typ. ^[4]	Max.		Typ. ^[4]	Max.	Typ. ^[4]	Max.	Typ. ^[4]	Max.
	2.2	3.0	3.6	70	3	5	18	25	55	70

Power-up Characteristics

The initialization sequence is shown in the figure below. Chip Select should be \overline{CE}_1 HIGH or CE_2 LOW for at least 200 μs after V_{CC} has reached a stable value. No access must be attempted during this period of 200 µs.

Parameter	Description	Min.	Тур.	Max.	Unit
Три	Chip Enable Low After Stable V_{CC}	200			μs

Notes:

Ball H6 and E3 can be used to upgrade to a 32-Mbit and a 64-Mbit density, respectively.
 NC "no connect" - not connected internally to the die.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} (typ) and T_A = 25°C. Tested initially and after design changes that may affect the parameters.

CYU01M16SCG MoBL3™

Maximum Ratings

(Above which the useful life may be impaired. For user guide- lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential0.3V to V _{CCMAX} + 0.3V
DC Voltage Applied to Outputs in High Z State ^[5, 6, 7] 0.3V to V _{CCMAX} + 0.3V

DC Input Voltage ^[5, 6, 7]	-0.3V to V _{CCMAX} + 0.3V
Output Current into Outputs (LOW)	
Static Discharge Voltage (per MIL-STD-883, Method 3015)	> 2001V
Latch-Up Current	> 200 mA

Device	Range	Operating Temperature (T _A)	v _{cc}
CYU01M16SCG	Industrial	–40°C to +85°C	2.2V to 3.6V

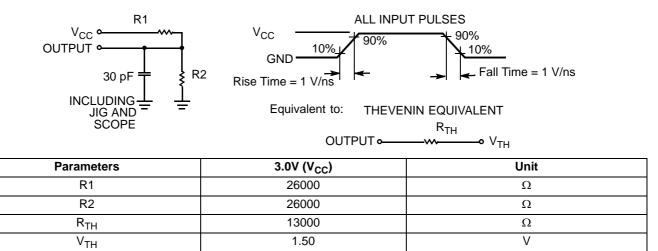
DC Electrical Characteristics (Over the Operating Range)^[5, 6, 7]

				CYU	01M16SCG	6-70 ns	
Parameter	Description	Tes	t Conditions	Min.	Typ. ^[4]	Max.	Unit
V _{CC}	Supply Voltage			2.2	3.0	3.6	V
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$ V _{CC} = 2.2V to 3	.6V	V _{CC} – 0.2			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA V _{CC} = 2.2V to 3	.6V			0.2	V
V _{IH}	Input HIGH Voltage	V _{CC} = 2.2V to 3	.6V	0.8 * V _{CC}		V _{CC} + 0.3V	V
VIL	Input LOW Voltage	V _{CC} = 2.2V to 3	9.6V	-0.3		0.2 * V _{CC}	V
I _{IX}	Input Leakage Current	$GND \le V_{IN} \le V_{C}$	C	-1		+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_{OUT} \le V_{OUT}$	V _{CC}	-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = V_{CCmax}$ $I_{OUT} = 0 \text{ mA}$ CMOS levels		18	25	mA
		f = 1MHz			3	5	mA
I _{SB1}	Automatic CE Power-Down Current—CMOS Inputs	V _{IN} > V _{CC} - 0.2 (<u>Address</u> and E	2V, $CE_2 \le 0.2V$, 2V, $V_{IN} < 0.2V$, $f = f_{MAX}$ Data <u>Only</u>), $f = 0$ and BLE), $V_{CC} = 3.60V$		55	70	μΑ
I _{SB2}	Automatic CE Power-Down Current—CMOS Inputs				55	70	μΑ

Capacitance^[8]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

Thermal Resistance^[8]


Parameter	Description	Test Conditions	VFBGA	Unit
Θ_{JA}	()	Test conditions follow standard test methods	56	°C/W
Θ ^{JC}		and procedures for measuring thermal impedence, per EIA/JESD51	11	°C/W

Notes:

5. $V_{IL(MIN)} = -0.5V$ for pulse durations less than 20 ns. 6. $V_{IH(Max)} = V_{CC} + 0.5V$ for pulse durations less than 20 ns. 7. Overshoot and undershoot specifications are characterized and are not 100% tested. 8. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Switching Characteristics	5 Over the Operating Range ^[9, 10, 11, 14, 15]
---------------------------	--

		7		
Parameter	Description	Min.	Max.	Unit
Read Cycle				
t _{RC} ^[13]	Read Cycle Time	70	40000	ns
t _{CD}	Chip Deselect Time \overline{CE}_1 = HIGH or CE ₂ =LOW, BLE/BHE High Pulse Time	15		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	5		ns
t _{ACE}	CE LOW to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[10, 11, 12]	5		ns
t _{HZOE}	OE HIGH to High Z ^[10, 11, 12]		25	ns
t _{LZCE}	CE LOW to Low Z ^[10, 11, 12]	10		ns
t _{HZCE}	CE HIGH to High Z ^[10, 11, 12]		25	ns
t _{DBE}	BLE/BHE LOW to Data Valid		70	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[10, 11, 12]	5		ns
t _{HZBE}	BLE/BHE HIGH to High Z ^[10, 11, 12]		25	ns

