2N6109, 6290 Complementary Power Transistors

Features:

- Collector-Emitter sustaining voltage-
 - V_{CEO(sus)} = 50V (Minimum) 2N6109, 2N6290.
- DC current gain specified to 7.0 Amperes
 h_{FE} = 2.3 (Minimum) at I_C = 7.0A 2N6109, 2N6290.
- Complementary Silicon Plastic Power Transistors.

Pin 1. Base

- 2. Collector
- 3. Emitter
- 4. Collector (Case).

Dimensions	Minimum	Maximum	
A	14.68	15.31	
В	9.78	10.42	
С	5.01	6.52	
D	13.06	14.62	
E	3.57	4.07	
F	2.42	3.66	
G	1.12	1.36	
Н	0.72	0.96	
I	4.22	4.98	
J	1.14	1.38	
К	2.20	2.97	
L	0.33	0.55	
М	2.48 2.98		
0	3.70	3.90	
Dimensions : Millimetre			

2N6109	2N6290
	7 Ampere
Comple	ementary Silicon

NPN

PNP

Complementary Silicon Power Transistors 50 Volts 40 Watts

TO-220

2N6109, 6290

Complementary Power Transistors

Maximum Ratings

Parameter	Symbol	2N6109 2N6290	Unit
Collector-Emitter Voltage	V _{CEO}	50	
Collector-Base Voltage	V _{CBO}	60	V
Emitter-Base Voltage	V _{EBO}	5.0	
Collector Current-Continuous -Peak	Ι _C	7.0 10	A
Base Current	I _B	3.0	
Total Power Dissipation at T _C = 25°C Derate above 25°C	P _D	40 0.32	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{STG}	-65 to +150	°C

Thermal Characteristic

Characteristic	Symbol	Maximum	Unit
Thermal Resistance Junction to Case	Rθjc	3.125	°C/W

2N6109, 6290

Complementary Power Transistors

Electrical Characteristics ($T_c = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Minimum	Maximum	Unit	
Off Characteristics					
Collector-Emitter Sustaining Voltage (1) ($I_c = 100mA$, $I_B = 0$)	V _{CEO(sus)}	50	-	V	
Collector Cut off Current (V _{CE} = 40V, I _B = 0)	I _{CEO}	-	1.0		
Collector Cut off Current ($V_{CE} = 60V$, $V_{BE(off)} = 1.5V$) ($V_{CE} = 50V$, $V_{BE(off)} = 1.5V$, $T_{C} = 125^{\circ}C$)	I _{CEX}	-	0.1 2.0	mA	
Emitter Cut off Current ($V_{EB} = 5.0V, I_{C} = 0$)	I _{EBO}	-	1.0		
On Characteristics (1)					
DC Current Gain ($I_C = 2.5A$, $V_{CE} = 4.0V$) ($I_C = 7.0A$, $V_{CE} = 4.0V$)	h _{FE}	30 2.3	150	-	
Collector-Emitter Saturation Voltage $(I_{C} = 7.0A, I_{B} = 3.0A)$	V _{CE(sat)}	-	3.5	V	
Base-Emitter On Voltage (I _C = 7.0A, V _{CE} = 4.0V)	V _{BE(on)}	-	3.0		
Dynamic Characteristics	1		I		
Current Gain-Bandwidth Product (2) ($I_C = 0.5A$, $V_{CE} = 4.0V$, f = 1.0MHz)	f _T	2.5 10	-	MHz	
Small Signal Current Gain ($I_C = 0.5A$, $V_{CE} = 4.0V$, f = 50kHz)	h _{fe}	20	-	-	

(1) Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.

(2) $f_{T} = |h_{fe}| \bullet f_{test}$.

2N6109, 6290 Complementary Power Transistors

multicomp

Vcc = 30 V

Ic/Iв = 10

181 = 182

 $T_{\rm J} = 25^{\circ}C$

Figure 2 - Switching Time Test Circuit

Figure 3 - Turn-Off Time

5.0

3.0

2.0

1.0

ts

Figure - 6 Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown safe operating area curves indicate I_{C} - V_{CE} limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure - 6 curve is based on $T_{J(PK)} = 150^{\circ}C$; T_C is variable depending on the power level. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(PK)} \le 150^{\circ}C$. At high case temperatures, thermal limitation will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

2N6109, 6290 Complementary Power Transistors

Specifications

I _{C(av)} maximum (A)	V _{CEO} maximum (V)	h _{FE} minimum at I _C = 2.5A	P _{tot} at 25°C (W)	Туре	Part Number
7	50	30	40	PNP	2N6109
				NPN	2N6290

0.6