Features

- High-performance, Low-power AVR® 8-bit Microcontroller
- Advanced RISC Architecture
 - 130 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers + Peripheral Control Registers
 - Fully Static Operation
 - Up to 16 MIPS Throughput at 16 MHz
 - On-chip 2-cycle Multiplier
- Non-volatile Program and Data Memories
 - 64K Bytes of In-System Reprogrammable Flash

Endurance: 10,000 Write/Erase Cycles

 Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program

True Read-While-Write Operation

2K Bytes EEPROM

Endurance: 100,000 Write/Erase Cycles

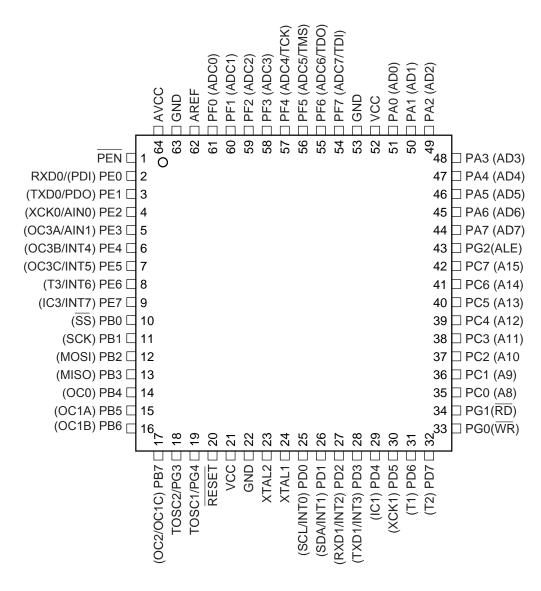
- 4K Bytes Internal SRAM
- Up to 64K Bytes Optional External Memory Space
- Programming Lock for Software Security
- SPI Interface for In-System Programming
- JTAG (IEEE std. 1149.1 Compliant) Interface
 - Boundary-scan Capabilities According to the JTAG Standard
 - Extensive On-chip Debug Support
 - Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- · Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
 - Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode, and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Two 8-bit PWM Channels
 - 6 PWM Channels with Programmable Resolution from 1 to 16 Bits
 - 8-channel, 10-bit ADC
 - 8 Single-ended Channels
 - 7 Differential Channels
 - 2 Differential Channels with Programmable Gain (1x, 10x, 200x)
 - Byte-oriented Two-wire Serial Interface
 - Dual Programmable Serial USARTs
 - Master/Slave SPI Serial Interface
 - Programmable Watchdog Timer with On-chip Oscillator
 - On-chip Analog Comparator
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated RC Oscillator
 - External and Internal Interrupt Sources
 - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby
 - Software Selectable Clock Frequency
 - ATmega103 Compatibility Mode Selected by a Fuse
 - Global Pull-up Disable
- I/O and Packages
 - 53 Programmable I/O Lines
 - 64-lead TQFP and 64-pad MLF
- Operating Voltages
 - 2.7 5.5V for ATmega64L
 - 4.5 5.5V for ATmega64
- Speed Grades
 - 0 8 MHz for ATmega64L
 - 0 16 MHz for ATmega64

8-bit AVR®
Microcontroller
with 64K Bytes
In-System
Programmable
Flash

ATmega64 ATmega64L

Preliminary Summary

2490ES-AVR-09/03

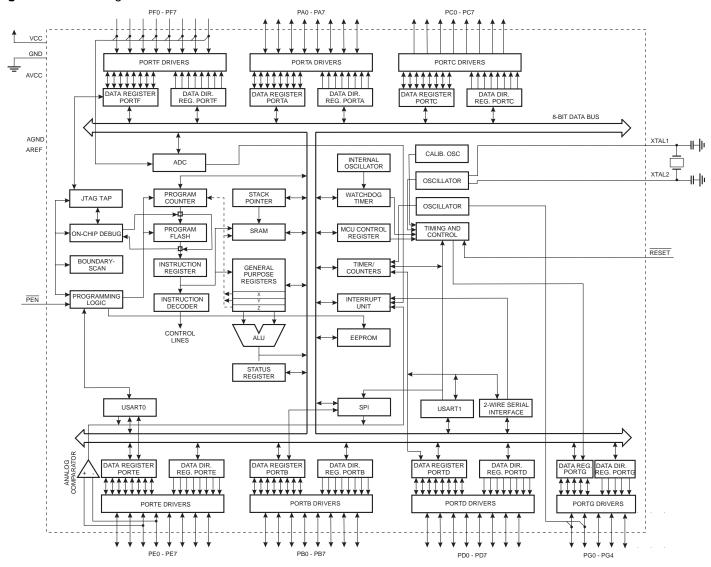


Pin Configuration

Figure 1. Pinout ATmega64

TQFP/MLF

Disclaimer


Typical values contained in this data sheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

Overview

The ATmega64 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega64 achieves throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed.

Block Diagram

Figure 2. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega64 provides the following features: 64K bytes of In-System Programmable Flash with Read-While-Write capabilities, 2K bytes EEPROM, 4K bytes SRAM, 53 general purpose I/O lines, 32 general purpose working registers, Real Time Counter (RTC), four flexible Timer/Counters with compare modes and PWM, two USARTs, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with optional differential input stage with programmable gain, programmable Watchdog Timer with internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug system and programming, and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Powerdown mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. In Extended Standby mode, both the main Oscillator and the asynchronous timer continue to run.

The device is manufactured using Atmel's high-density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot Program can use any interface to download the Application Program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega64 is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embedded control applications.

The ATmega64 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, In-Circuit Emulators, and evaluation kits.

ATmega103 and ATmega64 Compatibility

The ATmega64 is a highly complex microcontroller where the number of I/O locations supersedes the 64 I/O location reserved in the AVR instruction set. To ensure backward compatibility with the ATmega103, all I/O locations present in ATmega103 have the same location in ATmega64. Most additional I/O locations are added in an Extended I/O space starting from 0x60 to 0xFF (i.e., in the ATmega103 internal RAM space). These location can be reached by using LD/LDS/LDD and ST/STS/STD instructions only, not by using IN and OUT instructions. The relocation of the internal RAM space may still be a problem for ATmega103 users. Also, the increased number of Interrupt Vectors might be a problem if the code uses absolute addresses. To solve these problems, an ATmega103 compatibility mode can be selected by programming the fuse M103C. In this mode, none of the functions in the Extended I/O space are in use, so the internal RAM is located as in ATmega103. Also, the extended Interrupt Vectors are removed.

The ATmega64 is 100% pin compatible with ATmega103, and can replace the ATmega103 on current printed circuit boards. The application note "Replacing ATmega103 by ATmega64" describes what the user should be aware of replacing the ATmega103 by an ATmega64.

