NX3DV3899

Dual double-pole double-throw analog switch
Rev. 2 - 23 November 2010
Product data sheet

1. General description

The NX3DV3899 is a dual double-pole double-throw analog data-switch suitable for use as an analog or digital multiplexer/demultiplexer. It consists of four switches, each with two independent input/outputs ($\mathrm{nY0}$ and nY 1) and a common input/output (nZ). The two digital inputs (1S and 2 S) are used to select the switch position. Schmitt trigger action at the select input (nS) makes the circuit tolerant to slower input rise and fall times across the entire V_{Cc} range from 1.4 V to 4.3 V .

A low input voltage threshold allows pin nS to be driven by lower level logic signals without a significant increase in supply current $I_{\text {Cc. }}$. This makes it possible for the NX3DV3899 to switch 4.3 V signals with a 1.8 V digital controller, eliminating the need for logic level translation. The NX3DV3899 allows signals with amplitude up to V_{Cc} to be transmitted from nZ to nYO or nY 1 ; or from nYO or $\mathrm{nY1}$ to nZ .

2. Features and benefits

■ Wide supply voltage range from 1.4 V to 4.3 V

- Very low ON resistance (peak):
- 7.2Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$
- 5.4Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$
- 2.9Ω (typical) at $\mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V}$
- 2.4Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
- 2.3Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$
- 2.2Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$
- Break-before-make switching
- High noise immunity
- ESD protection:
- HBM JESD22-A114F Class 2A exceeds 2000 V (all pins)
- HBM JESD22-A114F Class 3A exceeds 5000 V (I/O pins to GND)
- MM JESD22-A115-A exceeds 200 V
- CDM AEC-Q100-011 revision B exceeds 1000 V
- CMOS low-power consumption
- Latch-up performance exceeds 100 mA per JESD 78B Class II Level A
- 1.8 V control logic at $\mathrm{V}_{\mathrm{Cc}}=3.6 \mathrm{~V}$
- Control input accepts voltages above supply voltage
- Very low supply current, even when input is below V_{CC}
- High current handling capability (350 mA continuous current under 3.3 V supply)
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

3. Applications

- Data switch
- Cell phone
- PDA
- Portable media player

4. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
NX3DV3899HR	$-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$	HXQFN16U	plastic thermal enhanced extremely thin quad flat package; no leads; 16 terminals; UTLP based; body $3 \times 3 \times 0.5 \mathrm{~mm}$	SOT1039-1
NX3DV3899GU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	XQFN16	plastic, extremely thin quad flat package; no leads; 16 terminals; body $1.80 \times 2.60 \times 0.50 \mathrm{~mm}$	SOT1161-1

5. Marking

Table 2. Marking codes

Type number	Marking code
NX3DV3899HR	$\times 99$
NX3DV3899GU	$\times 9$

6. Functional diagram

Fig 1. Logic symbol

001aam785
Fig 2. Logic diagram

7. Pinning information

7.1 Pinning

(1) This is not a supply pin, the substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad however if it is soldered the solder land should remain floating or be connected to GND.

Fig 3. Pin configuration SOT1039-1 (HXQFN16U)

Fig 4. Pin configuration SOT1161-1 (XQFN16)

7.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
$1 \mathrm{YO}, 2 \mathrm{YO}, 3 \mathrm{YO}, 4 \mathrm{YO}$	$1,5,9,13$	independent input or output
$1 \mathrm{~S}, 2 \mathrm{~S}$	2,10	select input
$1 \mathrm{Y} 1,2 \mathrm{Y}, 3 \mathrm{Y}, 4 \mathrm{Y} 1$	$15,3,7,11$	independent input or output
$1 \mathrm{Z}, 2 \mathrm{Z}, 3 \mathrm{Z}, 4 \mathrm{Z}$	$16,4,8,12$	common output or input
GND	6	ground $(0 \mathrm{~V})$
V_{CC}	14	supply voltage

8. Functional description

Table 4. Function table[1]

Input nS	Channel on
L	nYO
H	$\mathrm{nY1}$

[1] $\mathrm{H}=$ HIGH voltage level; $\mathrm{L}=$ LOW voltage level.

