

NATL SEMICOND {UP/UC} & DE 6501128 0059896 & 7-46-13-27

NMC27C32B

Connection Diagram

Dι	ial-	in-Line Pac	kaç	je
		$\overline{\mathbf{\nabla}}$		
A7 —	1	-	24	-v _{cc}
A6 —	2		23	- A8
A5 —	3		22	A9
A4	4		21	- A11
A3 —	5		20	- ŌĒ / V _{PP}
A2 —	6	NMC27C32B	19	- A10
A1 —	7		18	- ĈĒ
A0 —	8		17	- 0 ₇
₀_–	9		16	- 0 ₆
o ₁	10		15	— 0 ₅
0 ₂ —	11		14	- 0 ₄
ND	12		13	- 0 ₃
				I
				TL/D/8827-2

27C16	27C64	27C128	27C256
2716	2764	27128	27256
	Vcc	Vcc	V _{CC}
	PGM	PGM	A14
Vcc	NC	A13	A13
A8	A8	A8	A8
A9	A9	A9	A9
VPP	A11	A11	A11
ŌĒ	OE	ŌĒ	ŌĒ
A10	A10	A10	A10
ĈĒ	CE	CE	ĈĒ
07	07	07	07
06	06	06	06
05	05	05	05
04	04	04	04
03	03	03	0 ₃

Top View

Note: National's socket compatible EPROM pin configurations are shown in the blocks adjacent to the NMC27C32B pins.

G

See NS Package Number J24A-Q

Commercial Temp Range (0°C to + 70°C)

 $V_{CC} = 5V \pm 10\%$

Parameter/Order Number	Access Time (ns)		
NMC27C32BQ200	200		
NMC27C32BQ350	350		

Extended Temp Range (-40°C to +85°C)

 $V_{\rm CC} = 5V \pm 10\%$

Parameter/Order Number	Access Time (ns)
NMC27C32BQE200	200
NMC27C32BQE350	350

3-194

NATL SEMICO	NŊ {UP/UC} &⊾	DE 6501158 00598	97 0 7-46-13-29
contained in this datashe reliability electrical test sp Temperature Under Bias Storage Temperature	Aerospace products are not eet. Refer to the associated	V _{PP} Supply and A9 Voltage with Respect to Ground Power Dissipation Lead Temp. (Soldering, 10 sec.) ESD rating to be determined.	+ 14.0V to -0.3V 1.0W 300°C
All Input Voltages with Respect to Ground	+6.5V to -0.3V	Operating Conditions	(Note 7)
All Output Voltages with Respect to Ground	V_{CC} + 0.3V to GND – 0.3V	Temperature Range NMC27C32BQ200, 350 NMC27C32BQE200, E350 V _{CC} Power Supply	0°C to + 70°C - 40°C to + 85°C + 5V ± 10%
READ OPERATIC	N		
DC Electrical Cha	aracteristics		

_

3

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
ILI	Input Load Current	V _{IN} = V _{CC} or GND			10	μA
ILO	Output Leakage Current	$V_{OUT} = V_{CC} \text{ or GND, } \overline{CE} = V_{IH}$			10	μA
ICC1	V _{CC} Current (Active) TTL Inputs	$\overrightarrow{CE} = V_{IL}$, f = 1 MHz Inputs = V _{IH} or V _{IL} I/O = 0 mA		2	10	mA
ICC2	V _{CC} Current (Active) CMOS Inputs	\overline{CE} = GND, f = 1 MHz Inputs = V _{CC} or GND, I/O = 0 mA		1	5	mA
ICCSB1	V _{CC} Current (Standby) TTL Inputs	CE = V _{IH}		0.1	1	mA
ICCSB2	V _{CC} Current (Standby) CMOS Inputs	CE = V _{CC}		0.01	100	μA
VIL	Input Low Voltage		-0.1		0.8	v
VIH	Input High Voltage		2.0		V _{CC} + 1	V
V _{OL1}	Output Low Voltage	$I_{OL} = 2.1 \text{ mA}$			0.45	v
V _{OH1}	Output High Voltage	I _{OH} = -400 μA	2.4			V
V _{OL2}	Output Low Voltage	l _{OL} = 0 μA			0.1	V
V _{OH2}	Output High Voltage	l _{OH} = 0 μA	V _{CC} -0.1			V

