

STB36NF02L

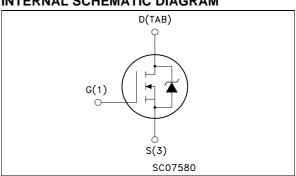
N-CHANNEL 20V - 0.016 Ω - 36A D²PAK LOW GATE CHARGE STripFET™ POWER MOSFET

PRELIMINARY DATA

TYPE	V _{DSS}	R _{DS(on)}	ΙD
STB36NF02L	20 V	<0.021 Ω	36 A

- TYPICAL $R_{DS}(on) = 0.016 \Omega$
- TYPICAL Qg = 19 nC @ 10V
- OPTIMAL RDS(on) x Qg TRADE-OFF
- CONDUCTION LOSSES REDUCED
- SWITCHING LOSSES REDUCED

DESCRIPTION


This application specific Power Mosfet is the third generation of STMicroelectronics unique "Single Feature Size™" strip-based process. The resulting transistor shows the best trade-off between on-resistance and gate charge. When used as high and low side in buck regulators, it gives the best performance in terms of both conduction and switching losses. This is extremely important for motherboards where fast switching and high efficiency are of paramount importance.

APPLICATIONS

 SPECIFICALLY DESIGNED AND OPTIMISED FOR HIGH EFFICIENCY CPU CORE DC/DC **CONVERTERS**

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	20	V
V_{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	20	V
V _{GS}	Gate- source Voltage	±20	V
ID	Drain Current (continuos) at T _C = 25°C	36	A
I _D	Drain Current (continuos) at T _C = 100°C	25	A
I _{DM} (•)	Drain Current (pulsed)	144	A
P _{tot}	Total Dissipation at T _C = 25°C	75	W
	Derating Factor	0.5	W/°C
T _{stg}	Storage Temperature	-65 to 175	°C
Tj	Max. Operating Junction Temperature	175	°C

(•)Pulse width limited by safe operating area

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case Max	Max	2	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient Max	Max	62.5	°C/W
Tj	Maximum Lead Temperature For Soldering Purpose		300	°C

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A$ $V_{GS} = 0$	20			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T_{C} = 125 °C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			±100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \mu A$	1		2.5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V I _D = 18 A V _{GS} = 4.5 V I _D = 18 A		0.016 0.023	0.021 0.03	Ω Ω
I _{D(on)}	On State Drain Current	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $V_{GS} = 10V$	36			Α

DYNAMIC

Symbol	Parameter	Parameter Test Conditions Min.		Тур.	Max.	Unit
gfs ^(*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_{D}=18 \text{ A}$		20		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitances	$V_{DS} = 25V f = 1 MHz V_{GS} = 0$		750 270 60		pF pF pF

2/6

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$\begin{array}{ccc} V_{DD} = 15 \text{ V} & I_D = 40 \text{ A} \\ R_G = 4.7 \; \Omega & V_{GS} = 4.5 \text{ V} \\ \text{(see test circuit, Figure 3)} \end{array}$		20 270		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 16 V I _D = 36 A V _{GS} =10V		19 3 5	21	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		35 60		ns ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)					36 144	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 36 A	$V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I _{SD} =36 A V _{DD} = 15 V (see test circu	di/dt = 100 A/ μ s T_j = 150 °C uit, Figure 5)		50 80 2		ns nC A

^(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
(•) Pulse width limited by safe operating area.

47/

Fig. 1: Unclamped Inductive Load Test Circuit

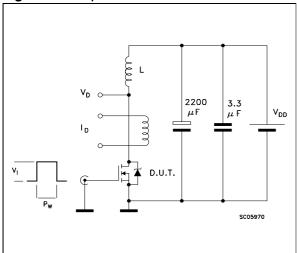
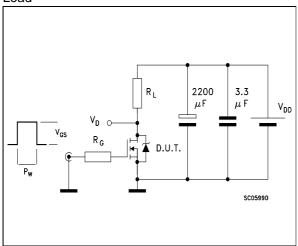



Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

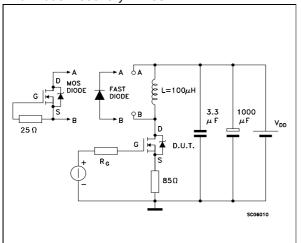
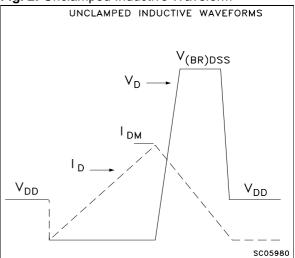
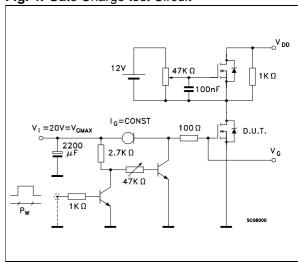
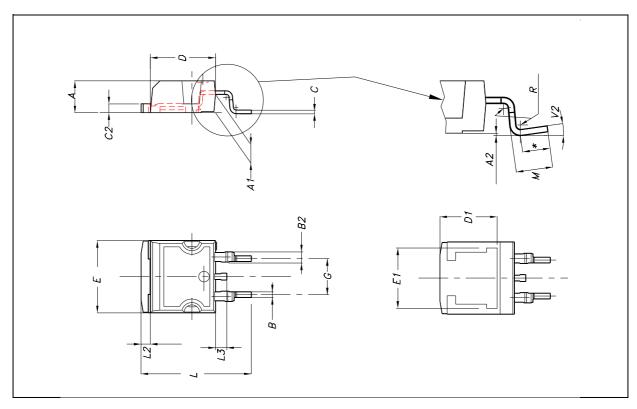


Fig. 2: Unclamped Inductive Waveform


Fig. 4: Gate Charge test Circuit

4/6

D²PAK MECHANICAL DATA

DIM.		mm.			inch	
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
Е	10		10.4	0.393		
E1		8.5			0.334	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.625
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068
М	2.4		3.2	0.094		0.126
R		0.4			0.015	
V2	00		80			

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics © 2000 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

477