9. Limiting values

Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground $=0 \mathrm{~V}$)

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{\text {cc }}$	supply voltage		-0.5	+4.6	V
V_{1}	input voltage	select input nS	[1] -0.5	+4.6	V
$\mathrm{V}_{\text {SW }}$	switch voltage		[2] -0.5	$\mathrm{V}_{C C}+0.5$	V
$I_{\text {IK }}$	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$	-50	-	mA
$\mathrm{I}_{\text {SK }}$	switch clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 50	mA
Isw	switch current	$\mathrm{V}_{\mathrm{SW}}>-0.5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{SW}}<\mathrm{V}_{\mathrm{cc}}+0.5 \mathrm{~V} ;$ source or sink current	-	± 350	mA
		$\mathrm{V}_{\mathrm{SW}}>-0.5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{SW}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ pulsed at 1 ms duration, < 10% duty cycle; peak current	-	± 500	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
		HXQFN16U	[3] -	250	mW
		XQFN16	[4] -	250	mW

[1] The minimum input voltage rating may be exceeded if the input current rating is observed.
[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed but may not exceed 4.6 V .
[3] For HXQFN16U package: above $135^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $16.9 \mathrm{~mW} / \mathrm{K}$.
[4] For XQFN16 package: above $133{ }^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $14.5 \mathrm{~mW} / \mathrm{K}$.

10. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage	select input nS	1.4	4.3	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	4.3	
$\mathrm{~V}_{\mathrm{SW}}$	switch voltage	$\underline{[1]}$	0	V	
$\mathrm{~T}_{\mathrm{amb}}$	ambient temperature	-40	+125	${ }^{\circ} \mathrm{C}$	V
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 4.3 V	$\underline{[2]}$	-	200

[1] To avoid sinking GND current from terminal $n Z$ when switch current flows in terminal $n Y n$, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal $n Z$, no GND current will flow from terminal $n Y n$. In this case, there is no limit for the voltage drop across the switch
[2] Applies to control signal levels.

11. Static characteristics

Table 7. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground 0 V).

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
			Min	Typ	Max	Min	$\begin{gathered} \operatorname{Max} \\ \left(85{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ \left(125{ }^{\circ} \mathrm{C}\right) \end{gathered}$	
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	0.9	-	-	0.9	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	0.9	-	-	0.9	-	-	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.1	-	-	1.1	-	-	V
		$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$ to 3.6 V	1.3	-	-	1.3	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ to 4.3 V	1.4	-	-	1.4	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	-	0.3	-	0.3	0.3	V
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	-	0.4	-	0.4	0.3	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-	0.4	-	0.4	0.4	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	-	0.5	-	0.5	0.5	V
		$\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}$ to 4.3 V	-	-	0.6	-	0.6	0.6	V
1	input leakage current	select input ns; $\mathrm{V}_{1}=\mathrm{GND}$ to 4.3 V ; $\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 4.3 V	-	-	-	-	± 0.5	± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(OFF) }}$	OFF-state leakage current	nY0 and nY1 port; see Figure 5							
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 4.3 V	-	-	± 5	-	± 50	± 500	nA
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	nZ port; see Figure 6							
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 4.3 V	-	-	± 5	-	± 50	± 500	nA
Icc	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{SW}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$							
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	-	100	-	500	5000	nA
		$\mathrm{V}_{\text {CC }}=4.3 \mathrm{~V}$	-	-	150	-	800	6000	nA

Table 7. Static characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground 0 V).

Symbol	Parameter	Conditions	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max	Min	$\begin{gathered} \operatorname{Max} \\ \left(85{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ \left(1255^{\circ} \mathrm{C}\right) \end{gathered}$	
$\Delta l_{\text {CC }}$	additional supply current	$\mathrm{V}_{\text {SW }}=\mathrm{GND}$ or V_{CC}							
		$\mathrm{V}_{\mathrm{I}}=2.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$	-	2.0	4.0	-	7	7	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=2.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	0.35	0.7	-	1	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{I}}=1.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$	-	7.0	10.0	-	15	15	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{I}}=1.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	2.5	4.0	-	5	5	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{I}}=1.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	-	50	200	-	300	500	nA
C_{1}	input capacitance		-	1.0	-	-	-	-	pF
$\mathrm{C}_{\text {S(OFF) }}$	OFF-state capacitance		-	8	-	-	-	-	pF
$\mathrm{C}_{\text {S(ON) }}$	ON-state capacitance		-	30	-	-	-	-	pF