ATmega103 Compatibility Mode

By programming the M103C Fuse, the ATmega64 will be compatible with the ATmega103 regards to RAM, I/O pins and Interrupt Vectors as described above. However, some new features in ATmega64 are not available in this compatibility mode, these features are listed below:

- One USART instead of two, asynchronous mode only. Only the eight least significant bits of the Baud Rate Register is available.
- One 16 bits Timer/Counter with two compare registers instead of two 16 bits Timer/Counters with three compare registers.
- Two-wire serial interface is not supported.
- Port G serves alternate functions only (not a general I/O port).
- Port F serves as digital input only in addition to analog input to the ADC.
- Boot Loader capabilities is not supported.
- It is not possible to adjust the frequency of the internal calibrated RC Oscillator.
- The External Memory Interface can not release any Address pins for general I/O, neither configure different wait states to different External Memory Address sections.
- Only EXTRF and PORF exist in the MCUCSR Register.
- No timed sequence is required for Watchdog Timeout change.
- Only low-level external interrupts can be used on four of the eight External Interrupt sources.
- Port C is output only.
- USART has no FIFO buffer, so Data OverRun comes earlier.
- The user must have set unused I/O bits to 0 in ATmega103 programs.

Pin Descriptions

VCC

Digital supply voltage.

GND

Ground.

Port A (PA7..PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega64 as listed on page 70.

Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATmega64 as listed on page 71.

Port C (PC7..PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port C also serves the functions of special features of the ATmega64 as listed on page 74. In ATmega103 compatibility mode, Port C is output only, and the port C pins are **not** tri-stated when a reset condition becomes active.

Port D (PD7..PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega64 as listed on page 75.

Port E (PE7..PE0)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the ATmega64 as listed on page 78.

Port F (PF7..PF0)

Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS) and PF4(TCK) will be activated even if a reset occurs.

The TDO pin is tri-stated unless TAP states that shift out data are entered.

Port F also serves the functions of the JTAG interface.

In ATmega103 compatibility mode, Port F is an input port only.

Port G (PG4..PG0)

Port G is a 5-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port G also serves the functions of various special features.

In ATmega103 compatibility mode, these pins only serves as strobes signals to the external memory as well as input to the 32 kHz Oscillator, and the pins are initialized to PG0 = 1, PG1 = 1, and PG2 = 0 asynchronously when a reset condition becomes active, even if the clock is not running. PG3 and PG4 are Oscillator pins.

ATmega64(L)

RESET Reset input. A low level on this pin for longer than the minimum pulse length will gener-

ate a reset, even if the clock is not running. The minimum pulse length is given in Table

19 on page 49. Shorter pulses are not guaranteed to generate a reset.

XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

XTAL2 Output from the inverting Oscillator amplifier.

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally

connected to V_{CC}, even if the ADC is not used. If the ADC is used, it should be con-

nected to V_{CC} through a low-pass filter.

AREF is the analog reference pin for the A/D Converter.

PENThis is a programming enable pin for the SPI Serial Programming mode. By holding this

pin low during a Power-on Reset, the device will enter the SPI Serial Programming

mode. PEN has no function during normal operation.

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	-	-	-	-	-	-	-	-	
	Reserved	_	-	-	_	_	_	-	-	
(0x9E)	Reserved	-	-	-	_	-	-	-	-	
(0x9D)	UCSR1C	-	UMSEL1	UPM11	UPM10	USBS1	UCSZ11	UCSZ10	UCPOL1	188
(0x9C)	UDR1		1	T	USART1 I/C	Data Register	1	1		185
(0x9B)	UCSR1A	RXC1	TXC1	UDRE1	FE1	DOR1	UPE1	U2X1	MPCM1	186
(0x9A)	UCSR1B	RXCIE1	TXCIE1	UDRIE1	RXEN1	TXEN1	UCSZ12	RXB81	TXB81	187
(0x99)	UBRR1L		i		USART1 Baud	Rate Register Lo				190
(0x98)	UBRR1H	-	_	_	_			Rate Register Hig		190
(0x97) (0x96)	Reserved Reserved	_	_	-	-	-	-	-	-	
(0x95)	UCSR0C	_	UMSEL0	UPM01	UPM00	USBS0	UCSZ01	UCSZ00	UCPOL0	188
(0x94)	Reserved	_	-	- UT WIOT	-	-	-	-	-	100
(0x93)	Reserved	_	_	_	_	_	_	_	_	
(0x92)	Reserved	_	_	_	_	_	_	_	_	
(0x91)	Reserved	_	_	_	_	_	_	_	_	
(0x90)	UBRR0H	_	_	-	-		USART0 Baud I	Rate Register Hig	h	190
(0x8F)	Reserved	_	_	-	_	_	_	_	-	
(0x8E)	ADCSRB	_	-	-	-	_	ADTS2	ADTS1	ADTS0	246
(0x8D)	Reserved	-	-	-	_	-	-	-	-	
(0x8C)	TCCR3C	FOC3A	FOC3B	FOC3C	-	-	-	_	-	135
(0x8B)	TCCR3A	COM3A1	COM3A0	COM3B1	COM3B0	COM3C1	COM3C0	WGM31	WGM30	130
(A8x0)	TCCR3B	ICNC3	ICES3	_	WGM33	WGM32	CS32	CS31	CS30	133
(0x89)	TCNT3H			Time	er/Counter3 – Co	unter Register Hi	gh Byte			135
(88x0)	TCNT3L			Time	er/Counter3 – Co	unter Register Lo	w Byte			135
(0x87)	OCR3AH				unter3 – Output C		_ ,			136
(0x86)	OCR3AL				unter3 – Output C					136
(0x85)	OCR3BH				unter3 – Output C					136
(0x84)	OCR3BL				unter3 – Output C					136
(0x83)	OCR3CH				unter3 – Output C					136
(0x82)	OCR3CL		Timer/Counter3 – Output Compare Register C Low Byte Timer/Counter3 – Input Capture Register High Byte					136		
(0x81)	ICR3H ICR3L									137 137
(0x80) (0x7F)	Reserved	_	_	- Timei/	Counter3 – Input –	Capture Register	–	_	_	137
(0x7E)	Reserved	_	_	_	_	_	_	_	_	
(0x7D)	ETIMSK	_	_	TICIE3	OCIE3A	OCIE3B	TOIE3	OCIE3C	OCIE1C	138
(0x7C)	ETIFR	_	_	ICF3	OCF3A	OCF3B	TOV3	OCF3C	OCF1C	139
(0x7B)	Reserved	_	_	-	_	_	_	_	-	
(0x7A)	TCCR1C	FOC1A	FOC1B	FOC1C	-	-	-	-	-	134
(0x79)	OCR1CH			Timer/Co	unter1 – Output C	ompare Register	C High Byte			136
(0x78)	OCR1CL			Timer/Co	unter1 – Output C	Compare Register	C Low Byte			136
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	-	-	-	-	-	-	-	
(0x75)	Reserved	=	-	-	-	-	-	-	-	
(0x74)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	204
(0x73)	TWDR		1		wo-wire Serial In			I	=14.5	206
(0x72)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	206
(0x71)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3		TWPS1	TWPS0	205
(0x70)	TWBR			Tw	o-wire Serial Inte		gister			204
(0x6F) (0x6E)	OSCCAL					ibration Register				40
(0x6E)	Reserved XMCRA	_	SRL2	SRL1	SRL0	SRW01	SRW00	SRW11	-	30
(0x6C)	XMCRA	XMBK	SRL2	SKL1	SKLU -	- SRW01	XMM2	XMM1	XMM0	30
(0x6C)	Reserved	- AWIDN	_	_	_	_	AIVIIVIZ	- AIVIIVI I	- AIVIIVIO	υZ
(0x6A)	EICRA	ISC31	ISC30	ISC21	ISC20	ISC11	ISC10	ISC01	ISC00	87
(0x69)	Reserved	-	-	-	-	-	-	-	-	<u> </u>
(0x68)	SPMCSR	SPMIE	RWWSB	-	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN	280
(0x67)	Reserved	_	-	-	-	_	-	_	-	
(0x66)	Reserved	-	-	-	-	-	-	_	_	
(0x65)	PORTG	-	_	-	PORTG4	PORTG3	PORTG2	PORTG1	PORTG0	86
(0x64)	DDRG	-	_	-	DDG4	DDG3	DDG2	DDG1	DDG0	86
(0x63)	PING	-	_	-	PING4	PING3	PING2	PING1	PING0	86
(0x62)	PORTF	PORTF7	PORTF6	PORTF5	PORTF4	PORTF3	PORTF2	PORTF1	PORTF0	85
(0x61)	DDRF	DDF7	DDF6	DDF5	DDF4	DDF3	DDF2	DDF1	DDF0	86

