52458 Dual Current-to-Current Opto-Isolator, High Temperature (200°C)

Features:

Hermetically Sealed Package

- Optically Coupled
- Input/Output Isolation Tested to 1000 VDC
- 200°C Operation

Applications:

Signal Isolation

DESCRIPTION

The 52458 is a Current-to-Current Opto-Isolator designed for high temperature applications to 200°C.

Functionally, the device operates as a Current-to-Current Transformer with an output current proportional to the input current. The current transfer ratio is tightly controlled for temperatures from 25°C through 200°C.

ABSOLUTE MAXIMUM RATINGS

Continuous Input Current	20mA
Storage Temperature Range	65°C to +200°C
Operating Temperature	55°C to +200°C
Lead Solder Temperature for 10 seconds	300°C
Reverse Input Voltage	6 VDC

RECOMMENDED OPERATING CONDITIONS:

Parameter	Symbol	Min.	Max.	Units
Output Voltage	Vo		1.0	VDC
Input Current	I _{F (ON)}	5	15	mA
Input Voltage	V _F	1.1	1.6	VDC
Operating Case Temperature	T _C	-55	200	°C

Micropac Industries cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement. **Micropac** reserves the right to make changes at any time in order to improve design and to supply the best product possible.

MICROPAC INDUSTRIES, INC. HYBRID MICROELECTRONICS PRODUCTS DIVISION - 905 E. Walnut St., Garland, TX 75040 - (972) 272-3571 - Fax (972) 494-2281

 www.micropac.com
 E-MAIL: microsales@micropac.com
 5/19/05

 Page 1 of 7
 Page 1 of 7

ELECTRICAL SPECIFICATIONS

T_C= 25°C to +200°C unless otherwise specified

Parameter	Sym.	Min.	Typ.*	Max.	Units	Test Conditions	Notes
Input / Output Forward Voltage	V_{F}		1.6	2.2	VDC	I _F = 10 mA	
Input / Output Reverse Breakdown Voltage	V_R	6	40	_	VDC	I _R = 10 μA	
Input-Output Leakage	I _{I-O}			1	μΑ	RH \leq 45%, t = 5 s V _{I-O} = 1000 VDC T _C = 25°C	1,2
Turn-On Time	t _{ON}		150		ns		
Turn-Off time	t _{OFF}		100		ns	I _F = 2.5 mA	
Rise Time	t_{R}		130		ns	$E_0 = OV$, shorted NOTE 4	2
Fall Time	. t _F		90		ns		3
Output Current			80		μА	I _F = 10 mA	

Notes:

- 1. Input pins are shorted together and output pins are shorted together.
- 2. Input-output potential applied momentarily, not an operating condition.
- 3. Rise time is measured from 10% to 90% of output current. Fall time is measured from 90% to 10% of output.
- 4. Measured values limited by the test Transimpedance circuit.

Figure 1. Output Current vs. Temperature

Figure 2. Output Current vs. Input Current (0.5mA – 5mA)

Figure 3. Output Current vs. Input Current (0.5mA - 20mA)

Pin	Function		
1	+ in (section 1)		
2	- in (section 1)		
3 - out (section 2)			
4	+ out (section 2)		
5	+ in (section 2)		
6	- in (section 2)		
7	7 - out (section 1)		
8	8 + out (section 1)		

1. ESD symbol (Δ) indicates pin 1.

Table 1. Pin Outs

Note: Package is a Ceramic 8 Pin DIP

Figure 4. Case Outline

Application Notes:

52458.01 Isolated Current Monitor.

Figure 1 is a simple, moderately accurate circuit for monitoring an isolated load current. The heart of the circuit is the 52458 Opto Coupler.

The LED current of the coupler is the sum of 1; the bias current of Q2, Q1 / H_{FE} (Q1) and Q3 / H_{FE} (Q3) and 2; the collector current of Q1. Q1 and Q3 form a current mirror with an Emitter current ration if R3 / R2.

A Q3 emitter current of 0.5A represents a 0.010A current at the emitter of Q1 and a total load current of 0.510A.

The OP Amp output voltage is the output current of the 52458 Opto Coupler times the R FEEDBACK value. In this circuit case, 1μ A of Detector current produces a 0.1V output.

The total circuit then has a transfer value of (10mA of LED current = 510mA load current) producing 80μ A of Detector current x 100k Ohm = 8V output. This gives 8V output for a load current of 510mA or a sensitivity of 1 Volt per 63.75mA.

Micropac Industries cannot assume any responsibility for any circuits shown or represent that they are free from patent infringement. **Micropac** reserves the right to make changes at any time in order to improve design and to supply the best product possible.

MICROPAC INDUSTRIES, INC. HYBRID MICROELECTRONICS PRODUCTS DIVISION - 905 E. Walnut St., Garland, TX 75040 - (972) 272-3571 - Fax (972) 494-2281

The following chart illustrates the Optocoupler output as a function of Load current for the circuit of Figure 1.

Vin	I Load	Voltage across	V Out
Volts	mA	Power Circuit	
10	0	2.487	.12
10	140	3.297	1.95
10	233	3.849	3.43
10	330	4.353	4.87
10	427	4.888	6.37
30	0	2.517	.19
30	140	3	1.96
30	233	3.837	3.42
30	330	4.376	4.89
30	427	4.876	6.36

The following chart illustrates the effects of temperature on the Coupler output.

Vin Volts	I Load mA	Temp. Deg, C	I Out uA
20	0.33	25	48.8
20	0.33	125	48.7
20	0.33	150	47