11.1 Test circuits

$\mathrm{V}_{\mathrm{I}}=0.3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$ or 0.3 V .
Fig 5. Test circuit for measuring OFF-state leakage current

$$
\mathrm{V}_{1}=0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{Cc}}-0.3 \mathrm{~V} \text { or } 0.3 \mathrm{~V}
$$

Fig 6. Test circuit for measuring ON-state leakage current

11.2 ON resistance

Table 8. ON resistance
At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$); for graphs see Figure 8 to Figure 14.

Symbol	Parameter	Conditions		$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to +85 ${ }^{\circ} \mathrm{C}$			$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$		Unit
				Min	Typ ${ }^{[1]}$	Max	Min	Max	
$\mathrm{R}_{\text {ON(peak) }}$	ON resistance (peak)	$\begin{aligned} & V_{1}=G N D \text { to } V_{C C} ; \\ & I_{S W}=100 \mathrm{~mA} ; \text { see Figure } 7 \end{aligned}$							
		$\mathrm{V}_{\text {CC }}=1.4 \mathrm{~V}$		-	7.2	9.3	-	10	Ω
		$\mathrm{V}_{\text {CC }}=1.65 \mathrm{~V}$		-	5.4	7.3	-	8	Ω
		$\mathrm{V}_{C C}=2.5 \mathrm{~V}$		-	2.9	3.9	-	4.5	Ω
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$		-	2.4	3.4	-	4.5	Ω
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$		-	2.3	3.3	-	4.2	Ω
		$\mathrm{V}_{\text {CC }}=4.3 \mathrm{~V}$		-	2.2	3.3	-	4.2	Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON resistance mismatch between channels	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{I}_{\mathrm{SW}}=100 \mathrm{~mA} \end{aligned}$	[2]						
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		-	0.8	-	-	-	Ω
		$\mathrm{V}_{C C}=4.3 \mathrm{~V}$		-	0.7	-	-	-	Ω
$\mathrm{R}_{\mathrm{ON} \text { (flat) }}$	ON resistance (flatness)	$\begin{aligned} & V_{I}=G N D \text { to } V_{\mathrm{Cc}} ; \\ & \mathrm{I}_{\mathrm{SW}}=100 \mathrm{~mA} \end{aligned}$	[3]						
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$		-	4.4	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$		-	2.8	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$		-	1.0	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$		-	0.8	-	-	-	Ω
		$\mathrm{V}_{C C}=3.6 \mathrm{~V}$		-	0.9	-	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$		-	1.0	-	-	-	Ω

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
[2] Measured at identical V_{CC}, temperature and input voltage.
[3] Flatness is defined as the difference between the maximum and minimum value of $O N$ resistance measured at identical V_{CC} and temperature

11.3 ON resistance test circuit and graphs

$\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{SW}} / \mathrm{I}_{\mathrm{SW}}$.

Fig 7. Test circuit for measuring ON resistance

(1) $V_{C C}=1.4 \mathrm{~V}$.
(2) $\mathrm{V}_{\mathrm{Cc}}=1.65 \mathrm{~V}$.
(3) $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$.
(4) $V_{C C}=3.0 \mathrm{~V}$.
(5) $V_{C C}=3.6 \mathrm{~V}$.
(6) $\mathrm{V}_{\mathrm{Cc}}=4.3 \mathrm{~V}$

Measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
Fig 8. Typical ON resistance as a function of input voltage

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$.

Fig 9. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=1.4 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 11. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$.

Fig 10. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=1.65 \mathrm{~V}$

(1) $\mathrm{T}_{\text {amb }}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$.

Fig 12. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$.

Fig 13. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V}$

(1) $\mathrm{T}_{\text {amb }}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$.

Fig 14. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=4.3 \mathrm{~V}$

12. Dynamic characteristics

Table 9. Dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Figure 17.