Register Summary (Continued)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
-			Біг б	Dit 3	DIL 4	ысэ	Bit Z	Bit I	Bit 0	raye
(0x60)	Reserved	-	_	-	-	-	-	_	-	
0x3F (0x5F)	SREG	1	T	Н	S	٧	N	Z	С	10
0x3E (0x5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	12
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	12
0x3C (0x5C)	XDIV	XDIVEN	XDIV6	XDIV5	XDIV4	XDIV3	XDIV2	XDIV1	XDIV0	42
0x3B (0x5B)	Reserved	-	-	-	-	-	-	-	-	
0x3A (0x5A)	EICRB	ISC71	ISC70	ISC61	ISC60	ISC51	ISC50	ISC41	ISC40	88
0x39 (0x59)	EIMSK	INT7	INT6	INT5	INT4	INT3	INT2	INT1	INTO	89
0x38 (0x58)	EIFR	INTF7	INTF6	INTF5	INTF4	INTF3	INTF	INTF1	INTF0	89
0x37 (0x57) 0x36 (0x56)	TIMSK	OCIE2	TOIE2 TOV2	TICIE1 ICF1	OCIE1A OCF1A	OCIE1B	TOIE1	OCIE0 OCF0	TOIE0	106, 137, 157
. ,	TIFR	OCF2				OCF1B	TOV1		TOV0	106, 139, 157
0x35 (0x55)	MCUCR	SRE	SRW10	SE	SM1	SM0	SM2	IVSEL	IVCE PORF	30, 43, 61
0x34 (0x54)	MCUCSR	JTD	-	-	JTRF	WDRF	BORF	EXTRF	1	52, 255
0x33 (0x53)	TCCR0	FOC0	WGM00	COM01	COM00	WGM01	CS02	CS01	CS00	101
0x32 (0x52)	TCNT0			т:		unter0 (8 Bit)	-:-t			103 103
0x31 (0x51)	OCR0	_			mer/Counter0 Ou	i i	Ĭ	OCDOUD	TODOLID	
0x30 (0x50)	ASSR		-	COM1B1		AS0 COM1C1	TCN0UB	OCR0UB	TCR0UB	104
0x2F (0x4F)	TCCR1A	COM1A1	COM1A0		COM1B0		COM1C0	WGM11	WGM10	130
0x2E (0x4E)	TCCR1B TCNT1H	ICNC1	ICES1	- Time	WGM13	WGM12	CS12	CS11	CS10	133 135
0x2D (0x4D)	1				er/Counter1 – Cou					
0x2C (0x4C)	TCNT1L				er/Counter1 – Co					135 136
0x2B (0x4B)	OCR1AH				unter1 – Output C	· · · · · ·				
0x2A (0x4A)	OCR1AL				unter1 – Output C		•			136
0x29 (0x49)	OCR1BH				unter1 – Output C					136
0x28 (0x48)	OCR1BL				unter1 – Output C		•			136
0x27 (0x47)	ICR1H				Counter1 – Input (137
0x26 (0x46)	ICR1L	5000	14/01/00		Counter1 – Input		· · · · · · · · · · · · · · · · · · ·	0004	0000	137
0x25 (0x45)	TCCR2	FOC2	WGM20	COM21	COM20	WGM21	CS22	CS21	CS20	154
0x24 (0x44)	TCNT2					unter2 (8 Bit)				156
0x23 (0x43)	OCR2	IDDD/	I	l II	ner/Counter2 Out I	put Compare Re	gister	T	1	157
0x22 (0x42)	OCDR	IDRD/ OCDR7	OCDR6	OCDR5	OCDR4	OCDR3	OCDR2	OCDR1	OCDR0	252
0x21 (0x41)	WDTCR	_	_	_	WDCE	WDE	WDP2	WDP1	WDP0	54
0x20 (0x40)	SFIOR	TSM	_	_	-	ACME	PUD	PSR0	PSR321	69, 108, 142, 226
0x1F (0x3F)	EEARH	-	_	-	-	-	EEPROM	Address Registe	r High Byte	20
0x1E (0x3E)	EEARL				EEPROM Addres	s Register Low B	yte			20
0x1D (0x3D)	EEDR				EEPROM	Data Register				20
0x1C (0x3C)	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	20
0x1B (0x3B)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	84
0x1A (0x3A)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	84
0x19 (0x39)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	84
0x18 (0x38)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	84
0x17 (0x37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	84
0x16 (0x36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	84
0x15 (0x35)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	84
0x14 (0x34)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	84
0x13 (0x33)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	85
0x12 (0x32)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	85
0x11 (0x31)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	85
	<u> </u>	וטטטו	0000	0000		DDD0			_	_
0x10 (0x30)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	85
0x10 (0x30) 0x0F (0x2F)					PIND4		PIND2	PIND1	PIND0	85 166
` '	PIND				PIND4	PIND3	PIND2	PIND1	PIND0 SPI2X	
0x0F (0x2F)	PIND SPDR	PIND7	PIND6		PIND4	PIND3	PIND2 - CPHA	PIND1 - SPR1	1	166
0x0F (0x2F) 0x0E (0x2E)	PIND SPDR SPSR	PIND7 SPIF	PIND6 WCOL	PIND5	PIND4 SPI Da - MSTR	PIND3 ta Register	-	-	SPI2X	166 166
0x0F (0x2F) 0x0E (0x2E) 0x0D (0x2D)	PIND SPDR SPSR SPCR	PIND7 SPIF	PIND6 WCOL	PIND5	PIND4 SPI Da - MSTR	PIND3 ta Register CPOL	-	-	SPI2X	166 166 164
0x0F (0x2F) 0x0E (0x2E) 0x0D (0x2D) 0x0C (0x2C)	PIND SPDR SPSR SPCR UDR0	PIND7 SPIF SPIE	PIND6 WCOL SPE	PIND5 - DORD	PIND4 SPI Da - MSTR USART0 I/0	PIND3 ta Register CPOL Data Register	_ СРНА	- SPR1	SPI2X SPR0	166 166 164 185
