
BATTERY CHARGER USING THE ST6-REALIZER 

By Lionel Picandet

INTRODUCTION

Because competition becomes greater and greater it is important to reduce time to market.
The ST6 Realizer helps to fullfill this duty. The time needed to realize a design is dramatically
reduced. Design of an application takes a few days instead of a few weeks.
Users who develop ST6 applications are systems electronics engineers; Often they do not
know the assembler well and there are reluctant to use it. The ST6 Realizer allows users to
design their applications using symbols known by hardware designers such as comparators,
counters, multiplexers. Once the design is over, the ST6 Realizer generates assembly code or
executable code for the different ST6 target hardware.

AN676/0395 1/14

APPLICATION NOTE



APPLICATION NOTE GOAL

This note aims at introducing the different features of the ST6 Realizer graphic tool. It is also a
tutorial to firstly help you get started with ST6 Realizer design, then for you to implement
advanced features to optimize your design or to evaluate the target hardware requirements.
The application note describes a battery charger because it illustrates the different features of
the ST6 Realizer throughout it. The charger implements a simple charging method.
Nevertheless charging end points using the negative voltage slope detection method or
voltage inflection points can be implemented with this battery charger ST6 board.

HARDWARE SCHEMATICS

The schematics describes the different hardware parts of the application:

The microcontroller connections
The power supply
The charging indicators
The start push button
The power command

BATTERY CHARGER USING THE ST6-REALIZER

2/14



Figure 1 : Simple Battery Charger Circuit Schematic

B
attery

cell:A
A

type
/1.2V

-
0.5A

h

V
C

C
U

1
7805

J1
JA

C
K

G
N

D
P

O
W

E
R

S
U

P
P

LY
C

1

22M
FG

N
D

G
N

D

S
T

A
R

T

R
E

A
D

Y
LE

D
_H

I
LE

D
_LO

D
IS

C
H

R
G

V
C

C
V

D
D

1

T
IM

E
R

2

O
S

C
IN

3

O
S

C
O

U
T

4

N
M

I
5

T
E

S
T

6

R
E

S
E

T
/

7

P
B

7
8

P
B

6
9

P
B

5
10

P
B

4
11

P
B

3
12

P
B

2
13

P
B

1
14

P
B

0
15

P
A

3
16

P
A

2
17

P
A

1
18

P
A

0
19

V
S

S
20

U
2

S
T

6210

V
C

C
100K

G
N

D

X
T

1
8M

H
Z

-X
T

-P

G
N

D

C
2

10pF

C
3

10pF
G

N
D

C
U

R
R

E
N

T
V

O
LT

A
G

E

G
N

D

C
4

1M
F

IM
A

X

S
T

6210/20
M

C
U

H
IG

H
LO

W

S
T

A
R

T
S

W
1

G
N

D

S
T

A
R

T
P

U
S

H
-B

U
T

T
O

N

C
H

A
R

G
E

C
U

R
R

E
N

T
IN

D
IC

A
T

O
R

LD
1

LE
D

-R
E

D
-5M

M

LD
2

LE
D

-R
E

D
-5M

M

R
1

470

R
2

470

LE
D

_H
I

LE
D

_LO

R
E

A
D

Y
LD

3

LE
D

-R
E

D
-5M

M

R
7

470
G

N
D

T
3

B
D

236-P
N

P
-45V

V
C

C

R
10

470

H
IG

H

LO
W

T
1

R
8

470

R
2

68
ohm

s

R
6

2
ohm

s

R
V

1
50K

-R
V

IM
A

X

G
N

D M
A

X
C

U
R

R
E

N
T

A
D

JU
S

T

B
T

1
B

A
T

T
E

R
Y

N
iC

d
B

A
T

T
E

R
Y

V
O

LT
A

G
E

C
U

R
R

E
N

T

G
N

D

R
4

10
ohm

s

Note that in the circuit diagram the Microcontroller is shown as a simple box. The objective of
the ST6 Realizer is to enable you to write the program code for the microcontroller with the
same ease and in the same manner as you have drawn the hardware schematic.