AC Electrical Characteristics

Symbol	Parameter	Conditions	NMC27C32B 200, E200		NMC27C32B 350, E350		Units
			Min	Max	Min	Max	Ĺ
tACC	Address to Output Delay	$\overline{CE} = \overline{OE} = V_{IL}$		200		350	ns
t _{CE}	CE to Output Delay	$\overline{OE} = V_{IL}$		200		350	ns
t _{OE}	OE to Output Delay	$\overline{CE} = V_{IL}$		60		150	ns
t _{DF}	OE High to Output Float	CE = V _{IL}	0	60	0	130	ns
^t OH	Output Hold from Addresses, CE or OE, Whichever Occurred First	$\overline{CE} = \overline{OE} = V_{ L}$	0		0		ns

A DOLLARS - MA

NATL SEMICOND {UP/UC} & DE 6501128 0059898 1 746-13-29

NMC27C32B

Capacitance $T_A = +25^{\circ}C$, f = 1 MHz (Note 3)

Symbol	Parameter	Conditions	Тур	Мах	Units
CIN	Input Capacitance	$V_{IN} = 0V$	4	6	pF
COUT	Output Capacitance	$V_{OUT} = 0V$	8	12	рF

AC Test Conditions

Output Load	1 TTL Gate and $C_L =$	100 pF (Note 9)
Input Rise and Fall Ti	mes	≤20 ns
Input Pulse Levels		0.45V to 2.4V

Timing Measurement Reference Level	
Inputs	1
Outputs	0.8

1V and 2V 0.8V and 2V

AC Waveforms

DE 6501128 0059899 3 7-46-13-29 NATL SEMICOND {UP/UC} &L

Symbol	Parameter	Conditions	Min	Тур	Max	Units
AS	Address Set-Up Time		2			μs
OES	OE Set-Up Time		2			μs
DS	Data Set-Up Time		2			μs
t _{AH}	Address Hold Time		0			μs
рн	Data Hold Time		2			μs
VR	V _{PP} Recovery Time		2			μs
ЮЕН	OE Hold Time		2			μs
^I DV	Data Valid From CE	$\overline{CE} = \overline{OE} = V_{IL}$			11	μs
PRT	OE Pulse Rise Time During Programming		50			ns
DF	Output Enable to Output Float Delay	CE = V _{IL}	0		130	ns
lpw	Program Pulse Width		0.5	0.5	10	ms
PP	V _{PP} Supply Current During Programming Pulse	$\overline{CE} = V_{IL}$			30	mA
 lcc	V _{CC} Supply Current				10	mA

AC Test Conditions

25V
3.3V
0 ns
2.4V

Timing Measurement Reference Level Inputs 1V and 2V 0.8V and 2V Outputs

3

Programming Waveforms (Note 3)

Note: All times shown in parentheses are minimum and in μ s unless otherwise specified.

Note 1: National's standard product warranty applies only to devices programmed to specifications described herein.

Note 2: V_{CC} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP}. The NMC27C32B must not be inserted into or removed from a board with voltage applied to Vpp or Vcc.

Note 3: The maximum allowable voltage which may be applied to the Vpp pin during programming is 14V. Care must be taken when switching the Vpp supply to prevent overshoot exceeding this 14V maximum specification. At least a 0.1 µF capacitor is required across Vpp, V_{CC} to GND to suppress spurious voltage transients which may damage the device.

Note 4: Programming and program verify are tested at nominal power supply voltages.

3-197

Construction of the second

DEVICE OPERATION

The five modes of operation of the NMC27C32B are listed in Table 1. A single 5V power supply is required in the read mode. All inputs are TTL levels except for \overline{OE}/V_{PP} during programming. In the program mode the \overline{OE}/V_{PP} input is pulsed from a TTL low level to 13V.