0x0F (0x2F) 0x0E (0x2E) 0x0D (0x2D) 0x0C (0x2C) 0x0B (0x2B)	PIND SPDR SPSR SPCR UDR0 UCSR0A	SPIF SPIE RXC0	PIND6 WCOL SPE TXC0	PIND5 - DORD UDRE0	PIND4 SPI Da - MSTR USARTO I/C FE0 RXEN0	PIND3 ta Register CPOL Data Register DOR0	CPHA UPE0 UCSZ02		SPI2X SPR0	166 166 164 185 186
0x0F (0x2F) 0x0E (0x2E) 0x0D (0x2D) 0x0C (0x2C) 0x0B (0x2B) 0x0A (0x2A)	PIND SPDR SPSR SPCR UDRO UCSROA UCSROB	SPIF SPIE RXC0	PIND6 WCOL SPE TXC0	PIND5 - DORD UDRE0	PIND4 SPI Da - MSTR USARTO I/C FE0 RXEN0	PIND3 ta Register CPOL Data Register DOR0 TXEN0	CPHA UPE0 UCSZ02		SPI2X SPR0	166 166 164 185 186
0x0F (0x2F) 0x0E (0x2E) 0x0D (0x2D) 0x0C (0x2C) 0x0B (0x2B) 0x0A (0x2A) 0x09 (0x29)	PIND SPDR SPSR SPCR UDRO UCSROA UCSROB UBRROL	SPIF SPIE RXC0 RXCIE0	PIND6 WCOL SPE TXC0 TXCIE0	PIND5 - DORD UDRE0 UDRIE0	PIND4 SPI Da - MSTR USARTO I/C FE0 RXEN0 USARTO Baud	PIND3 ta Register CPOL Data Register DOR0 TXEN0 Rate Register Lo	CPHA UPE0 UCSZ02		SPI2X SPR0 MPCM0 TXB80	166 166 164 185 186 187
0x0F (0x2F) 0x0E (0x2E) 0x0D (0x2D) 0x0C (0x2C) 0x0B (0x2B) 0x0A (0x2A) 0x09 (0x29) 0x08 (0x28)	PIND SPDR SPSR SPCR UDRO UCSROA UCSROB UBRROL ACSR	SPIF SPIE RXC0 RXCIE0	PIND6 WCOL SPE TXC0 TXC1E0	PIND5 - DORD UDRE0 UDRIE0 ACO	PIND4 SPI Da - MSTR USARTO I/C FE0 RXEN0 USARTO Baud ACI	PIND3 ta Register CPOL Data Register DOR0 TXEN0 Rate Register Lo ACIE	CPHA UPE0 UCSZ02 W ACIC	- SPR1 U2X0 RXB80 ACIS1	SPI2X SPR0 MPCM0 TXB80	166 166 164 185 186 187 190
0x0F (0x2F) 0x0E (0x2E) 0x0D (0x2D) 0x0C (0x2C) 0x0B (0x2B) 0x0A (0x2A) 0x09 (0x29) 0x08 (0x28) 0x07 (0x27)	PIND SPDR SPSR SPCR UDRO UCSROA UCSROB UBRROL ACSR ADMUX	PIND7 SPIF SPIE RXC0 RXCIE0 ACD REFS1	PIND6 WCOL SPE TXC0 TXC1E0 ACBG REFS0	PIND5 - DORD UDRE0 UDRIE0 ACO ADLAR	PIND4 SPI Da - MSTR USARTO I/C FEO RXENO USARTO Baud ACI MUX4 ADIF	PIND3 ta Register CPOL Data Register DOR0 TXEN0 Rate Register Lo ACIE MUX3	CPHA UPE0 UCSZ02 W ACIC MUX2	- SPR1 U2X0 RXB80 ACIS1 MUX1	SPI2X SPR0 MPCM0 TXB80 ACIS0 MUX0	166 166 164 185 186 187 190 227 242
0x0F (0x2F) 0x0E (0x2E) 0x0D (0x2D) 0x0C (0x2C) 0x0B (0x2B) 0x0A (0x2A) 0x09 (0x29) 0x08 (0x28) 0x07 (0x27) 0x06 (0x26)	PIND SPDR SPSR SPCR UDRO UCSROA UCSROB UBRROL ACSR ADMUX ADCSRA	PIND7 SPIF SPIE RXC0 RXCIE0 ACD REFS1	PIND6 WCOL SPE TXC0 TXC1E0 ACBG REFS0	PIND5 - DORD UDRE0 UDRIE0 ACO ADLAR	PIND4 SPI Da - MSTR USARTO I/C FEO RXENO USARTO Baud ACI MUX4 ADIF ADC Data Re	PIND3 ta Register CPOL Data Register DOR0 TXEN0 Rate Register Lo ACIE MUX3 ADIE	CPHA UPE0 UCSZ02 W ACIC MUX2	- SPR1 U2X0 RXB80 ACIS1 MUX1	SPI2X SPR0 MPCM0 TXB80 ACIS0 MUX0	166 166 164 185 186 187 190 227 242
0x0F (0x2F) 0x0E (0x2E) 0x0D (0x2D) 0x0C (0x2C) 0x0B (0x2B) 0x0A (0x2A) 0x09 (0x29) 0x08 (0x28) 0x07 (0x27) 0x06 (0x26) 0x05 (0x25)	PIND SPDR SPSR SPCR UDRO UCSROA UCSROB UBRROL ACSR ADMUX ADCSRA ADCH	PIND7 SPIF SPIE RXC0 RXCIE0 ACD REFS1	PIND6 WCOL SPE TXC0 TXC1E0 ACBG REFS0	PIND5 - DORD UDRE0 UDRIE0 ACO ADLAR	PIND4 SPI Da - MSTR USARTO I/C FEO RXENO USARTO Baud ACI MUX4 ADIF ADC Data Re	PIND3 ta Register CPOL Data Register DOR0 TXEN0 Rate Register Lo ACIE MUX3 ADIE gister High Byte	CPHA UPE0 UCSZ02 W ACIC MUX2	- SPR1 U2X0 RXB80 ACIS1 MUX1	SPI2X SPR0 MPCM0 TXB80 ACIS0 MUX0	166 166 164 185 186 187 190 227 242 244 245
0x0F (0x2F) 0x0E (0x2E) 0x0D (0x2D) 0x0C (0x2C) 0x0B (0x2B) 0x0A (0x2A) 0x09 (0x29) 0x08 (0x28) 0x07 (0x27) 0x06 (0x26) 0x05 (0x25) 0x04 (0x24)	PIND SPDR SPSR SPCR UDRO UCSROA UCSROB UBRROL ACSR ADMUX ADCSRA ADCH ADCL	PIND7 SPIF SPIE RXC0 RXCIE0 ACD REFS1 ADEN	PIND6 WCOL SPE TXC0 TXC1E0 ACBG REFS0 ADSC	PIND5 - DORD UDRE0 UDRIE0 ACO ADLAR ADATE	PIND4 SPI Da - MSTR USARTO I/C FEO RXENO USARTO Baud ACI MUX4 ADIF ADC Data Re ADC Data Re	PIND3 Ta Register CPOL Data Register DOR0 TXEN0 Rate Register Lo ACIE MUX3 ADIE gister High Byte	UPE0 UCSZ02 W ACIC MUX2 ADPS2	PR1 U2X0 RXB80 ACIS1 MUX1 ADPS1	SPI2X SPR0 MPCM0 TXB80 ACIS0 MUX0 ADPS0	166 166 164 185 186 187 190 227 242 244 245

