DESCRIPTION

The M35501FP generates digit signals for fluorescent display when connected to the output port of a microcomputer. There are up to 16 digit pins available, and more can be added by connecting additional M35501FPs. The number of fluorescent displays can be increased easily by connecting the M35501FP to the CMOS FLD (VFD; Vacuum Fluorescent Display) output pins of an 8-bit microcomputer in MITSUBISHI's 38B5 Group. The M35501FP is suitable for fluorescent display control on household electric appliances, audio products, etc.

FEATURES

- Digit output 16 (maximum)
-Up to 16 pins can be selected
- More digits available by connecting additional M35501FPs
-Output structure: high-breakdown voltage, P-channel opendrain; built-in pull-down resistor between digit output pins and VEE pin
-Power-on reset circuit Built-in
-Power source voltage 4.0 to 5.5 V
-Pull-down power source voltage Vcc-43 V
-Operating temperature range -20 to $85^{\circ} \mathrm{C}$
- Package
-Power dissipation
$.250 \mu \mathrm{~W}$ (at 100 kHz operation clock)

PIN CONFIGURATION (TOP VIEW)

Outline: 24P2E-A
24-pin plastic-molded SSOP

Fig. 1 Pin configuration of M35501FP

FUNCTIONAL BLOCK

Fig. 2 Functional block diagram

PIN DESCRIPTION

Table 1 Pin description

Pin	Name	Function	Output Structure	Fig. No.
Vcc, Vss	Power source input	Apply 4.0-5.5 V to Vcc, and 0V to Vss.	-	
RESET	Reset input	Reset internal shift register (built-in power-on reset circuit).	CMOS input level Built-in pull-up resistor	3
CLK	Clock input	Digit output varies according to rising edge of clock input.	CMOS input level Built-in pull-down resistor	2
SEL	Select input	Use when specifying the number of digits.	CMOS input level Built-in pull-down resistor	2
OVFIN	Overflow signal input	Input "H" when using one M35501FP. Connect to OVFout pin of additional M35501FPs when using multiple M35501FPs (to use 17 digits or more).	CMOS input level	4
OVFout	Overflow signal output	Leave open when using one M35501FP. Connect to OVFIN pin of additional M35501FPs when using multiple M35501FPs (to use 17 digits or more).	CMOS output	
DIG15-	Digit output	Output the digit output waveform of fluorescent display. Leave open when not in use (VEE level output).	High-breakdown-voltage P-channel open-drain output Built-in pull-down resistor	1
DIG0	VEE	Pull-down power source input	Apply voltage to DIG0-DIG15 pull-down resistors.	-

PORT BLOCK

(3) $\overline{\text { RESET }}$

(2) SEL, CLK

(4) OVFIN

(5) OVFout

Fig. 3 Port block diagram

USAGE

Three usages of the M35501FP are described below.
(1) 16-Digit Mode: 16 digits selected

The number of digits is set to 16 by fixing the OVFIN pin to " H " and the SEL pin to "L." Figure 5 shows the output waveform.
(2) Optional Digit Mode: 1-16 digits selectable

When the number of CLK pin rising edges during an "H" period of the SEL pin is n and the OVFIN pin is fixed to " H ," the number of digits set is n. If n is 16 or more, all 16 digits are set. Figure 6 shows the output waveform.

Fig. 4 Digit setting
(3) Cascade Mode: 17 digits or more selectable 17 digits or more can be used by connecting two M35501FPs or more. Figure 7 shows an example using three M35501FPs, offering 33 to 48 digit outputs.
Cascade mode will not operate if all M35501FPs are in 16-digit mode (SEL = "L"). Use the most significant M35501FP in the optional digit mode for DIG output. Figure 8 shows the output waveform.

DIGIT OUTPUT WAVEFORM

Fig. 5 16-digit mode output waveform

Fig. 6 Optional digit mode output waveform

Fig. 7 Cascade mode connection example: 17 digits or more selected

Fig. 8 Cascade mode output waveform

The number of fluorescent displays can be increased by connecting the M35501FP to the CMOS FLD output pins on a 38B5 Group microcomputer.

Fig. 9 Connection example with 38B5 Group microcomputer (1 to 16 digits)
This FLD controller can control up to 32 digits using the 32 timing mode of the 38B5 Group microcomputer.

Fig. 10 Connection example with 38B5 Group microcomputer (17 to 32 digits)

RESET CIRCUIT

To reset the controller, the RESET pin should be held at "L" for 2 μ s or more. Reset is released when the RESET pin is returned to " H " and the power source voltage is between 4.0 V and 5.5 V .

Notes1: Perform the reset release when CLK input signal is "L."
2: When setting the number of digits by SEL signal, optional digit counter is set to " 0 " by reset.

Fig. 11 Digit output waveform when reset signal is input

POWER-ON RESET

Reset can be performed automatically during power on (power-on reset) by the built-in power-on reset circuit. When using this circuit, set 100μ s or less for the period in which it takes to reach minimum operation guaranteed voltage from reset.

If the rising time exceeds $100 \mu \mathrm{~s}$, connect the capacitor between the RESET pin and Vss at the shortest distance. Consequently, the RESET pin should be held at " L " until the minimum operation guaranteed voltage is reached.