Symbol	Parameter	Conditions	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			Unit
			Min	Typ ${ }^{[1]}$	Max	Min	$\begin{gathered} \operatorname{Max} \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ \left(125^{\circ} \mathrm{C}\right) \end{gathered}$	
$\mathrm{t}_{\text {en }}$	enable time	$n S$ to $n Z$ or $n Y n$; see Figure 15							
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	41	90	-	120	120	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	30	70	-	80	90	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	20	45	-	50	55	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	19	40	-	45	50	ns
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ to 4.3 V	-	19	40	-	45	50	ns
$\mathrm{t}_{\text {dis }}$	disable time	nS to nZ or nYn; see Figure 15							
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	24	70	-	80	90	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	15	55	-	60	65	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	9	25	-	30	35	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	-	8	20	-	25	30	ns
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ to 4.3 V	-	8	20	-	25	30	ns

Table 9. Dynamic characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$); for test circuit see Figure 17.

Symbol	Parameter	Conditions		$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$			Unit
				Min	Typ ${ }^{[1]}$	Max	Min	$\begin{gathered} \operatorname{Max} \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ \left(125{ }^{\circ} \mathrm{C}\right) \end{gathered}$	
t_{b-m}	break-before-make time	see Figure 16	[2]							
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V		-	20	-	9	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V		-	17	-	7	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		-	13	-	4	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		-	11	-	3	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ to 4.3 V		-	11	-	2	-	-	ns

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}$ and 4.3 V respectively.
[2] Break-before-make guaranteed by design.

12.1 Waveform and test circuits

Measurement points are given in Table 10.
Logic level: V_{OH} is typical output voltage level that occurs with the output load.
Fig 15. Enable and disable times

Table 10. Measurement points

Supply voltage	Input	Output
\mathbf{V}_{CC}	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$
1.4 V to 4.3 V	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.9 \mathrm{~V}_{\mathrm{OH}}$

a. Test circuit

b. Input and output measurement points

Fig 16. Test circuit for measuring break-before-make timing

Test data is given in Table 11.
Definitions test circuit:
$R_{L}=$ Load resistance.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$\mathrm{V}_{\mathrm{EXT}}=$ External voltage for measuring switching times.
Fig 17. Test circuit for measuring switching times

Table 11. Test data

Supply voltage	Input		Load	
\mathbf{V}_{CC}	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$	$\mathbf{C}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{L}}$
1.4 V to 4.3 V	$\mathrm{~V}_{\mathrm{CC}}$	$\leq 2.5 \mathrm{~ns}$	35 pF	50Ω

12.2 Additional dynamic characteristics

Table 12. Additional dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$); $V_{l}=G N D$ or $V_{C C}$ (unless otherwise specified); $t_{r}=t_{f} \leq 2.5 \mathrm{~ns} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
THD	total harmonic distortion	$\mathrm{f}_{\mathrm{i}}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=600 \Omega$; see Figure 18	[1]			
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=1 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.05	-	\%
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=1.2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.02	-	\%
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=1.5 \mathrm{~V}$ (p-p)	-	0.01	-	\%
		$\mathrm{V}_{C C}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.01	-	\%
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}$ (p-p)	-	0.01	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.01	-	\%
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\mathrm{R}_{\mathrm{L}}=50 \Omega$; see Figure 19	[1]			
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 4.3 V	-	200	-	MHz
$\alpha_{\text {iso }}$	isolation (OFF-state)	$\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$; see Figure 20	[1]			
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 4.3 V	-	-70	-	dB
V_{ct}	crosstalk voltage	between digital inputs and switch; $f_{i}=1 \mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$; see Figure 21				
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 3.6 V	-	210	-	V
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ to 4.3 V	-	300	-	V
Xtalk	crosstalk	between switches; $\mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$; see Figure 22	[1]			
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 4.3 V	-	-90	-	dB
Qinj	charge injection	$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \mathrm{V}_{\text {gen }}=0 \mathrm{~V} \text {; } \\ & \mathrm{R}_{\text {gen }}=0 \Omega \text {; see } \underline{\text { Figure } 23} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$	-	0.5	-	pC
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	0.7	-	pC
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	-	1.6	-	pC
		$\mathrm{V}_{\mathrm{Cc}}=3.0 \mathrm{~V}$	-	2.1	-	pC
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	-	2.9	-	pC
		$\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$	-	4.0	-	pC

[1] f_{i} is biased at $0.5 \mathrm{~V}_{\mathrm{CC}}$.