Register Summary (Continued)

ľ	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
ſ	0x00 (0x20)	PINF	PINF7	PINF6	PINF5	PINF4	PINF3	PINF2	PINF1	PINF0	86

Notes:

- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 2. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
	D LOGIC INSTRUC	'	operation.	90	0.000
ADD	Rd, Rr	Add two Registers	Rd ← Rd + Rr	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	Rd ← Rd v K	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	Rd ← Rd ⊕ Rr	Z,N,V	1
COM	Rd Rd	One's Complement Two's Complement	Rd ← 0xFF – Rd	Z,C,N,V	1
NEG SBR	Rd,K		$Rd \leftarrow 0x00 - Rd$ $Rd \leftarrow Rd \lor K$	Z,C,N,V,H Z,N,V	1
CBR	Rd,K	Set Bit(s) in Register Clear Bit(s) in Register	$Rd \leftarrow Rd \lor K$ $Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd − 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V	1
CLR	Rd	Clear Register	Rd ← Rd ⊕ Rd	Z,N,V	1
SER	Rd	Set Register	Rd ← 0xFF	None	1
MUL	Rd, Rr	Multiply Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULS	Rd, Rr	Multiply Signed	R1:R0 ← Rd x Rr	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	R1:R0 ← Rd x Rr	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	R1:R0 " (Rd x Rr) << 1	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	R1:R0 " (Rd x Rr) << 1	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	R1:R0 " (Rd x Rr) << 1	Z,C	2
BRANCH INSTRUCT	IONS				
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
JMP	k	Direct Jump	PC ← k	None	3
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
ICALL		Indirect Call to (Z)	PC ← Z	None	3
CALL	k	Direct Subroutine Call	PC ← k	None	4
RET		Subroutine Return	PC ← STACK	None .	4
RETI	D.I.D.	Interrupt Return	PC ← STACK	None	4
CPSE CP	Rd,Rr	Compare, Skip if Equal Compare	if (Rd = Rr) PC ← PC + 2 or 3 Rd – Rr	None Z, N,V,C,H	1/2/3
CPC	Rd,Rr		Rd – Rr – C		1
CPC	Rd,Rr Rd,K	Compare with Carry Compare Register with Immediate	Rd – K	Z, N,V,C,H Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(Rr(b)=0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b)=1)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b)=0)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b)=1)$ PC \leftarrow PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then $PC \leftarrow PC + k + 1$	None	1/2
BREQ	k	Branch if Equal	if $(Z = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC ← PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC ← PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC ← PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if $(T = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC ← PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2

Instruction Set Summary (Continued)