BATTERY CHARGER USING THE ST6-REALIZER

3/14



Figure 2 : Functional Diagram

Start

READY

HIGH

LOW

HIGH CHARGE

LOW CHARGE

Imax

Icharge

Vcharge

MCU

The MCU manages all the functions of the application:

At reset the READY LED blinks to indicate that the charger is ready to charge.
The user pushes the START button to begin the HIGH charge.
The READY LED switches off. The HIGH LED highlights.
The LOW charge takes place when the VOLTAGE threshold of 1.5 V is reached.
The HIGH LED switches off. The LOW LED switches on.
The battery charge is over when the delay of LOW charge is reached.
The LOW LED switches off. The READY LED blinks.
When the current in the battery is too high, HIGH charge or LOW charge are bypassed.

BATTERY CHARGER USING THE ST6-REALIZER

4/14



Figure 3 : Flow Chart

Start

HIGH charge

Voltage > 1,5V

LOW charge

Current Too High

No
No

Yes

Yes

Charging time
expired

Current Too High

No

Yes

No

BATTERY CHARGER USING THE ST6-REALIZER

5/14



HARDWARE RESOURCES

The application can run in stand-alone mode using an ST6215 microcontroller. It can be
driven by the ST622X, ST624X, ST626X Starter Kit.

The microcontroller requires:
3 analog inputs for:

Imax: the maximum current
Icharge: the charging current
Vcharge the actual voltage at the + connection of the cell

a digital input to connect the start push button
2 digital outputs to switch the LOW charge current and the HIGH charge current
3 digital outputs to switch the three LEDs that supply the user with information status

SOFTWARE DESIGN

The flow chart is implemented in the schematic editor of the Realizer as a state machine.

Figure 4 : State Machine

The state machine sums up the behaviour of the application. Due to the fact that the ST6
Realizer is a graphic tool, it is easy to explain how the application works with symbols and
state machines.
Symbols named condition are events that allow the switching from state to state.
The condition symbols are connected either to an external input (Start, CurrentTooHigh,
Voltage>1.5V) or to internal outputs (ChargingTimeExpired).

Symbols named state are linked to actions. In this application:
HIGH STATE starts high charging current and switches on high level status LED
LOW STATE starts low charging current and switches on low level status LED
READY STATE indicates by blinking an LED that the charge is over or the application is
waiting for a new battery to be charged.

BATTERY CHARGER USING THE ST6-REALIZER

6/14



Software schematics

internal output & internal input condition
external input conditions
external output actions

Figure 5 : Internal Output & Internal Input Condition

Figure 6 : External Input Conditions

BATTERY CHARGER USING THE ST6-REALIZER

7/14



Figure 7 : External Output Actions

Selecting the I/O

Symbols such as digin, digout or ADC are connected to I/O pin ports. By selecting the target
hardware and by double clicking on the symbol it is possible to assign a pin port to this symbol
and to program it respectively as a digital input, a digital output or an analog input.

The realizer process

It is of interest to know how the ST6 Realizer works to avoid misunderstandings about the
design application .
Here is how the realizer builds up its code:

general definitions, like device name, registers
reset entry
initialisation of the port registers according to the connections made in the ST6 Realizer
create backup register for output ports
initialisation of the AD converter
initialisation of the timer for the 10 ms tick
initialisation of the RAM used by the Realizer application.
call symbols initialisation macros
start of the main loop (Realmain)
restart the AD converter when it is ready
read the number of 10ms ticks and copy them for use by the ST6 Realizer application
call symbol main macros, first all input symbol macros then all ”normal” symbol macros and
finally the output symbol macros.

BATTERY CHARGER USING THE ST6-REALIZER

8/14



call state machine macros
call edge-sensitive input macros
copy the backup values to the output ports
trigger the watchdog if this option is enabled
jump to the start of the loop (Realmain)
AD converter interrupt routine
timer 10ms interrupt routine
interrupt vector table

Generating code

Before generating the ST6 program code it is necessary to define the target hardware where
the executable code will be loaded. The ST6210 microcontroller suits the application well.
Then the analyse step is run with all the selected options to get the executable code.

Debugging the application

Once the design of the application is over, the the executable code is available. The next step
is to verify that the design corresponds to the design specifications. The validation of the
design is made with the simulator.

