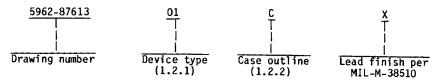
										Y														
							_						R	EVI	ISI	ON	S							
						LTI	1			D	ES	CRI	PTI	ON					DAT	Έ	Al	PR	OVI	ED
							I																	
																		1						
																		•		•				
		, , ,				_		,																
PAGE	╀	╁	+	╀	╀	╀		├	Н	\Box		L	L	_	_	<u> </u>	_				Ц	_	\downarrow	\Box
	REV	-	+	+	H		-	-	Н	┪	-		Н	Н	┝	┝	-		Н	_	\vdash	\dashv	+	\dashv
OF PAGES	PAG	ES	1 2	3	4	5	6	7	8	9	10	11	12	Н	T						H	7	†	┪
Defense Electron	ics	-				D B			, ,	,,		N		1	T	ΔF	ìΥ	П	IR	Δ	W	IN	IG	
Supply Center Dayton, Ohio			-		_	y B	_	not	al	<u> </u>	4	Th	is d	Irawi	ing	is a	vaila	ble	for	use	bv	117	ı	' [
						اه اید (دوري	۔و،	•		aii De	part	partr men	men it of	ts a Def	nd A ense	gen	cies	of	the			
Original date			_	PRO			7	7	-	-	\dashv	TI	TLE	: MI(CRO	CIRC	UITS	, D	UAL	4]	NPU	. NA	ND	7
of drawing: 22 JUNE	1987		1		الم	40	w	ell			\bot			GAT	íŁ,	MUN	0L I 7	HIC	SII	_100	JN.			
ZZ OUNE	1301		SIZ	ZE	C	ODE		SEN		NO.		DV	۷G	NC	٥.	5	90	32	· _	Я	76	 `	ス	7
			. /	٦		- 3 4	+3	.	3		- 1					\mathcal{O}	\mathcal{I}	\mathcal{L}	-	\cup	1	ノー	\cup	
AMSC N/A			RE	v			<u> </u>				+			AGE		1		01		12				\dashv


DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DESC FORM 193

MAY 86

- 1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".
 - 1.2 Part number. The complete part number shall be as shown in the following example:

1.2.1 Device type. The device type shall identify the circuit function as follows:

Device type	Generic number 54AC20	Circuit function
01	54AC20	Dual 4 input NAND gate
02	54AC11020 0467 31	Dual 4 input NAND gate

1.2.2 Case outlines. The case outlines shall be as designated in appendix C of MIL-M-38510, and as follows:

Outline letter	Case outline
C	D-1 (14-lead, 1/4" x 3/4"), dual-in-line package
D	F-2 (14-lead, 1/4" x 3/8"), flat-package
2	C-2 (20-terminal, .350" x .350"), square chip carrier

1.3 Absolute maximum ratings.

```
-0.5 V dc to +6.0 V dc
-0.5 V dc to VCC +0.5 V dc
-0.5 V dc to VCC +0.5 V dc
Clamp diode current - - - - - - - - - - - - -
                                        ±20 mA
DC output current (per pin) - - - - - - - - - - - -
                                        ±50 mA
DC V<sub>CC</sub> or GND current (per pin) - - - - - - - -
                                        ±100 mA
-65°C to 150°C
500 mW
+245 C
Thermal resistance, junction-to-case (0_{JC}):
 (See MIL-M-38510, appendix C)
                                        60°C/W 2/
+175°C
Junction temperature (T_J) 3/ -----
```

 $\overline{1/}$ Unless otherwise specified, all voltages are referenced to GND.

2/ When a thermal resistance value is included in MIL-M-38510, appendix C, it shall supersede the value stated herein.

3/ Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with method 5004 of MIL-STD-883.

