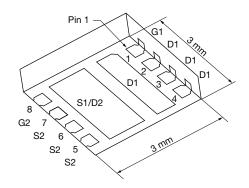
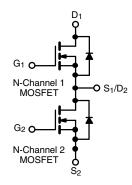
HALOGEN



Dual N-Channel 30 V (D-S) MOSFETs

PRODU	CT SU	MMARY		
	V _{DS} (V)	$R_{DS(on)}\left(\Omega\right)$	I _D (A) ^a	Q _g (Typ.)
Channel-1	30	0.0240 at V _{GS} = 10 V	11	3.5 nC
Charmer-1	30	0.0320 at $V_{GS} = 4.5 \text{ V}$	11	3.5 110
Channel-2	30	0.0110 at V _{GS} = 10 V	28	21.2 nC
Onamilei-2	30	0.0165 at $V_{GS} = 4.5 \text{ V}$	28	21.2110

PowerPAIR® 3 x 3


Ordering Information: SiZ300DT-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES

- Halogen-free According to IEC 61249-2-21
- PowerPAIR Optimizes High-Side and Low-Side MOSFETs for Synchronous Buck Converters
- TrenchFET® Power Mosfets
- 100 % Rg and UIS Tested
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Computing System Power
- POL
- Synchronous Buck Converter

ABSOLUTE MAXIMUM RATINGS	(T _A = 25 °C, unle	ess otherwise	noted)			
Parameter		Symbol	Channel-1	Channel-2	Unit	
Drain-Source Voltage		V _{DS}	30		V	
Gate-Source Voltage		V _{GS}	± 20		V	
	T _C = 25 °C		11 ^a	28 ^a		
Continuous Drain Current (T _{.1} = 150 °C)	$T_C = 70 ^{\circ}C$	I _D	11 ^a	28 ^a		
Communication (1) = 100 °C)	$T_A = 25 ^{\circ}C$	υ.	9.8 ^{b, c}	14.9 ^{b, c}		
	T _A = 70 °C		7.8 ^{b, c}	11.9 ^{b, c}	Α	
Pulsed Drain Current (t = 300 μs)		I _{DM}	30	40	^	
Continuous Source Drain Diode Current	$T_A = 25 ^{\circ}C$	IS	11 ^a	26		
Continuous Godice Brain Blode Guirent	T _A = 25 °C	10	3.2 ^{b, c}	3.8 ^{b, c}		
Avalanche Current	L = 0.1 mH	I _{AS}	12	15		
Single Pulse Avalanche Energy	L = 0.1 IIII1	E _{AS}	7	11	mJ	
	T _C = 25 °C		16.7	31		
Maximum Power Dissipation	T _C = 70 °C	P _D	10.7	20	w	
Maximum Fower Dissipation	T _A = 25 °C		3.7 ^{b, c}	4.2 ^{b, c}	•	
	T _A = 70 °C		2.4 ^{b, c}	2.7 ^{b, c}		
Operating Junction and Storage Temperature Ra	ange	T _J , T _{stg}	- 55 to 150		°C	
Soldering Recommendations (Peak Temperature) ^{d, e}			260			

Notes:

- a. Package limited.
- b. Surface mounted on 1" x 1" FR4 board.
- d. See solder profile (www.vishav.com/ppq?73257). The PowerPAIR is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.

Document Number: 67715 S11-1646-Rev. B, 15-Aug-11

THERMAL RESISTANCE RATINGS							
			Char	nel-1	Chan	nel-2	
Parameter		Symbol	Тур.	Max.	Тур.	Max.	Unit
Maximum Junction-to-Ambient ^{a, b}	t ≤ 10 s	R _{thJA}	27	34	24	30	°C/W
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	6	7.5	3.2	4	0/ * *

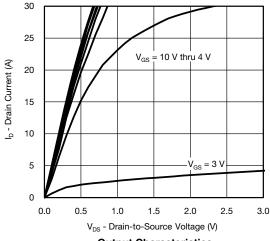
Notes:

- a. Surface mounted on 1" x 1" FR4 board.
- b. Maximum under steady state conditions is 69 °C/W for channel-1 and 64 °C/W for channel-2.