Fig. 12 Power-on reset circuit

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage	-All voltages are based on Vss. - Output transistors are off.	-0.3 to 7.0	V
Vee	Pull-down power source voltage		Vcc -45 to Vcc +0.3	V
VI	Input voltage CLK, SEL, OVFIN		-0.3 to Vcc +0.3	V
VI	Input voltage $\overline{\mathrm{RESET}}$		-0.3 to Vcc +0.3	V
Vo	Output voltage DIG0-DIG15		Vcc -45 to Vcc +0.3	V
Vo	Output voltage OVFOUT		-0.3 to Vcc +0.3	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	250	mW
Topr	Operating temperature		-20 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS (VCC $=4.0$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
Vcc	Power source voltage	4.0	5.0	5.5	V
Vss	Power source voltage		0		V
Vee	Pull-down power source voltage	Vcc -43		Vss	V
VIH	"H" input voltage CLK, SEL, OVFIN	0.8 Vcc		Vcc	V
VIH	"H" input voltage RESET	0.8 Vcc		Vcc	V
VIL	"L" input voltage CLK, SEL, OVFIN	0		0.2Vcc	V
VIL	"L" input voltage $\overline{\text { RESET }}$	0		0.2 Vcc	V

RECOMMENDED OPERATING CONDITIONS (VCC = 4.0 to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
IOH (peak)	"H" peak output current DIG0 - DIG15 (Note 1)			-36	mA
IOH (peak)	"H" peak output current OVFout (Note 1)			-10	mA
IOL(peak)	"L" peak output current OVFout (Note 1)			10	mA
IOH(avg)	"H" average current DIG0 - DIG15 (Note 2)			-18	mA
IOH(avg)	"H" average current OVFout (Note 2)			-5.0	mA
IOL(avg)	"L" average current OVFout (Note 2)			5.0	mA
CLK	Clock input frequency			2	MHz

Notes 1: The peak output current is the peak current flowing in each port.
2: The average output current is an average value measured over 100 ms .

ELECTRICAL CHARACTERISTICS (VcC $=4.0$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Test conditions	Limits			Unit	
			Min.	Typ.	Max.			
Voh	"H" output voltage	DIG output DIG0-DIG15		$\mathrm{IOH}=-18 \mathrm{~mA}$	Vcc-2.0			V
VoH	" H " output voltage	OVFOUT	$\mathrm{IOH}=-10 \mathrm{~mA}$	Vcc-2.0			V	
VoL	"L" output voltage	OVFout	$\mathrm{IOL}=10 \mathrm{~mA}$			2.0	V	
$\mathrm{V}_{\mathrm{T}+}$ - $\mathrm{V}^{\text {- }}$	Hysteresis	$\frac{\text { CLK, OVFIN }}{\text { RESET }}$	$\mathrm{Vcc}=5.0 \mathrm{~V}$		0.4		V	
IIH	" H " input current	$\frac{\text { OVFIN }}{\text { RESET }}$	V I $=\mathrm{Vcc}$			5.0	$\mu \mathrm{A}$	
IIH	" H " input current	CLK, SEL	$\begin{aligned} & \hline \mathrm{VI}=\mathrm{Vcc} \\ & \mathrm{Vcc}=5.0 \mathrm{~V} \end{aligned}$	30	70	140	$\mu \mathrm{A}$	
IIL	"L" input current	OVFIN CLK, SEL	V I $=\mathrm{Vss}$			-5.0	$\mu \mathrm{A}$	
IIL	"L" input current	RESET	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{Vss} \\ & \mathrm{Vcc}=5.0 \mathrm{~V} \end{aligned}$	-60	-130	-185	$\mu \mathrm{A}$	
ILOAD	Output load current	DIG0 - DIG15	$\begin{aligned} & \mathrm{VEE}=\mathrm{VCC}-43 \mathrm{~V} \\ & \mathrm{VOL}=\mathrm{VCC} \end{aligned}$ Output transistors are off.	500	650	800	$\mu \mathrm{A}$	
ILEAK	Output leakage current	DIG0-DIG15	$\begin{aligned} & \mathrm{VEE}=\mathrm{VCC}-43 \mathrm{~V} \\ & \mathrm{VOL}=\mathrm{VCC}-43 \mathrm{~V} \end{aligned}$ Output transistors are off.			-10	$\mu \mathrm{A}$	
ICC	Power source	$\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{CLK}=100 \mathrm{kHz}$ Output transistors are off.			50		$\mu \mathrm{A}$	

TIMING REQUIREMENTS ($\mathrm{VCC}=4.0$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw($\overline{\text { ESSET }}$)	Reset input "L" pulse width	2			$\mu \mathrm{s}$
tc(CLK)	Clock input cycle time	500			ns
twH(CLK)	Clock input "H" pulse width	200			ns
twL(CLK)	Clock input "L" pulse width	200			ns
tsu(SEL)	Select input setup time	500			ns
th(SEL)	Select input hold time	500			ns
th(CLK)	Clock input setup time	500			ns

Fig. 13 Timing diagram

- Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them, Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubish Electric Corporation without notice due to product improvements or orher reasons. It is therefore recommended hat customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contac Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for ransportation, vehicular, medical, aerospace, nuclear, or undersea repeater use
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

Rev. No.	Revision Description	Rev. date	
1.0	First Edition		980216