	MILITARY DRAWING	SIZE	CODE IDENT, NO.	DWG NO.	
I	DEFENSE ELECTRONICS SUPPLY CENTER	A	14933	5962-87613	
I	DAYTON, OHIO		REV	PAGE 2	

1.4 Recommended operating conditions.

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

- 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
- 3.2.1 Logic diagram and terminal connections. The logic diagram and terminal connections shall be as specified on figure 1.
 - 3.2.2 Truth table. The truth table shall be as specified on figure 2.
 - 3.2.3 Case outlines. The case outlines shall be in accordance with 1.2.2 herein.
- $\overline{4/}$ Operation from 2.0 V dc to 3.0 V dc is provided for compatibility with data retention and battery backup systems. Data retention implies no input transitions and no stored data loss with the following conditions. VIH \geq 70% VCC, VIL \leq 30% VCC, VOH \geq 70% VCC at -20 μ A, VOL \leq 30% VCC at 20 μ A.

MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO

SIZE
CODE IDENT. NO. DWG NO.

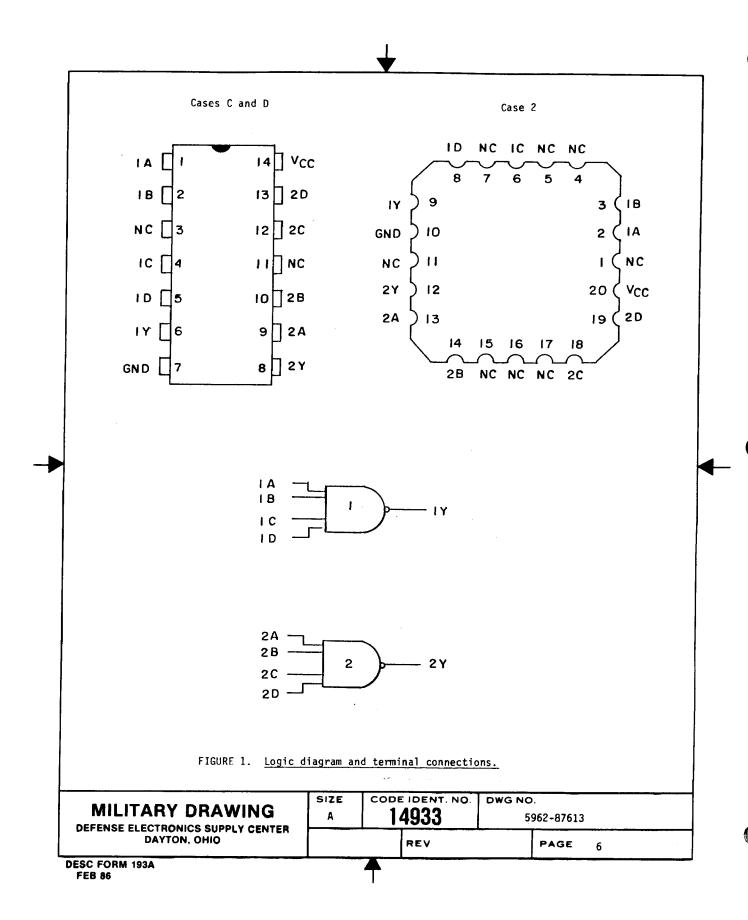
14933

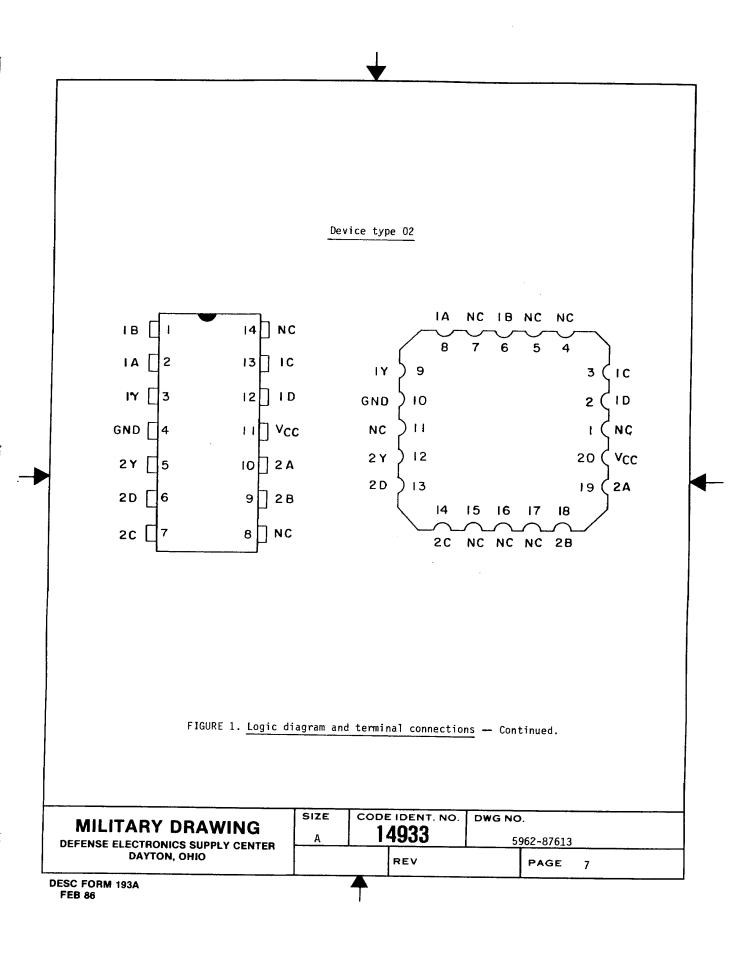
5962-87613

REV
PAGE 3

TA		lectrical			-		_			
Test	Symbol	-5	5°C <u><</u>	dition T _C < +	s 125°C		Group A Subgroups	Li Min	mits Max	Unii
High-level output voltage	v _{он}	YIN = VI	H or V	IL	V _{CC} = 3.	0 4	1,2,3	2.9	i	٧