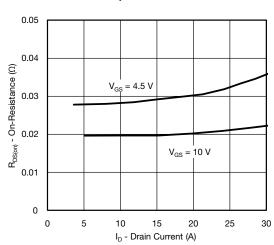
Parameter Syn		Test Conditions	Min.	Тур.	Max.	Unit	
Static							
D : 0 D 1 1 1 1 1 1 1 1 1		V _{GS} = 0, I _D = 250 μA	Ch-1	30			.,
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-2	30			V
V Tomporature Coefficient	A)/ /T	I _D = 250 μA	Ch-1		24		
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA	Ch-2		30		>1/00
V Tomporatura Coefficient	AV /T	I _D = 250 μA	Ch-1		- 4.1		mV/°C
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	Ch-2		- 5		
Cata Threshold Valtage	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$		1		2.4	V
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	Ch-2	1		2.2	V
Gate Source Leakage	loos	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	Ch-1			± 100	nA
Gate Source Leakage	I _{GSS}		Ch-2			± 100	IIA
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-1			1	
Zero Gate Voltage Drain Current	lace	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-2			1	Δ
Zero Gate Voltage Drain Gurrent	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$	Ch-1			5	μΑ
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$	Ch-2			5	
On Chata Dunin Commando	lar x	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-1	10			Α
On-State Drain Current ^D	^I D(on)	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-2	10			_ A
	$ \begin{array}{c c} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & $	Ch-1		0.0200	0.0240		
Durin Occurs On Olata Basistanash		$V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}$ Ch-			0.0090	0.0110	Ω
Drain-Source On-State Resistance ^b	' 'DS(on)	$V_{GS} = 4.5 \text{ V}, I_D = 8.5 \text{ A}$	Ch-1		0.0265	0.0320	52
		$V_{GS} = 4.5 \text{ V}, I_D = 12 \text{ A}$	Ch-2		0.0135	0.0165	
Forward Transconductance ^b	G.	$V_{DS} = 15 \text{ V}, I_D = 9.8 \text{ A}$	Ch-1		30		S
Forward fransconductance	9 _{fs}	$V_{DS} = 15 \text{ V}, I_{D} = 15 \text{ A}$	Ch-2		30		3
Dynamic ^a				_		_	
Input Capacitance	C _{iss}		Ch-1		400		
input dapacitance	Olss	Channel-1 $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-2		730		
Output Capacitance	C _{oss}	V _{DS} = 13 v, v _{GS} = 0 v, 1 = 1 ivil 12	Ch-1		125		pF
- Carpar Capacitario	Joss	Channel-2	Ch-2		155		
Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-1		25		
- Torono Hamoro Capachano	- 135		Ch-2		65		
	<u>_</u>	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 9.8 \text{ A}$	Ch-1		7.4	12	
Total Gate Charge	Q _g	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}$	Ch-2		14.2	22	
9		Channel-1	Ch-1		3.5	5.3	
		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 9.8 \text{ A}$	Ch-2		6.8	11	nC
Gate-Source Charge	Q_gs	- D3 - 10 1, 1G3 - 1.0 1, ID - 0.0 A	Ch-1		1.5		
	ya	Channel-2	Ch-2		2.2		
Gate-Drain Charge	Q_gd	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}$	Ch-1 Ch-2		1.1		
	yu				2.3		
Gate Resistance	R_{q}	f = 1 MHz		0.5	2.6	5.2	Ω
	9		Ch-2	0.5	2.6	5.2	

Notes:

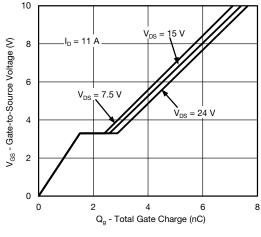
- a. Guaranteed by design, not subject to production testing.
- b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

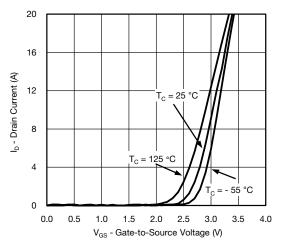

Parameter	, unless otherwise noted) Symbol Test Conditions				Typ.	Max.	Unit
Dynamic ^a	,			l			
Turn-On Delay Time	t., ,		Ch-1		25	50	
Turn-On Delay Time	t _{d(on)}	Channel-1 $V_{DD} = 15 \text{ V, R}_{L} = 1.9 \Omega$	Ch-2		25	50	
Rise Time	t _r	$V_{DD} = 15 \text{ V}, R_L = 1.9 \Omega$ $I_D \cong 8 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_a = 1 \Omega$	Ch-1		45	90	
The Thire	4	D = 0 A, VGEN = 4.3 V, Hg = 1.32	Ch-2		80	160	
Turn-Off Delay Time	t _{d(off)}	Channel-2	Ch-1		10	20	
	u(on)	$V_{DD} = 15 \text{ V}, R_{L} = 1.5 \Omega$	Ch-2		20	40	
Fall Time	t _f	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	Ch-1		10	20	
			Ch-2		40	80	ns
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-1		5	10	
	$V_{DD} = 15 \text{ V}, R_L = 1.9 \Omega$		Ch-2		5	10	
		$I_D \cong 8 \text{ A}, V_{GEN} = 10 \text{ V}, R_q = 1 \Omega$	Ch-1 Ch-2		10	20 40	
					10	20	
Turn-Off Delay Time	t _{d(off)}	Channel-2	Ch-1 Ch-2		15	30	- -
		$V_{DD} = 15 \text{ V}, R_L = 1.5 \Omega$	Ch-1		7	15	
Fall Time	t _f	$I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	Ch-2		10	20	
Drain-Source Body Diode Characteristi	cs						
Continuous Course Duein Diede Courset	la.	T _C = 25 °C	Ch-1			11	
Continuous Source-Drain Diode Current	I _S	1 _C = 25 °C	Ch-2			26	۸
Data - Diada Farmani O manif	la		Ch-1			30	Α
Pulse Diode Forward Current ^a	I _{SM}		Ch-2			40	
Dady Diada Valtara	V _{SD}	I _S = 8 A, V _{GS} = 0 V	Ch-1		0.84	1.2	
Body Diode Voltage		I _S = 10 A, V _{GS} = 0 V	Ch-2		0.82	1.2	V
De de Die de Decembra Decembra Timo			Ch-1		17	35	
Body Diode Reverse Recovery Time	t _{rr}		Ch-2		20	40	ns
Pady Diada Payaraa Baayary Chargo	0	Channel-1	Ch-1		9	20	nC
ody Diode Reverse Recovery Charge Q_{rr} $I_F = 8$		$I_F = 8 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$	Ch-2		14	30	IIC
Reverse Recovery Fall Time	t _a	Channel-2	Ch-1		9.5		
Tieverse riecovery Fall Tillie	ча	$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$	Ch-2		12.5		ns
Reverse Recovery Rise Time	t _b	_	Ch-1		7.5		113
Tieverse riccovery riise riille	۵*		Ch-2		7.5		

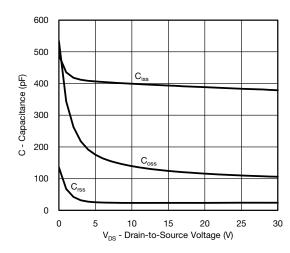
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

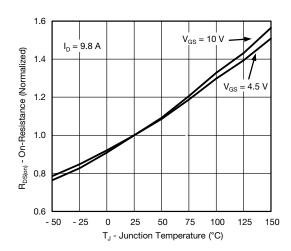

a. Guaranteed by design, not subject to production testing.

b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.


CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

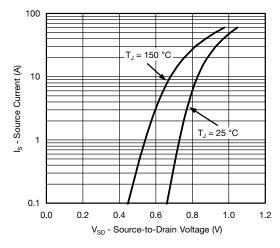

Output Characteristics

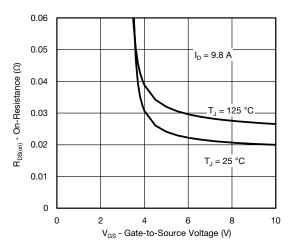

On-Resistance vs. Drain Current

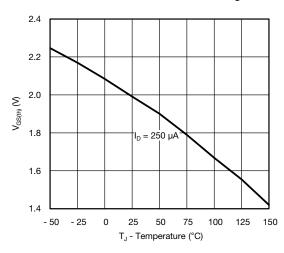

Gate Charge

Transfer Characteristics

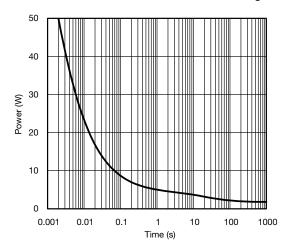
Capacitance



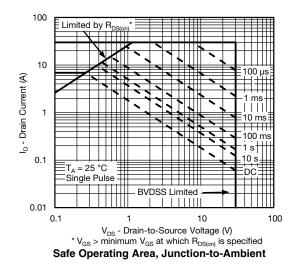

On-Resistance vs. Junction Temperature



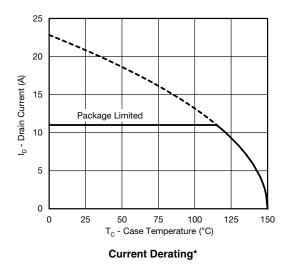
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

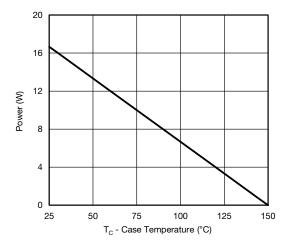


Source-Drain Diode Forward Voltage



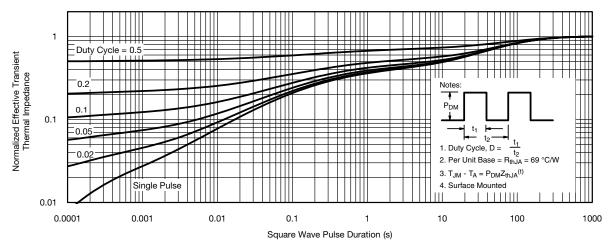
On-Resistance vs. Gate-to-Source Voltage



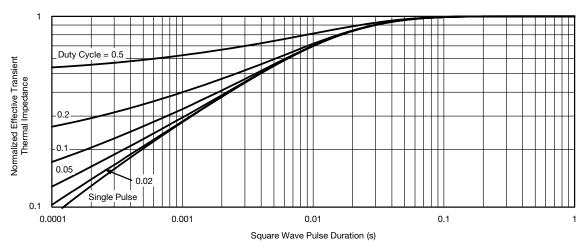

Threshold Voltage

Single Pulse Power

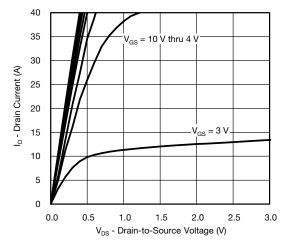
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