12.3 Test circuits

Fig 18. Test circuit for measuring total harmonic distortion

Adjust f_{i} voltage to obtain 0 dBm level at output. Increase f_{i} frequency until dB meter reads -3 dB .
Fig 19. Test circuit for measuring the frequency response when channel is in ON-state

Adjust f_{i} voltage to obtain 0 dBm level at input.
Fig 20. Test circuit for measuring isolation (OFF-state)

a. Test circuit

$012 a a a 010$
b. Input and output pulse definitions

Fig 21. Test circuit for measuring crosstalk voltage between digital inputs and switch

$20 \log _{10}\left(\mathrm{~V}_{\mathrm{O} 2} / \mathrm{V}_{\mathrm{O} 1}\right)$ or $20 \log _{10}\left(\mathrm{~V}_{\mathrm{O} 1} / \mathrm{V}_{\mathrm{O} 2}\right)$.
Fig 22. Test circuit for measuring crosstalk between switches

a. Test circuit

v_{0}

b. Input and output pulse definitions

Definition: $\mathrm{Q}_{\mathrm{inj}}=\Delta \mathrm{V}_{\mathrm{O}} \times \mathrm{C}_{\mathrm{L}}$.
$\Delta \mathrm{V}_{\mathrm{O}}=$ output voltage variation.
$\mathrm{R}_{\mathrm{gen}}=$ generator resistance .
$\mathrm{V}_{\text {gen }}=$ generator voltage .
Fig 23. Test circuit for measuring charge injection

13. Package outline

HXQFN16U: plastic thermal enhanced extremely thin quad flat package; no leads;
16 terminals; UTLP based; body $3 \times 3 \times 0.5 \mathrm{~mm}$

$\xrightarrow[\text { scale }]{0}$
DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}															
$\boldsymbol{m a x}$	$\mathbf{A}_{\mathbf{1}}$	\mathbf{b}	\mathbf{D}	$\mathbf{D}_{\mathbf{h}}$	\mathbf{E}	$\mathbf{E}_{\mathbf{h}}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	$\mathbf{e}_{\mathbf{2}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{1}}$	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{y}_{\mathbf{1}}$	
mm	0.5	0.05	0.35	3.1	1.95	3.1	1.95	0.5	1.5	1.5	0.35	0.1	0.1	0.05	0.05	0.1

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT1039-1	\ldots		\ldots		$07-12-01$	

Fig 24. Package outline SOT1039-1 (HXQFN16U)

Fig 25. Package outline SOT1161-1 (XQFN16)

14. Abbreviations

Table 13. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
PDA	Personal Digital Assistant

15. Revision history

Table 14. Revision history

| Document ID | Release date | Data sheet status | Change notice | Supersedes |
| :--- | :---: | :--- | :---: | :---: | :---: |
| NX3DV3899 v. 2 | 20101123 | Product data sheet | - | NX3DV3899 v.1 |
| Modifications: | \bullet Table 7: conditions for ON-state leakage current (IS(ON) and supply current (ICC) have | | | |
| NX3DV3899 v.1 | 20101021 | Product data sheet | - | - |

16. Legal information

16.1 Data sheet status

Document status $[1][2]$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com

16.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.
Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.
In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.
Suitability for use in automotive applications - This NXP
Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be
suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.
Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.
No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

18. Contents

1 General description 1
2 Features and benefits 1
3 Applications 2
4 Ordering information. 2
5 Marking 2
6 Functional diagram 2
7 Pinning information 3
7.1 Pinning 3
7.2 Pin description 4
8 Functional description 4
9 Limiting values 4
10 Recommended operating conditions. 5
11 Static characteristics 5
11.1 Test circuits 6
11.2 ON resistance 7
11.3 ON resistance test circuit and graphs 8
12 Dynamic characteristics 10
12.1 Waveform and test circuits 11
12.2 Additional dynamic characteristics 13
12.3 Test circuits 14
13 Package outline 17
14 Abbreviations 19
15 Revision history. 19
16 Legal information 20
16.1 Data sheet status 20
16.2 Definitions. 20
16.3 Disclaimers 20
16.4 Trademarks. 21
17 Contact information 21
18 Contents 22