1.50

Notes:

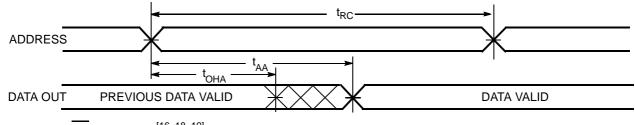
9. Test conditions for all parameters other than tri-state parameters assume signal transition time of 1 ns/V, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0V to V_{CC}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.
10. At any given temperature and voltage conditions t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE}, t_{HZDE} for any given device. All low-Z parameters will be measured when the outputs enter a high-impedance state.
12. High-Z and Low-Z parameters are characterized and are not 100% tested.
24. High-Z has been to the better the part of the parameters.

13. If invalid address signals shorter than min.tRC are continuously repeated for 40 µs, the device needs a normal read timing (t_{RC}) or needs to enter standby state

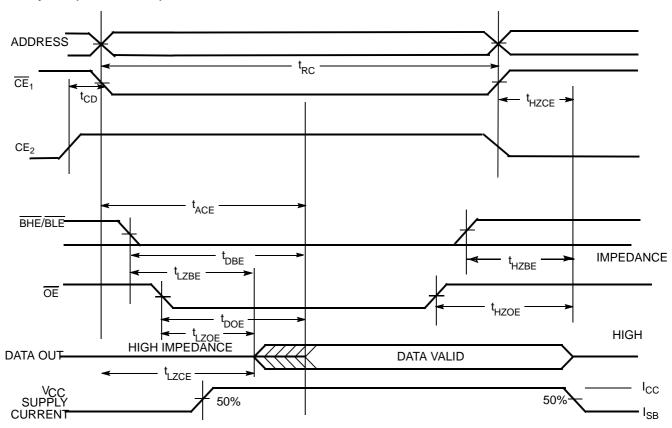
at least once in every 40 μ s. 14. In order to achieve 70-ns performance, the read access must be Chip Enable (\overline{CE}_1 or CE_2) controlled. That is, the addresses must be stable prior to Chip Enable going active.

CYU01M16SCG MoBL3™

Switching Characteristics Over the Operating Range^[9, 10, 11, 14, 15] (continued)


		7		
Parameter	Description	Min.	Max.	Unit
Write Cycle ^[15]				
t _{WC}	Write Cycle Time	70	40000	ns
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{CD}	Chip Deselect Time \overline{CE}_1 = HIGH or CE ₂ =LOW, BLE/BHE High Pulse Time	15		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	50		ns
t _{BW}	BLE/BHE LOW to Write End	60		ns
t _{SD}	Data Set-Up to Write End	25		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High-Z ^[10, 11, 12]		25	ns
t _{LZWE}	WE HIGH to Low-Z ^[10, 11, 12]	10		ns

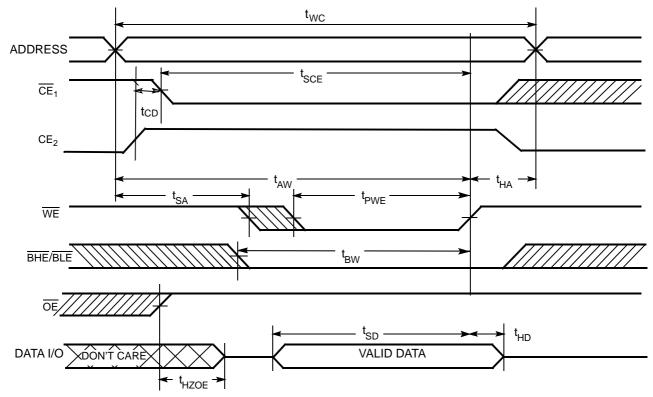
Note: 15. The internal Write time of the memory is defined by the overlap of WE, CE₁ = V_{IL} or CE₂ = V_{IH}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.



Switching Waveforms

Read Cycle 1 (Address Transition Controlled)^[17, 18]

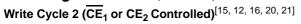
Read Cycle 2 (OE Controlled)^[16, 18, 19]

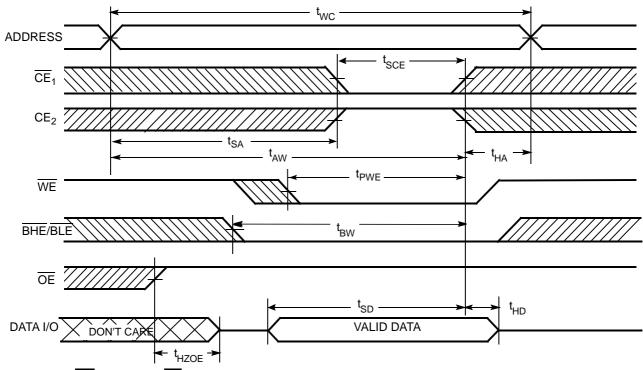

Notes: 16. Whenever \overline{CE}_1 = HIGH or CE_2 = LOW, BHE/BLE are taken inactive, they must remain inactive for a minimum of 5 ns. 17. Device is continuously selected. $\overline{OE} = \overline{CE}_1 = V_{|L}$ and $CE_2 = V_{|H}$.

