February 1999 #### **Preliminary Information** #### 1.0 Features - Dual phase-locked loop (PLL) device two output clock frequencies - On-chip tunable voltage-controlled crystal oscillator (VCXO) allows precise system frequency tuning - 3.3V supply voltage - Small circuit board footprint (8-pin 0.150" SOIC) - Custom frequency selections available contact your local AMI Sales Representative for more information #### **Figure 1: Pin Configuration** ## 2.0 Description The FS6209 is a monolithic CMOS clock generator IC designed to minimize cost and component count in digital video/audio systems. At the core of the FS6209 is circuitry that implements a voltage-controlled crystal oscillator when an external resonator (nominally 13.5MHz) is attached. The VCXO allows device frequencies to be precisely adjusted for use in systems that have frequency matching requirements, such as digital satellite receivers. Two high-resolution phase-locked loops generate two output clocks (CLKA and CLKB) through an array of post-dividers. All frequencies are ratiometrically derived from the VCXO frequency. The locking of all the output frequencies together can eliminate unpredictable artifacts in video systems and reduce electromagnetic interference (EMI) due to frequency harmonic stacking. **Table 1: Crystal / Output Frequencies** | DEVICE | f _{XIN} (MHz) | CLKA (MHz) | CLKB (MHz) | |-----------|------------------------|------------|-----------------------| | FS6209-01 | 13.5 | 54 | 22.5792
(+1.12ppm) | NOTE: Contact AMI for custom PLL frequencies Figure 2: Block Diagram ## FS6209 #### **Dual PLL VCXO Clock Generator IC** ### **Preliminary Information** February 1999 #### **Table 2: Pin Descriptions** Key: Al = Analog Input; AO = Analog Output; DI = Digital Input; DI U = Input with Internal Pull-Up; DI $_D$ = Input with Internal Pull-Down; DIO = Digital Input/Output; DI = Digital Input/Output; DI = Three-Level Digital Input, DO = Digital Output; P = Power/Ground; # = Active Low pin | PIN | TYPE | NAME | DESCRIPTION | | | | |-----|------|-------|----------------------|--|--|--| | 1 | Al | XIN | VCXO Feedback | | | | | 2 | Р | VDD | Power Supply (+3.3V) | | | | | 3 | Al | XTUNE | VCXO Tune | | | | | 4 | Р | VSS | Ground | | | | | 5 | DO | CLKA | Clock Output A | | | | | 6 | DO | CLKB | Clock Output B | | | | | 7 | DO | VSS | Ground | | | | | 8 | AO | XOUT | VCXO Drive | | | | ## 3.0 Functional Block Description ### 3.1 Phase-Locked Loop (PLL) The on-chip PLLs are a standard frequency- and phase-locked loop architecture. The PLL multiplies the reference oscillator to the desired frequency by a ratio of integers. The frequency multiplication is exact with a zero synthesis error. # 3.2 Voltage-Controlled Crystal Oscillator (VCXO) The VCXO provides a tunable, low-jitter frequency reference for the rest of the FS6209 system components. Loading capacitance for the crystal is internal to the FS6209. No external components (other than the resonator itself) are required for operation of the VCXO. Continuous fine-tuning of the VCXO frequency is accomplished by varying the voltage on the XTUNE pin. The total change (from one extreme to the other) in effective loading capacitance is t.b.d. nominal. The oscillator operates the crystal resonator in the parallel-resonant mode. Crystal warping, or the "pulling" of the crystal oscillation frequency, is accomplished by altering the effective load capacitance presented to the crystal by the oscillator circuit. The actual amount that changing the load capacitance alters the oscillator frequency will be dependent on the characteristics of the crystal as well as the oscillator circuit itself. Specifically, the motional capacitance of the crystal (usually referred to by crystal manufacturers as C_1), the static capacitance of the crystal (C_0), and the load capacitance (C_L) of the oscillator determine the warping capability of the crystal in the oscillator circuit. A simple formula to obtain the warping capability of a crystal oscillator is: $$\Delta f(ppm) = \frac{C_1 \times (C_{L2} - C_{L1}) \times 10^6}{2 \times (C_0 + C_{L2}) \times (C_0 + C_{L1})}$$ where C_{L1} and C_{L2} are the two extremes of the applied load capacitance. EXAMPLE: A crystal with the following parameters is used. With C_1 = 0.02pF, C_0 = 5pF, C_{L1} = 10pF, and C_{L2} = 22.66pF, the coarse tuning range is $$\Delta f = \frac{0.02 \times (22.66 - 10) \times 10^6}{2 \times (5 + 22.66) \times (5 + 10)} = 305 \, ppm.