BRIE k Branch if Interrupt Disabled if (1 = 0) then PC ← PC + k + 1 BRID k Branch if Interrupt Disabled if (1 = 0) then PC ← PC + k + 1 DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move Between Registers Rd ← Rr MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr LDI Rd, K Load Indirect Rd ← K LDI Rd, X Load Indirect Rd ← (X) LD Rd, X Load Indirect and Post-Inc. Rd ← (X) LD Rd, Y+ Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y) Y + 1 LD Rd, Y+ Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) Y ← Y - 1, Rd ← (Y) LDD Rd, Y+ Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) Y ← Y - 1, Rd ← (Y) LDD Rd, Y+ Load Indirect with Displacement Rd ← (Z), Z ← Z+1 Rd ← (Z), Z ← Z+1 LD Rd, Z+ Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) LD Rd, Z+ <	None None None None None None None None	1/2 1/2 1/2 1 1 1 1 2 2 2 2 2 2 2 2 2 2
DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move Between Registers Rd ← Rr MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr LDI Rd, K Load Immediate Rd ← K LD Rd, X Load Indirect Rd ← (X) LD Rd, X+ Load Indirect and Pre-Dec. $X \leftarrow X - 1$, Rd ← (X) LD Rd, -X Load Indirect and Pre-Dec. $X \leftarrow X - 1$, Rd ← (X) LD Rd, Y Load Indirect and Pre-Dec. $X \leftarrow X - 1$, Rd ← (Y) LD Rd, Y+ Load Indirect and Pre-Dec. $Y \leftarrow Y \cdot 1$, Rd ← (Y) LD Rd, Y+ Load Indirect and Pre-Dec. $Y \leftarrow Y \cdot 1$, Rd ← (Y) LD Rd, Y+ Load Indirect with Displacement Rd ← (Y), Y ← Y + 1 LD Rd, Y+ Load Indirect of Pre-Dec. $Y \leftarrow Y \cdot 1$, Rd ← (Y) LD Rd, Z+ Load Indirect and Pre-Dec. $X \leftarrow X \cdot 1$, Rd ← (Z) LD Rd, Z+ Load Indirect with Displacement Rd ← (Z), Z ← Z+1 LD Rd, X Load Indirect of Pre-Dec. $X \leftarrow X \cdot 1$, Rd ← (Z)	None None None None None None None None	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
MOV Rd, Rr Move Between Registers Rd ← Rr MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr LDI Rd, K Load Immediate Rd ← K LD Rd, X Load Indirect Rd ← (X) LD Rd, X Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 LD Rd, -X Load Indirect and Pre-Dec. $X ← X - 1$, Rd ← (X) LD Rd, Y Load Indirect Rd ← (Y) LD Rd, Y Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 LD Rd, Y + Load Indirect and Pre-Dec. $Y ← Y - 1$, Rd ← (Y) LD Rd, Y + Load Indirect with Displacement Rd ← (Z) LD Rd, Y + Load Indirect with Displacement Rd ← (Z) LD Rd, Z + Load Indirect with Displacement Rd ← (Z) LD Rd, Z + Load Indirect and Pre-Dec. $Z ← Z - 1$, Rd ← (Z) LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z) LDD Rd, Z+q Load Indirect with Displacement Rd ← (K) ST X, Rr Store Indirect and Pre-Dec. $X ←$	None None None None None None None None	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	None None None None None None None None	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	None None None None None None None None	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	None None None None None None None None	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	None None None None None None None None	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	None None None None None None None None	2 2 2 2 2 2 2 2 2 2 2 2
LD Rd, Y Load Indirect Rd ← (Y) LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 LD Rd, -Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) LDD Rd, Y+q Load Indirect with Displacement Rd ← (Y + q) LD Rd, Z Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 LD Rd, Z+ Load Indirect with Displacement Rd ← (Z) ← (Z) LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z) ← (Z) LDS Rd, k Load Indirect with Displacement Rd ← (Z) ← (Z) LDS Rd, k Load Indirect with Displacement Rd ← (Z) ← (Z) LDS Rd, k Load Indirect with Displacement Rd ← (Z) ← (Z) LDS Rd, k Load Indirect with Displacement Rd ← (Z) ← (Z) LD Rd, Z+q Load Indirect with Displacement Rd ← (Z) ← (Z) LD Rd, Z+q Load Indirect with Displacement Rd ← (Z) ← (Z) RD Rd ← (Z) Rd ← (Z) Rd ← (Z) Rd ← (Z) <td< td=""><td>None None None None None None None None</td><td>2 2 2 2 2 2 2 2 2 2</td></td<>	None None None None None None None None	2 2 2 2 2 2 2 2 2 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	None None None None None None None None	2 2 2 2 2 2 2 2
LD Rd, -Y Load Indirect and Pre-Dec. $Y \leftarrow Y \cdot 1$, Rd ← (Y) LDD Rd,Y+q Load Indirect with Displacement Rd ← $(Y + q)$ LD Rd, Z Load Indirect and Post-Inc. Rd ← (Z) LD Rd, Z+ Load Indirect and Pre-Dec. $Z \leftarrow Z \cdot 1$, Rd ← (Z) LD Rd, Z+ Load Indirect with Displacement Rd ← $(Z \cdot q)$ LDD Rd, Z+q Load Indirect with Displacement Rd ← (X) LDS Rd, k Load Direct from SRAM Rd ← (X) ST X, Rr Store Indirect $(X) \leftarrow Rr$ ST X+, Rr Store Indirect and Post-Inc. $(X) \leftarrow Rr$ ST -X, Rr Store Indirect and Pre-Dec. $(Y) \leftarrow Rr$ ST Y+, Rr Store Indirect and Post-Inc. $(Y) \leftarrow Rr$ ST -Y+, Rr Store Indirect and Pre-Dec. $(Y) \leftarrow Rr$ STD Y+q,Rr Store Indirect with Displacement $(Y \leftarrow Y) \leftarrow Rr$ ST -Z+, Rr Store Indirect and Post-Inc. $(Z) \leftarrow Rr$ ST -Z+, Rr Store Indirect and Post-Inc. $(Z) \leftarrow Rr$ ST -Z+, Rr Store Ind	None None None None None None None None	2 2 2 2 2 2 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	None None None None None None None None	2 2 2 2 2 2
LD Rd, Z Load Indirect Rd ← (Z) LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 LD Rd, -Z Load Indirect and Pre-Dec. $Z ← Z - 1$, Rd ← (Z) LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) LDS Rd, k Load Direct from SRAM Rd ← (k) ST X, Rr Store Indirect (X) ← Rr ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 ST -X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr ST Y, Rr Store Indirect and Post-Inc. (Y) ← Rr ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 ST -Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr STD Y+q,Rr Store Indirect with Displacement (Y+q) ← Rr ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr ST Z+, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr ST Z+, Rr Store Ind	None None None None None None None None	2 2 2 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 LD Rd, -Z Load Indirect and Pre-Dec. $Z ← Z - 1$, Rd ← (Z) LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) LDS Rd, k Load Direct from SRAM Rd ← (k) ST X, Rr Store Indirect (X) ← Rr ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 ST -X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr ST Y, Rr Store Indirect and Post-Inc. (Y) ← Rr ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 ST -Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr	None None None None None None None None	2 2 2
LD Rd, -Z Load Indirect and Pre-Dec. $Z \leftarrow Z \cdot 1$, Rd ← (Z) LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) LDS Rd, k Load Direct from SRAM Rd ← (k) ST X, Rr Store Indirect (X) ← Rr ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 ST -X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr ST Y, Rr Store Indirect (Y) ← Rr ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 ST -Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 ST -Z, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr STD -Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr	None None None None None None None	2 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	None None None None None None	2
LDS Rd, k Load Direct from SRAM Rd ← (k) ST X, Rr Store Indirect (X) ← Rr ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 ST -X, Rr Store Indirect and Pre-Dec. $X ← X - 1$, (X) ← Rr ST Y, Rr Store Indirect (Y) ← Rr ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 ST -Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr STD Y+q,Rr Store Indirect with Displacement (Y+q) ← Rr ST Z, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 ST Z+, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr	None None None	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	None None None	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	None None	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	None	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	None	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	None	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	None	2
ST Z+, Rr Store Indirect and Post-Inc. $(Z) \leftarrow Rr, Z \leftarrow Z + 1$ ST -Z, Rr Store Indirect and Pre-Dec. $Z \leftarrow Z - 1, (Z) \leftarrow Rr$ STD Z+q,Rr Store Indirect with Displacement $(Z+q) \leftarrow Rr$	None	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	None	2
$ STD \hspace{1cm} Z+q,Rr \hspace{1cm} Store \hspace{1cm} Indirect \hspace{1cm} with \hspace{1cm} Displacement \hspace{1cm} (Z+q) \leftarrow Rr $	None	2
	None	2
CTC It Dr. Ctore Directte CDAM (5) Dr.	None	2
STS k, Rr Store Direct to SRAM $(k) \leftarrow Rr$	None	2
LPM Load Program Memory $R0 \leftarrow (Z)$	None	3
LPM Rd, Z Load Program Memory $Rd \leftarrow (Z)$	None	3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd \leftarrow (Z), Z \leftarrow Z+1	None	3
SPM Store Program Memory $(Z) \leftarrow R1:R0$	None	-
IN Rd, P In Port Rd \leftarrow P	None	1
OUT P, Rr Out Port P \leftarrow Rr	None	1
PUSH Rr Push Register on Stack STACK ← Rr	None	2
POP Rd Pop Register from Stack Rd ← STACK	None	2
BIT AND BIT-TEST INSTRUCTIONS		
SBI P,b Set Bit in I/O Register I/O(P,b) \leftarrow 1	None	2
CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0	None	2
LSL Rd Logical Shift Left $Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR Rd Logical Shift Right Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0	Z,C,N,V	1
ROL Rd Rotate Left Through Carry $Rd(0)\leftarrow C, Rd(n+1)\leftarrow Rd(n), C\leftarrow Rd(7)$	Z,C,N,V	1
ROR Rd Rotate Right Through Carry $Rd(7)\leftarrow C, Rd(n)\leftarrow Rd(n+1), C\leftarrow Rd(0)$	Z,C,N,V	1
ASR Rd Arithmetic Shift Right Rd(n) \leftarrow Rd(n+1), n=06	Z,C,N,V	1
SWAP Rd Swap Nibbles Rd(30)←Rd(74)←Rd(30)		1
BSET s Flag Set SREG(s) \leftarrow 1	SREG(s)	1
BCLR s Flag Clear SREG(s) \leftarrow 0	SREG(s)	1
BST Rr, b Bit Store from Register to T $T \leftarrow Rr(b)$	T	1
BLD Rd, b Bit load from T to Register Rd(b) \leftarrow T	None	1
SEC Set Carry C ← 1	C	1
CLC Clear Carry C ← 0	C	1
SEN Set Negative Flag N ← 1	N	1
CLN Clear Negative Flag N ← 0	N	1
SEZ Set Zero Flag Z ← 1	Z	1
CLZ Clear Zero Flag $Z \leftarrow 0$	Z	1
SEI Global Interrupt Enable I ←1	1	1
CLI Global Interrupt Disable I ← 0		1
	S	1
	S	
CLS Clear Signed Test Flag S ← 0 SEV Set Two Complement Overflow V ∈ 1	V	1
SEV Set Twos Complement Overflow. V ← 1 Clay Twos Complement Overflow. V ← 0	V	1 1
CLV Clear Twos Complement Overflow V ← 0	V T	1
SET Set T in SREG T ← 1 CLT Close T in SREG T + 0		1
CLT Clear T in SREG T ← 0	Т	
SEH Set Half Carry Flag in SREG $H \leftarrow 1$	Н	1