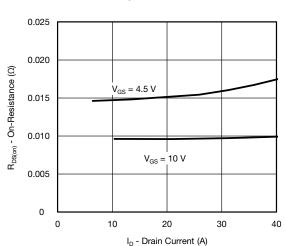


Power, Junction-to-Case

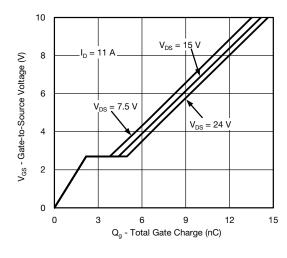

 $^{^{\}star}$ The power dissipation P_D is based on $T_{J(max)}$ = 150 $^{\circ}$ C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

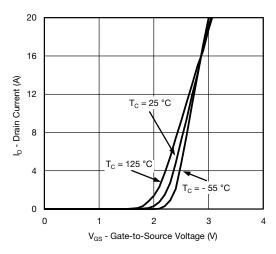
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

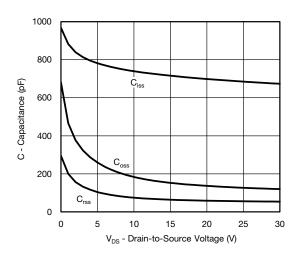

Normalized Thermal Transient Impedance, Junction-to-Ambient

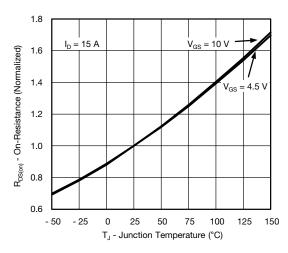

Normalized Thermal Transient Impedance, Junction-to-Case

VISHAY.


CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

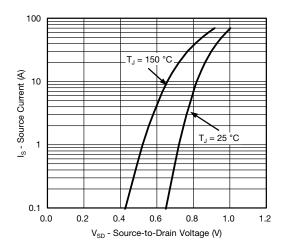

Output Characteristics


On-Resistance vs. Drain Current

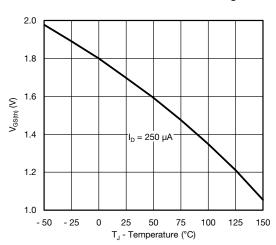

Gate Charge

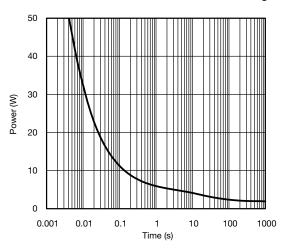
Transfer Characteristics

Capacitance



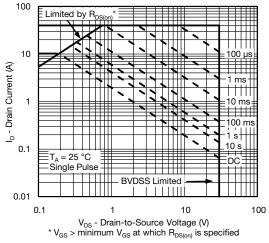
On-Resistance vs. Junction Temperature


CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

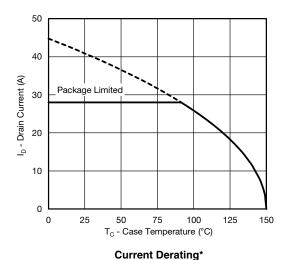

0.04 R_{DS(on)} - On-Resistance (Ω) 0.03 0.02 $T_J = 125 \, ^{\circ}C$ 0.01 = 25 °C 0 10 V_{GS} - Gate-to-Source Voltage (V)

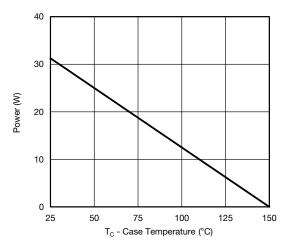
0.05

Source-Drain Diode Forward Voltage



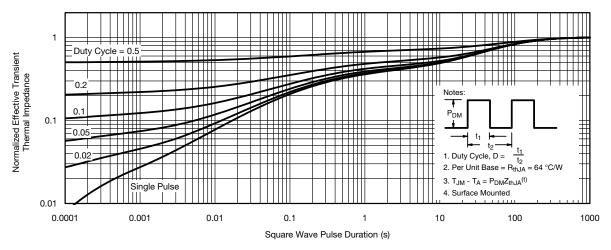
On-Resistance vs. Gate-to-Source Voltage