In the application state machine items are involved with the inputs and outputs of the system.
The way to debug the application is to verify that each condition activates the corresponding
state machine.
Figure 8 : Debugging Scheme With The Simulator

BATTERY CHARGER USING THE ST6-REALIZER

9/14



The external inputs of the system are connected to adjusters. In this way it is easy to activate
the system. Numeric adjusters are used to get fixed input values. It is forbiden to put probes
on the state machine, however they can be put on the statein and stateout symbols.

At reset it is interesting to set adjusters to inactive values and to verify that the application
states are inactive but the initial state.

Then adjusters are activated with fixed values so that the system can react to external
stimulation. At this point it is useful to choose the step by step mode to detect spurious state
transitions and to verify state sequences.

It is advised to use host time instead of target time for time transitions because it takes less
time. But for benchmark timing it is more convenient to choose the target time to keep the
compatibility between instruction execution and time calculation. This information is given by
the information loop box.

Once the schematics has been tested, the executable code can be programmed into an
EPROM-based version of the ST6 microcontroller using the ST6 Starter Kits or EPROM
programmers.

BATTERY CHARGER USING THE ST6-REALIZER

10/14



HARDWARE CONSTRAINTS

It is found that the real application in stand alone mode does not work as well as the simulated
application. The battery charge goes directly into low level current without charging the
battery. The problem is identified as coming from voltage fluctuations .

The first solution

The first solution considered was to average the ADC values to decrease the influence of the
voltage fluctuations. The average is designed in the figure below :

Figure 9 : Averaging Scheme

It takes four loops before the ADC voltage can be correctly averaged every loop. The input of
the first add2 symbol must be cast to UINT type because the output can be superior to an
UBYTE type. This way the UINT type is expanded to all following symbols.

In real terms it takes less than 1ms to run a loop. So it takes less than 4 ms to get a correct
average voltage. In addition the start push button must not be pressed while the average is
not stabilized.

The schematic design for the average is quite large. As it must be implemented on the ADC
that converts the charging current and the voltage, the root scheme drawing will be
overloaded with symbols and be confusing to read. On the other hand, the implementation of
these ADC converters is memory consuming. These drawbacks have been solved by creating
sub-schemes. The figure below shows the use of sub-schemes:

BATTERY CHARGER USING THE ST6-REALIZER

11/14



Figure 10 : Use Of Sub-Schemes

The output of the sub-scheme symbol is cast to UBYTE type because the average result fits
to the values of an unsigned byte. In addition it is not worth keeping UINT 16-bit type because
it wastes RAM memory.

Inside the sub-scheme the treatment of the average looks like this:

Figure 11 : A Generic Averaging Sub-Scheme

The symbols portin and portout allow the sub-scheme to be link ed to the root scheme. The
label of portin and portout must match the names of the sub-scheme symbol.

While ADC values were averaged the behaviour of the real application were the same.The
High current charge did not occur.

Second solution

The use of a numeric oscilloscope proves that the problem came from voltage fluctuations
that occur during the establishment of the high current charging circuit. This problem is solved
by adding a new state to invalidate the voltage threshold during the setup time of the high
current charge. The new state is connected to a fixed timer whose duration is the setup time
of the high current charge.

BATTERY CHARGER USING THE ST6-REALIZER

12/14



CONCLUSION

The ST6 Realizer is a powerful graphic tool that aims at designing software without requiring
knowledge of assembly language. It uses symbols that hardware designers know well.
Another advantage is that users can develop their application independently from the
hardware board. The ST6 simulator is included in the ST6 Realizer, so that users can validate
their design without the ST6 board. Many applications in automotive and home appliances can
be developped with the ST6 realizer.

BATTERY CHARGER USING THE ST6-REALIZER

13/14



NOTES:

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no
responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties
which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of
SGS-THOMSON Microelectronics.

 1995 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I2C Componentsby SGS-THOMSON Microelectronics, conveys a license under the Philips
I2C Patent. Rights to use these components in an I2C system, is granted provided that the system conforms to the I2C Standard

Specifications as defined by Philips.

SGS-THOMSON Microelectronics Group of Companies
Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

BATTERY CHARGER USING THE ST6-REALIZER

14/14


