
Features

N channel 40V MOSFET for automotive application TO220F: wide pin package (for high current)

Package

FM20 (TO220 Full Mold)

Applications


Automotive: EPS motor driver application

Automotive: Other motor driver and solenoid driver

application

Key Specifications

Internal Equivalent Circuit

Absolute maximum ratings

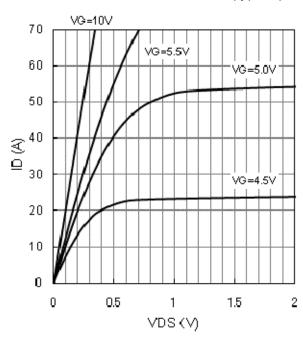
(Ta=25°C)

Characteristic	Symbol	Rating	Unit
Drain to Source Voltage	$ m V_{DSS}$	40	V
Gate to Source Voltage	$ m V_{GSS}$	±20	V
Continuous Drain Current	ID	±70	A
Pulsed Drain Current	$I_{D(pulse)} \stackrel{ imes}{=} 1$	±140	A
Maximum Power Dissipation	P_{D}	35 (Tc=25°C)	W
Single Pulse Avalanche Energy	Eas *2	400	mJ
Avalanche Current	Ias	25	A
Maximum Drain to Source dv/dt 1	dv/dt 1 ^{**} 2	0.3	V/ns
Peak diode recovery dv/dt 2	dv/dt 2 ^{**} 3	1.0	V/ns
Peak diode recovery di/dt	di/dt ^{**} 3	100	A/μs
Channel Temperature	Tch	150	$^{\circ}\!\mathbb{C}$
Storage Temperature	Tstg	-55~150	$^{\circ}\! \mathbb{C}$

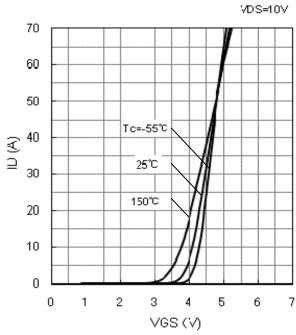
 $[\]times 1$ PW $\leq 100 \mu$ sec. duty cycle $\leq 1\%$

 $² V_{DD}=20 V$, L=1mH, I_L=20A, unclamped, Rg=50 Ω , See Fig.1

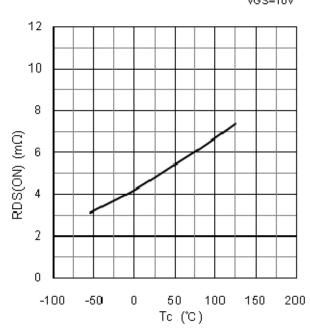
[※]3 I_{SD}=25A, See Fig.2

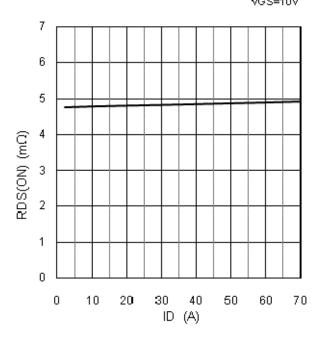

Electrical characteristics

(Ta=25°C)