Threshold Voltage

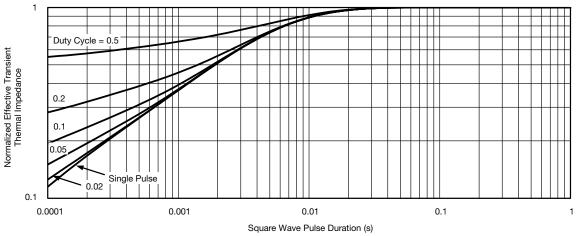

Single Pulse Power

Safe Operating Area, Junction-to-Ambient

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

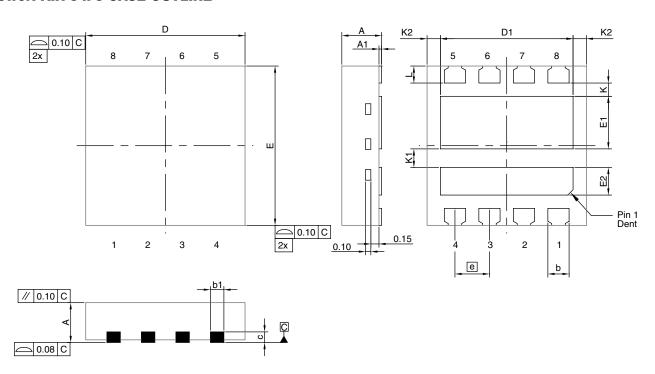


Power, Junction-to-Case


 $^{^{\}star}$ The power dissipation P_D is based on $T_{J(max)}$ = 150 $^{\circ}$ C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

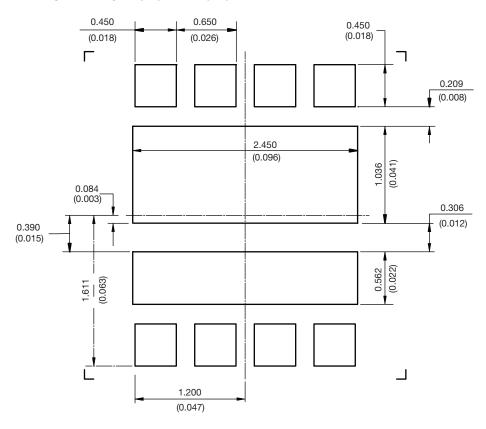


Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg267715.

Document Number: 67715 S11-1646-Rev. B, 15-Aug-11

PowerPAIR 3 x 3 CASE OUTLINE


		MILLIMETERS			INCHES			
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
Α	0.70	0.75	0.80	0.028	0.030	0.031		
A1	0.00		0.05	0.000		0.002		
b	0.35	0.40	0.45	0.014	0.016	0.018		
b1	0.20	0.25	0.38	0.008	0.010	0.015		
С	0.18	0.20	0.23	0.007	0.008	0.009		
D	3.00			0.118				
D1	2.35	2.40	2.45	0.093	0.094	0.096		
Е		3.00			0.118			
E1	0.94	0.99	1.04	0.037	0.039	0.041		
E2	0.47	0.52	0.57	0.019	0.020	0.022		
е		0.65	BSC		0.026	BSC		
K		0.25	TYP.		0.010	TYP.		
K1		0.35	TYP.		0.014	TYP.		
K2		0.30	TYP.		0.012	TYP.		
L	0.27	0.32	0.37	0.011	0.013	0.015		

DWG: 5998

Document Number: 67698 Revison: 14-Mar-11

RECOMMENDED MINIMUM PAD FOR PowerPAIR® 3 x 3

Recommended PAD for PowerPAIR 3 x 3

Dimensions in millimeters (inches)

Keep-Out 3.5 mm x 3.5 mm for non terminating traces

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 11-Mar-11