Instruction Set Summary (Continued)

CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1				
MCU CONTROL INSTRUCTIONS									
NOP		No Operation		None	1				
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1				
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1				
BREAK		Break	For On-chip Debug Only	None	N/A				

Ordering Information


Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
8	2.7 - 5.5	ATmega64L-8AC	64A	Commercial
		ATmega64L-8MC	64M1	(0°C to 70°C)
		ATmega64L-8AI	64A	Industrial
		ATmega64L-8MI	64M1	(-40°C to 85°C)
16	4.5 - 5.5	ATmega64-16AC	64A	Commercial
		ATmega64-16MC	64M1	(0°C to 70°C)
		ATmega64-16AI	64A	Industrial
		ATmega64-16MI	64M1	(-40°C to 85°C)

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

Package Type					
64-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)					
64M1	64-pad, 9 x 9 x 1.0 mm body, lead pitch 0.50 mm, Micro Lead Frame Package (MLF)				

Packaging Information

64A

COMMON DIMENSIONS

(Unit of Measure = mm)

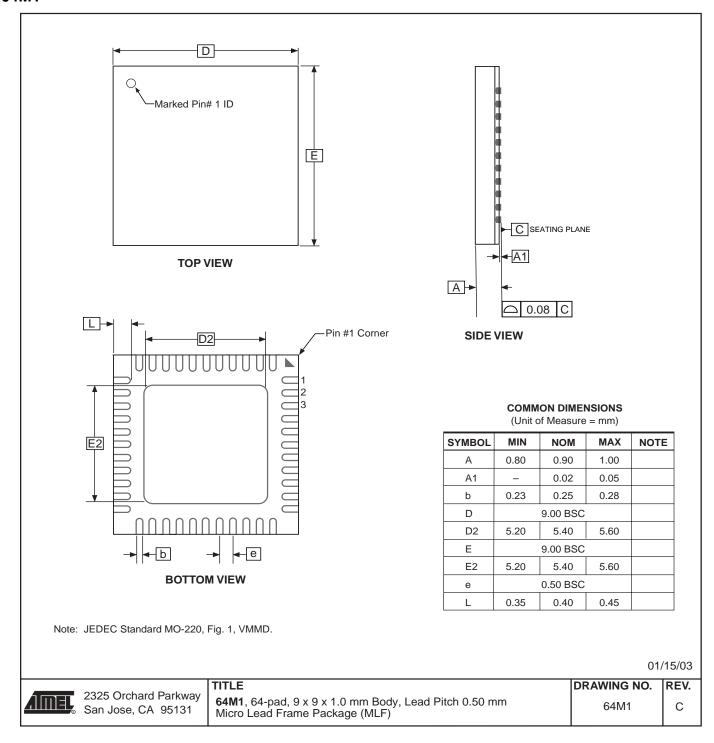
SYMBOL	MIN	NOM	MAX	NOTE
STWIDGE	IVIIIV	140111	WIAA	HOIL
А	-	_	1.20	
A1	0.05	-	0.15	
A2	0.95	1.00	1.05	
D	15.75	16.00	16.25	
D1	13.90	14.00	14.10	Note 2
Е	15.75	16.00	16.25	
E1	13.90	14.00	14.10	Note 2
В	0.30	-	0.45	
С	0.09	-	0.20	
L	0.45	-	0.75	
е				

Notes:

- 1. This package conforms to JEDEC reference MS-026, Variation AEB.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Lead coplanarity is 0.10 mm maximum.

10/5/2001

2325 Orchard Parkway San Jose, CA 95131 TITLE


64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

DRAWING NO. REV. 64A B

64M1

Erratas

The revision letter in this section refers to the revision of the ATmega64 device.

ATmega64, all Rev.

There are no errata for this revision of ATmega64. However, a proposal for solving problems regarding the JTAG instruction IDCODE is presented below.