Read Mode

The NMC27C32B has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (\overline{CE}) is the power control and should be used for device selection. Output Enable (\overline{OE}) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (t_{ACC}) is equal to the delay from \overline{CE} to output (t_{CE}). Data is available at the outputs after the falling edge of \overline{OE} , assuming that \overline{CE} has been low and addresses have been stable for at least $t_{ACC}-t_{OE}$.

Standby Mode

The NMC27C32B has a standby mode which reduces the active power dissipation by 99%, from 26.3 mW to 0.53 mW. The NMC27C32B is placed in the standby mode by applying a CMOS high signal to the \overline{CE} input. When in standby mode, the outputs are in a high impedance state, independent of the \overline{OE} input.

Output OR-Tying

Because EPROMs are usually used in larger memory arrays, National has provided a 2-line control function that accommodates this use of multiple memory connection. The 2-line control function allows for:

- a) The lowest possible memory power dissipation, and
- b) complete assurance that output bus contention will not occur.

To most efficiently use these two control lines, it is recommended that \overline{CE} (pin 18) be decoded and used as the primary device selecting function, while \overline{OE} (pin 20) be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low

power standby modes and that the output pins are active only when data is desired from a particular memory device.

Programming

CAUTION: Exceeding 14V or pin 1 (V_{PP}) will damage the NMC27C32B.

Initially, and after each erasure, all bits of the NMC27C32B are in the "1" state. Data is introduced by selectively programming "0s" into the desired bit locations. Although only "0s" will be programmed, both "1s" and "0s" can be presented in the data word. The only way to change a "0" to a "1" is by ultraviolet light erasure.

The NMC27C32B is in the programming mode when $\overline{\text{OE}}/\text{V}_{\text{PP}}$ is at 13V. It is required that at least a 0.1 μF capacitor be placed across $\overline{\text{OE}}/\text{V}_{\text{PP}}$, V_{CC} and ground to suppress spurious voltage transients which may damage the device. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.

When the address and data are stable, an active low, TTL program pulse is applied to the \overline{CE} input. A program pulse must be applied at each address location to be programmed. Any location may be programmed at any time-either individually, sequentially, or at random. The NMC27C32B is designed to be programmed in either of two ways: single pulse programming, where each address is programmed with a 10 ms pulse; or interactive programming, where each address is programmed with a series of 0.5 ms pulses until it verifies (up to a maximum of 20 pulses or 10 ms). Only the interactive programming method has been tested. The NMC27C32B must not be programmed with a DC signal applied to the \overline{CE} input.

Programming multiple NMC27C32Bs in parallel with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the paralleled NMC27C32B may be connected together when they are programmed with the same data. A low level TTL pulse applied to the \overline{CE} input programs the paralleled NMC27C32B.

TABLE I. Mode Selection

Pins	ĈĒ	OE/Vpp	Vcc	Outputs	
Mode	(18)	(20)	(24)	(9-11, 13–17)	
Read V _{IL}		VIL	5	DOUT	
Standby	V _{IH}	Don't Care	5	Hi-Z	
Program	VIL	13	6	D _{IN}	
Program Verify	VIL	VIL	6 D _{OUT}		
Program Inhibit	VIH	13	6	Hi-Z	

3-199

NMC27C32B

3

NATL SEMICON⊅ {UP/UC} &⊾

DE P201158 0029905 0

Functional Description (Continued)

Program Inhibit

NMC27C32B

Programming multiple NMC27C32B in parallel with different data is also easily accomplished. Except for $\overrightarrow{\text{CE}}$ all like inputs (including $\overrightarrow{\text{OE}}$) of the parallel NMC27C32B may be common. A TTL low level program pulse applied to an NMC27C32B's $\overrightarrow{\text{CE}}$ input with $\overrightarrow{\text{OE}}/V_{PP}$ at 13.0V will program that NMC27C32B. A TTL high level $\overrightarrow{\text{CE}}$ input inhibits the other NMC27C32B from being programmed.