$$ February 1999 **Preliminary Information** ## 4.0 Electrical Specifications ## **Table 3: Absolute Maximum Ratings** Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These conditions represent a stress rating only, and functional operation of the device at these or any other conditions above the operational limits noted in this specification is not implied. Exposure to maximum rating conditions for extended conditions may affect device performance, functionality, and reliability. | PARAMETER | SYMBOL | MIN. | MAX. | UNITS | |--|-----------------|----------------------|----------------------|-------| | Supply Voltage (V _{SS} = ground) | V_{DD} | V _{SS} -0.5 | 7 | V | | Input Voltage, dc | Vı | V _{SS} -0.5 | V _{DD} +0.5 | V | | Output Voltage, dc | Vo | V _{SS} -0.5 | V _{DD} +0.5 | V | | Input Clamp Current, dc ($V_1 < 0$ or $V_1 > V_{DD}$) | I _{IK} | -50 | 50 | mA | | Output Clamp Current, dc (V ₁ < 0 or V ₁ > V _{DD}) | lok | -50 | 50 | mA | | Storage Temperature Range (non-condensing) | Ts | -65 | 150 | °C | | Ambient Temperature Range, Under Bias | T _A | -55 | 125 | °C | | Junction Temperature | TJ | | 125 | °C | | Lead Temperature (soldering, 10s) | | | 260 | °C | | Input Static Discharge Voltage Protection (MIL-STD 883E, Method 3015.7) | | | 2 | kV | #### **CAUTION: ELECTROSTATIC SENSITIVE DEVICE** Permanent damage resulting in a loss of functionality or performance may occur if this device is subjected to a high-energy electrostatic discharge. ## **Table 4: Operating Conditions** | PARAMETER | SYMBOL | CONDITIONS/DESCRIPTION | MIN. | TYP. | MAX. | UNITS | |-------------------------------------|----------------|------------------------|------|------|------|-------| | Supply Voltage | V_{DD} | 3.3V ± 10% | 3.0 | 3.3 | 3.6 | V | | Ambient Operating Temperature Range | T _A | | 0 | | 70 | °C | # FS6209 ## **Dual PLL VCXO Clock Generator IC** ## **Preliminary Information** February 1999 ## **Table 5: DC Electrical Specifications** Unless otherwise stated, $V_{DD} = 3.3V \pm 10\%$, no load on any output, and ambient temperature range $T_A = 0^{\circ}\text{C}$ to 70°C . Parameters denoted with an asterisk (*) represent nominal characterization data and are not production tested to any specific limits. Where given, MIN and MAX characterization data are $\pm 3\sigma$ from typical. Negative currents indicate current flows out of the device. | PARAMETER | SYMBOL | SYMBOL CONDITIONS/DESCRIPTION | | TYP. | MAX. | UNITS | | |--|----------------------|---|----|------|------|-------|--| | Overall | | | | | | | | | Supply Current, Dynamic, with Loaded Outputs | I _{DD} | f _{XTAL} = 13.5MHz; C _L = 10pF | | 20 | | mA | | | Voltage Controlled Crystal Oscillator | | | | | | | | | Crystal Resonator Frequency | f _{XTAL} | Fundamental Mode | 5. | 13.5 | 18 | MHz | | | Crystal Loading Capacitance | C _{L(xtal)} | As seen by a crystal connected to XIN and XOUT (@ V _{XTUNE} = 1.65V) | | 20 | | pF | | | Crystal Resonator Motional Capacitance | C _{1(xtal)} | AT cut | | 25 | | fF | | | VCXO Tuning Range | | $f_{XTAL} = 13.5MHz; C_L = 20pF; C_{MOT} = 25fF$ | | 300 | | ppm | | | VCXO Tuning Characteristic | | Note: positive ΔF for positive ΔV | | 100 | | ppm/V | | | Crystal Drive Level | | R_{XTAL} =20 ohm; C_L = 20pF | | 200 | | uW | | | Clock Outputs (CLKA, CLKB, CLKC) | | | | | | | | | High-Level Output Source Current * | I _{OH} | V _O = 2.0V | | 40 | | mA | | | Low-Level Output Sink Current * | I _{OL} | V _O = 0.4V | | 17 | | mA | | | Output Impedance * | Z _{OH} | $V_O = 0.1 V_{DD}$; output driving high | | 25 | | | | | | Z _{OL} | $V_O = 0.1 V_{DD}$; output driving low | | 25 | | Ω | | | Short Circuit Source Current * | I _{OSH} | V _O = 0V; shorted for 30s, max. | | 55 | | mA | | | Short Circuit Sink Current * | I _{OSL} | V _O = 3.3V; shorted for 30s, max. | | 55 | | mA | | ## **Table 6: AC Timing Specifications** Unless otherwise stated, $V_{DD} = 3.3V \pm 10\%$, no load on any output, and ambient temperature range $T_A = 0^{\circ}\text{C}$ to 70°C . Parameters denoted with an asterisk (*) represent nominal characterization data and are not production tested to any specific limits. Where given, MIN and MAX characterization data are $\pm 3\sigma$ from typical. | PARAMETER | SYMBOL | CONDITIONS/DESCRIPTION CLOCK (MHz) | | MIN. | TYP. | MAX. | UNITS | |--|----------------------|--|--|------|------|------|-------| | Clock Outputs (CLKx) | | | | | | | | | Duty Cycle * | | t _{hi} / t _{clk} ; Measured at V _{DD} /2 | | 43 | | 57 | % | | Jitter, Absolute Period (pk-pk) * | $t_{j(\Delta P)}$ | From rising edge to next rising edge at $V_{DD}/2$, $C_L = 10pF$ | | | 300 | | ps | | Jitter, RMS Long Term $(\sigma_y(\tau))$ * | t _{j(LT)} | From 0-500μs at V _{DD} /2, C _L = 10pF compared to ideal clock source | | | 150 | | ps | | Rise Time * | t _r | $V_{DD} = 3.3V$; $V_{O} = 0.3V$ to 3.0V; $C_{L} = 10pF$ | | | 1 | | ns | | Fall Time * | t _f | $V_{DD} = 3.3V$; $V_{O} = 3.0V$ to 0.3V; $C_{L} = 10pF$ | | | 1 | | ns | | Output Frequency Synthesis Error | | (unless otherwise noted in Frequency Table) | | | | 0 | ppm | | VCXO Stabilization Time * | t _{VCXOSTB} | From power valid | | | 10 | | ms | | PLL Stabilization Time * | t _{PLLSTB} | From VCXO stable | | | 500 | | us | February 1999 **Preliminary Information** ## 5.0 Package Information Table 7: 8-pin SOIC (0.150") Package Dimensions | | DIMENSIONS | | | | | | | |----|------------|--------|-------------|-------|--|--|--| | | INC | HES | MILLIMETERS | | | | | | | MIN. | MAX. | MIN. | MAX. | | | | | Α | 0.061 | 0.068 | 1.55 | 1.73 | | | | | A1 | 0.004 | 0.0098 | 0.102 | 0.249 | | | | | A2 | 0.055 | 0.061 | 1.40 | 1.55 | | | | | В | 0.013 | 0.019 | 0.33 | 0.49 | | | | | С | 0.0075 | 0.0098 | 0.191 | 0.249 | | | | | D | 0.189 | 0.196 | 4.80 | 4.98 | | | | | Е | 0.150 | 0.157 | 3.81 | 3.99 | | | | | е | 0.050 | BSC | 1.27 | BSC | | | | | Н | 0.230 | 0.244 | 5.84 | 6.20 | | | | | h | 0.010 | 0.016 | 0.25 | 0.41 | | | | | L | 0.016 | 0.035 | 0.41 | 0.89 | | | | | Θ | 0° | 8° | 0° | 8° | | | | Table 8: 8-pin SOIC (0.150") Package Characteristics | PARAMETER | SYMBOL | CONDITIONS/DESCRIPTION | TYP. | UNITS | | |---|-----------------|-------------------------------|------|-------|--| | Thermal Impedance, Junction to Free-Air 8-pin 0.150" SOIC | Θ_{JA} | Air flow = 0 m/s | 110 | °C/W | | | Load Industriana Calf | L ₁₁ | Corner lead | 2.0 | nH | | | Lead Inductance, Self | | Center lead | 1.6 | | | | Lead Inductance, Mutual | L ₁₂ | Any lead to any adjacent lead | 0.4 | nΗ | | | Lead Capacitance, Bulk | C ₁₁ | Any lead to V _{SS} | 0.27 | pF | | # FS6209 #### **Dual PLL VCXO Clock Generator IC** **Preliminary Information** February 1999 ## 6.0 Ordering Information | ORDERING CODE | DEVICE NUMBER | PACKAGE TYPE | OPERATING
TEMPERATURE RANGE | SHIPPING
CONFIGURATION | |---------------|---------------|--|--------------------------------|---------------------------| | 11640-801 | FS6209-01 | 8-pin (0.150") SOIC
(Small Outline Package) | 0°C to 70°C (Commercial) | Tape and Reel | | 11640-811 | FS6209-01 | 8-pin (0.150") SOIC
(Small Outline Package) | 0°C to 70°C (Commercial) | Tubes | #### Copyright © 1998 American Microsystems, Inc. Devices sold by AMI are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale only. AMI makes no warranty, express, statutory implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. AMI makes no warranty of merchantability or fitness for any purposes. AMI reserves the right to discontinue production and change specifications and prices at any time and without notice. AMI's products are intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment, are specifically not recommended without additional processing by AMI for such applications. American Microsystems, Inc., 2300 Buckskin Rd., Pocatello, ID 83201, (208) 233-4690, FAX (208) 234-6796, WWW Address: http://www.amis.com E-mail: tgp@amis.com