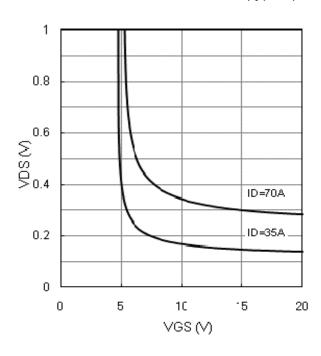

	1	1	1		(1)	a=25°C)
Characteristic	Symbol	Test Conditions	Limits			- Unit
			MIN	TYP	MAX	Oiiit
Drain to Source breakdown Voltage	V _{(BR)DSS}	I_D =100 μ A, V_{GS} =0 V	40			V
Gate to Source Leakage Current	Igss	V _{GS} =±15V			±2	μΑ
Drain to Source Leakage Current	I_{DSS}	V_{DS} =40V, V_{GS} =0V			100	μΑ
Gate Threshold Voltage	V_{TH}	V _{DS} =10V, I _D =1mA	2.0	3.0	4.0	V
Forward Transconductance	Re(yfs)	V_{DS} =10V, I_{D} =35A	30	50		S
Static Drain to Source On-Resistance	R _{DS} (ON)	I _D =35A, V _{GS} =10V		5.0	6.0	mΩ
Input Capacitance	Ciss	V _{DS} =10V V _{GS} =0V f=1MHz		5100		pF
Output Capacitance	Coss			1200		
Reverse Transfer Capacitance	Crss			860		
Turn-On Delay Time	td(on)	I_D =35A, V_{DD} =20V R_G =22Ω, R_{GS} =50Ω R_L =0.57Ω, V_{GS} =10V See Fig.3		100		ns
Rise Time	tr			100		
Turn-Off Delay Time	td(off)			300		
Fall Time	tf			130		
Source-Drain Diode Forward Voltage	V_{SD}	I _{SD} =50A,V _{GS} =0V		0.9	1.2	V
Source-Drain Diode Reverse Recovery Time	trr	I _{SD} =25A di/dt=50A/us		100		ns
Thermal Resistance Junction to Case	Rth(ch-c)				3.57	°C/W
Thermal Resistance Junction to Ambient	Rth(ch-a)				62.5	°C/W

Characteristic Curves (Tc=25°C)

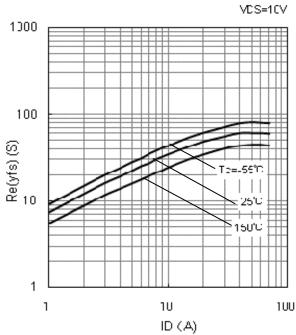

ID - VDS characteristics (typical)


ID- VGS characteristics (typical)

RDS(ON) - To characteristics (typical)
VGS=10V

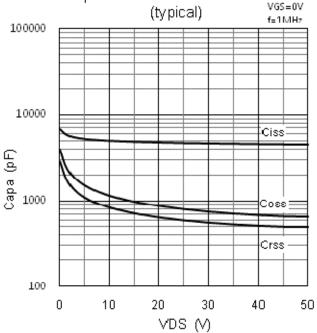


RDS(ON)-ID characteristics (typical)
ves=10V

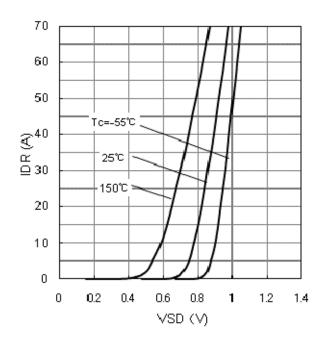


Characteristic Curves (Tc=25°C)

VDS - VGS characteristics (typica)

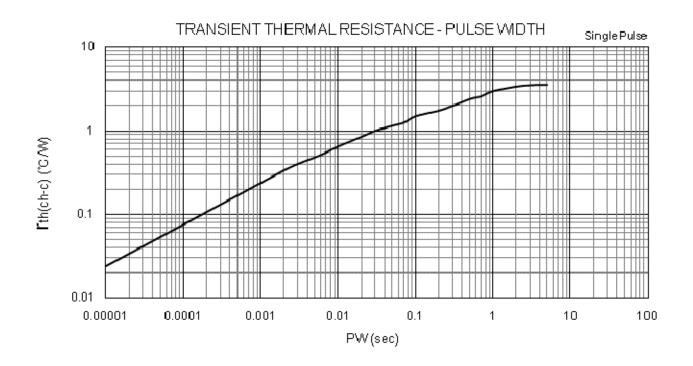


Re(yfs) - ID characteristics (typical)

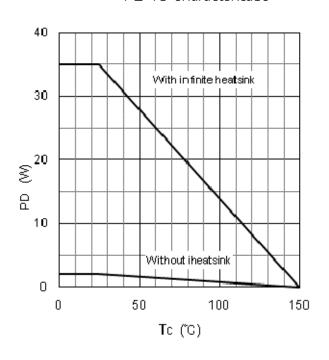


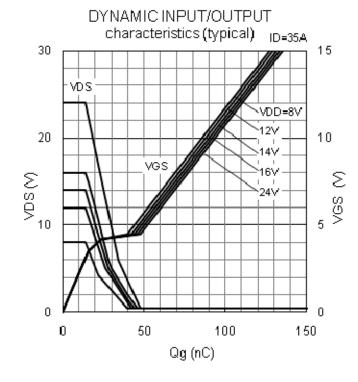
Capacitance VDS characteristics
(typical)

(typical)



IDR - VSD characteristics (typical)




The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.