IDCODE masks data from TDI input

The public but optional JTAG instruction IDCODE is not implemented correctly according to IEEE1149.1; a logic one is scanned into the shift register instead of the TDI input while shifting the Device ID Register. Hence, captured data from the preceding devices in the boundary scan chain are lost and replaced by all-ones, and data to succeeding devices are replaced by all-ones during Update-DR.

If ATmega64 is the only device in the scan chain, the problem is not visible.

Problem Fix / Workaround

Select the Device ID Register of the ATmega64 (Either by issuing the IDCODE instruction or by entering the Test-Logic-Reset state of the TAP controller) to read out the contents of its Device ID Register and possibly data from succeeding devices of the scan chain. Note that data to succeeding devices cannot be entered during this scan, but data to preceding devices can. Issue the BYPASS instruction to the ATmega64 to select its Bypass Register while reading the Device ID Registers of preceding devices of the boundary scan chain. Never read data from succeeding devices in the boundary scan chain or upload data to the succeeding devices while the Device ID Register is selected for the ATmega64. Note that the IDCODE instruction is the default instruction selected by the Test-Logic-Reset state of the TAP-controller.

Alternative Problem Fix / Workaround

If the Device IDs of all devices in the boundary scan chain must be captured simultaneously (for instance if blind interrogation is used), the boundary scan chain can be connected in such way that the ATmega64 is the fist device in the chain. Update-DR will still not work for the succeeding devices in the boundary scan chain as long as IDCODE is present in the JTAG Instruction Register, but the Device ID registered cannot be uploaded in any case.

Datasheet Change Log for ATmega64

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

Changes from Rev. 2490D-02/03 to Rev. 2490E-09/03

- 1. Updated note in "XTAL Divide Control Register XDIV" on page 42.
- 2. Updated "JTAG Interface and On-chip Debug System" on page 47.
- 3. Updated "Test Access Port TAP" on page 247 regarding JTAGEN.
- 4. Updated description for the JTD bit on page 257.
- 5. Added a note regarding JTAGEN fuse to Table 119 on page 291.
- 6. Updated R_{PII} values in "DC Characteristics" on page 325.
- 7. Updated "ADC Characteristics Preliminary Data" on page 332.
- 8. Added a proposal for solving problems regarding the JTAG instruction IDCODE in "Erratas" on page 17.

Changes from Rev. 2490C-09/02 to Rev. 2490D-02/03

- 1. Added reference to Table 125 on page 295 from both SPI Serial Programming and Self Programming to inform about the Flash page size.
- 2. Added Chip Erase as a first step under "Programming the Flash" on page 322 and "Programming the EEPROM" on page 323.
- 3. Corrected OCn waveforms in Figure 52 on page 123.
- 4. Various minor Timer1 corrections.
- 5. Improved the description in "Phase Correct PWM Mode" on page 98 and on page 151.
- 6. Various minor TWI corrections.
- 7. Added note under "Filling the Temporary Buffer (Page Loading)" about writing to the EEPROM during an SPM page load.
- 8. Removed ADHSM completely.
- 9. Added note about masking out unused bits when reading the Program Counter in "Stack Pointer" on page 12.
- 10. Added section "EEPROM Write During Power-down Sleep Mode" on page 23.
- 11. Changed V_{HYST} value to 120 in Table 19 on page 49.
- 12. Added information about conversion time for Differential mode with Auto Triggering on page 233.
- 13. Added $t_{WD\ FUSE}$ in Table 129 on page 308.
- 14. Updated "Packaging Information" on page 15.

Changes from Rev. 2490B-09/02 to Rev. 2490C-09/02

1. Changed the Endurance on the Flash to 10,000 Write/Erase Cycles.

Changes from Rev. 2490A-10/01 to Rev. 2490B-09/02

- 1. Added 64-pad MLF Package and updated "Ordering Information" on page 14.
- 2. Added the section "Using all Locations of External Memory Smaller than 64 KB" on page 33.
- 3. Added the section "Default Clock Source" on page 36.
- 4. Renamed SPMCR to SPMCSR in entire document.
- 5. Added Some Preliminary Test Limits and Characterization Data

Removed some of the TBD's and corrected data in the following tables and pages: Table 2 on page 22, Table 7 on page 36, Table 9 on page 38, Table 10 on page 38, Table 12 on page 39, Table 14 on page 40, Table 16 on page 41, Table 19 on page 49, Table 20 on page 53, Table 22 on page 55, "DC Characteristics" on page 325, Table 132 on page 327, Table 135 on page 330, Table 137 on page 333, and Table 138 - Table 145.

6. Removed Alternative Algortihm for Leaving JTAG Programming Mode.

See "Leaving Programming Mode" on page 321.

- 7. Improved description on how to do a polarity check of the ADC diff results in "ADC Conversion Result" on page 241.
- 8. Updated Programming Figures:

Figure 138 on page 293 and Figure 147 on page 306 are updated to also reflect that AVCC must be connected during Programming mode. Figure 142 on page 302 added to illustrate how to program the fuses.

- 9. Added a note regarding usage of the "PROG_PAGELOAD (0x6)" and "PROG_PAGEREAD (0x7)" instructions on page 313.
- 10. Updated "Two-wire Serial Interface" on page 195.

More details regarding use of the TWI Power-down operation and using the TWI as master with low TWBRR values are added into the data sheet. Added the note at the end of the "Bit Rate Generator Unit" on page 201. Added the description at the end of "Address Match Unit" on page 202.

11. Updated Description of OSCCAL Calibration Byte.

In the data sheet, it was not explained how to take advantage of the calibration bytes for 2, 4, and 8 MHz Oscillator selections. This is now added in the following sections:

Improved description of "Oscillator Calibration Register – OSCCAL⁽¹⁾" on page 40 and "Calibration Byte" on page 292.

12. When using external clock there are some limitations regards to change of frequency. This is descried in "External Clock" on page 41 and Table 132 on page 327.

- 13. Added a sub section regarding OCD-system and power consumption in the section "Minimizing Power Consumption" on page 46.
- 14. Corrected typo (WGM-bit setting) for:
 - "Fast PWM Mode" on page 96 (Timer/Counter0).
 - "Phase Correct PWM Mode" on page 98 (Timer/Counter0).
 - "Fast PWM Mode" on page 149 (Timer/Counter2).
 - "Phase Correct PWM Mode" on page 151 (Timer/Counter2).
- 15. Corrected Table 81 on page 189 (USART).
- 16. Corrected Table 103 on page 261 (Boundary-Scan)

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311

Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00

Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

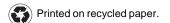
Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine **BP 123**


38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved. Atmel® and combinations thereof, AVR®, and AVR Studio® are the registered trademarks of Atmel Corporation or its subsidiaries. Microsoft[®], Windows[®], Windows NT[®], and Windows XP[®] are the registered trademarks of Microsoft Corporation. Other terms and product names may be the trademarks of others