18. <u>WE</u> is HIGH for Read Cycle. 19. CE is the Logical AND of CE₁ and CE₂.

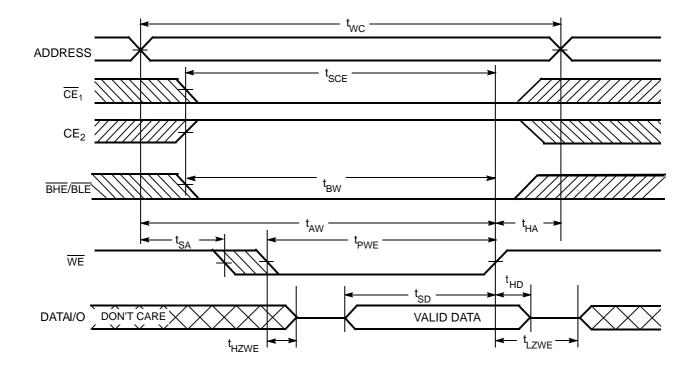
Switching Waveforms (continued)

Write Cycle 1 (WE Controlled)^[15, 12, 16, 19, 20, 21]

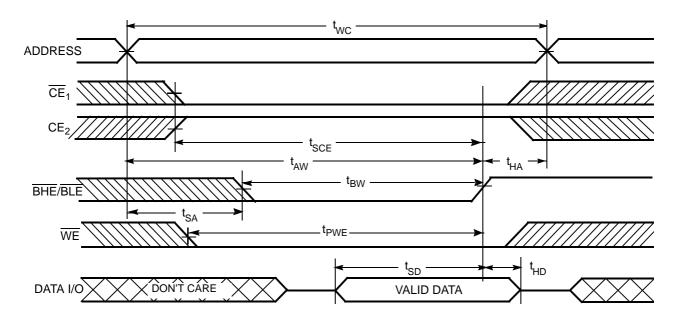



Notes:

20. Data I/O is high-impedance if $\overline{OE} \ge V_{IH}$. 21. During the DON'T CARE period in the DATA I/O waveform, the I/Os are in output state and input signals should not be applied.



Switching Waveforms (continued)


Write Cycle 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[16, 21]

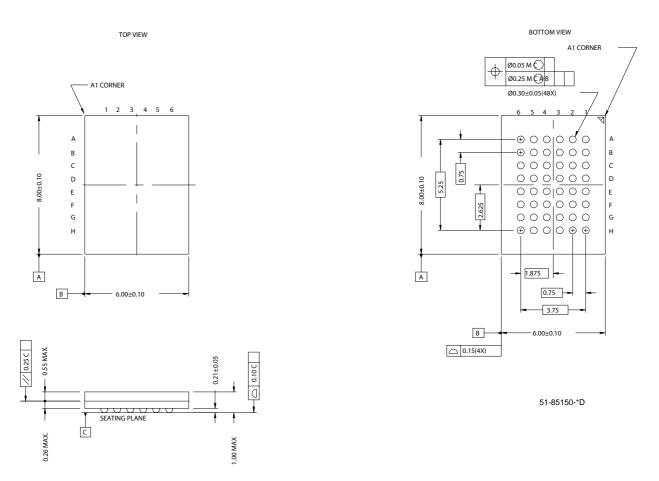
Switching Waveforms (continued)

Write Cycle 4 (BHE/BLE Controlled, OE LOW)^[15, 16, 20, 21]

Truth Table^[22]

CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
Х	L	Х	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
Х	Х	Х	Х	Н	Н	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Η	Η	L	Н	L	Data Out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	Η	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data In (I/O ₀ –I/O ₁₅)	Write (Upper Byte and Lower Byte)	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write (Lower Byte Only)	Active (I _{CC})
L	Н	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write (Upper Byte Only)	Active (I _{CC})

Note: 22. H = Logic HIGH, L = Logic LOW, X = Don't Care.



Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
70	CYU01M16SCG-70BVXI	51-85150	48-ball Fine Pitch VBGA (6 mm × 8 mm × 1 mm) (Pb-Free)	Industrial

Package Diagram

48-ball VFBGA (6 x 8 x 1 mm) (51-85150)

MoBL is a registered trademark and MoBL3 and More Battery Life are trademarks of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems applications implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

	ment Title: CYU01M16SCG MoBL3™ 16-Mbit (1M x 16) Pseudo Static RAM ment Number: 001-09739					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	497844	See ECN	NXR	New Data sheet		