Characteristic Curves (Tc=25°C)

PD-Tc characteristics

Characteristic Curves (Tc=25°C)

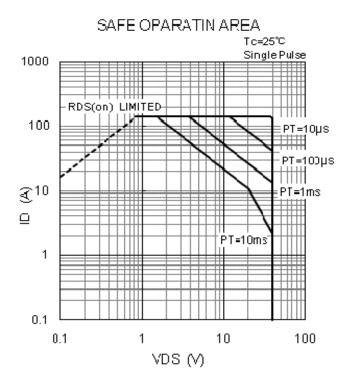


Fig.1 Unclamped Inductive Test Method

EAS=
$$\frac{1}{2} \cdot L \cdot ILP^2 \cdot \frac{V(BR)DSS}{V(BR)DSS - VDD}$$

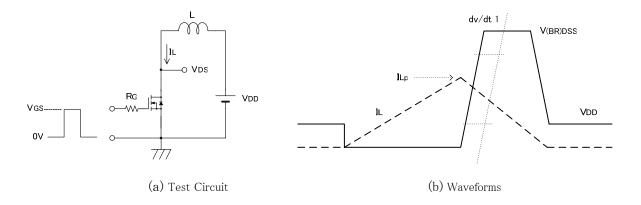
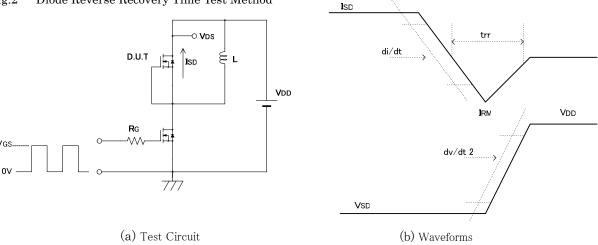
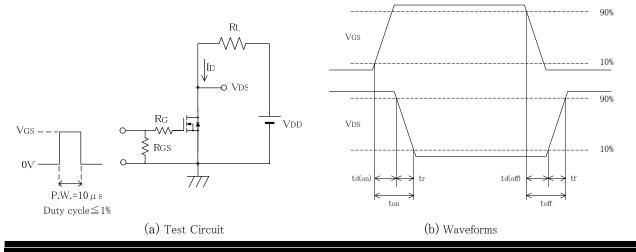
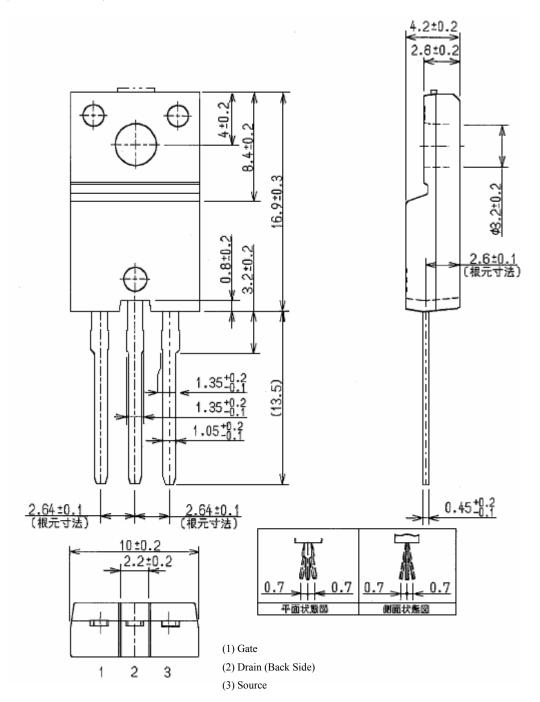


Fig.2 Diode Reverse Recovery Time Test Method


Fig.3 Switching Time Test Method

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.

Outline

FM20 (TO220 Full Mold)

Weight Approx. 2g