Program Verify

A verify should be performed on the programmed bits to determine whether they were correctly programmed. The verify is accomplished with \overline{OE}/V_{PP} and \overline{CE} at V_{IL} . Data should be verified t_{DV} after the falling edge of \overline{CE} .

MANUFACTURER'S IDENTIFICATION CODE

The NMC27C32B has a manufacturer's identification code to aid in programming. The code, shown in Table II, is two bytes wide and is stored in a ROM configuration on the chip. It identifies the manufacturer and the device type. The code for the NMC27C32B is, "8F61", where "8F" designates that it is made by National Semiconductor, and "61" designates a 32k part.

The code is accessed by applying 12V $\pm 0.5V$ to address pin A9. Addresses A1-A8, A10-A11, \overline{CE} , and \overline{OE} are held at V_{IL}. Address A0 is held at V_{IL} for the manufacturer's code, and at V_{IH} for the device code. The code is read out on the 8 data pins. Proper code access is only guaranteed at 25°C $\pm 5^{\circ}$ C.

The primary purpose of the manufacturer's identification code is automatic programming control. When the device is inserted in an EPROM programmer socket, the programmer reads the code and then automatically calls up the specific programming algorithm for the part. This automatic programming control is only possible with programmers which have the capability of reading the code.

ERASURE CHARACTERISTICS

Constant of the second

The erasure characteristics of the NMC27C32B are such that erasure begins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (Å). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the $3000\text{\AA}-4000\text{\AA}$ range. Data shows that constant exposure to room-level fluorescent lighting could erase the typical NMC27C32B in approximately 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If

the NMC27C32B is to be exposed to these types of lighting conditions for extended periods of time, opaque labels should be placed over the NMC27C32B's window to prevent unintentional erasure. Covering the window will also prevent temporary functional failure due to the generation of photo currents.

T-46-13-29

The recommended erasure procedure for the NMC27C32B is exposure to short wave ultraviolet light which has a wavelength of 2537 Angstroms (Å). The integrated dose (i.e., UV intensity x exposure time) for erasure should be a minimum of 15W-sec/cm².

The NMC27C32B should be placed within 1 inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed before erasure. Table III shows the minimum NMC27C32B erasure time for various light intensities.

An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at one inch. The erasure time increases as the square of the distance. (If distance is doubled the erasure time increases by a factor of 4.) Lamps lose intensity as they age. When a lamp is changed, the distance has changed or the lamp has aged, the system should be checked to make certain full erasure is occurring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and even system designs have been erroneously suspected when in complete erasure was the problem.

SYSTEM CONSIDERATION

The power switching characteristics of EPROMs require careful decoupling of the devices. The supply current, ICC. has three segments that are of interest to the system designer-the standby current level, the active current level. and the transient current peaks that are produced by voltage transitions on input pins. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. The associated V_{CC} transient voltage peaks can be suppressed by properly selected decoupling capacitors. It is recommended that at least a 0.1 µF ceramic capacitor be used on every device between V_{CC} and GND. This should be a high frequency capacitor of low inherent inductance. In addition, at least a 4.7 µF bulk electrolytic capacitor should be used between $V_{\mbox{CC}}$ and GND for each eight devices. The bulk capacitor should be located near where the power supply is connected to the array. The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of the PC board traces.

	T/	ABLE II.	Manufa	cturer's	Identifi	cation C	ode			
Pins	A ₀ (8)	0 ₇ (17)	0 ₆ (16)	0 ₅ (15)	0 ₄ (14)	0 ₃ (13)	0 ₂ (11)	0 ₁ (10)	0 ₀ (9)	Hex Data
Manufacturer Code	VIL	1	0	0	0	1	1	1	1	8F
Device Code	ViH	0	1	1	0	0	0	0	1	61

TABLE III. Minimum NMC27C32B Erasure Time

Light Intensity (Micro-Watts/cm ²)	Erasure Time (Minutes)		
15,000	20		
10,000	25		
5,000	50		

3-200