<u>1</u> /	i	I _{OH} = -5	OμA	į.	V _{CC} = 4.	5 V		4.4	 	
	İ	i		j	/ _{CC} = 5.	5 V		5.4		
	İ	VIN = VI	H or V	IL	CC = 3.	0 V	į	2.4		
		$I_{OH} = -4$		Ì		į	 			
		$V_{IN} = \Lambda^{I}$	-	IL	$t_{CC} = 4.$	5 V i	i	3.7	 	
		$I_{OH} = -2$	4 mA	 T	CC = 5.	5 V	İ	4.7	<u> </u>	
	-	$V_{IN} = V_{I}$ $I_{OH} = -5$	or V	i	CC = 5.	1	<u> </u>	3.85	i i	-
		I _{OH} = -5	O mA				<u> </u>		 	
Low-level output voltage	V _{OL}	 V _{IN} = V _I I _{OL} = 50	or V	IL \	/ _{CC} = 3.	0 V	1,2,3		0.1	٧
<u>1</u> /		10F = 20	μА	7	CC = 4.	5 V	ļ		0.1	
				1	CC = 5.	5 V	ļ		0.1	
		VIN = VII I _{OL} = 12			CC = 3.	5 V			0.5	
	 	VIN = VII IOH = 24	or VI	IL V	CC = 4.	5 V	ļ		0.5	
	i	1		ĮV	cc = 5.	5 V	ļ.		0.5	
		VIN = VII	or V _I mA	IL IV	CC = 5.	5 V		 	1.65	
High-level input voltage <u>2</u> /	Λ ^{IH}	 		ĺv	cc = 3.0) V	İ	2.1	<u> </u>	٧
		! 		V	CC = 4.5	, v 	-	3.15		
	İ	i 		V	cc = 5.5	· V	-	3.85	 ¦	
Low-level input voltage 2/	İAIF			Į V	CC = 3.0	V		+	0.9	٧
				Į v	CC = 4.5	V	ļ-	-+	1.35	
				V,	cc = 5.5	V	-		1.65	
Input leakage current	IIL	VM = 0.0	٧	V,	cc = 5.5	V	1,2,3	İ	-1.0	μА
	IIH	VM = 5.5	٧	i		į	j-		1.0	
ee footnotes at end of table.							<u></u> _ <u>-</u>			
MILITARY DRAWI		SIZE		493	– .	DWG	5962-87	613		
DEFENSE ELECTRONICS SUPPLY (DAYTON, OHIO	CENTER			REV			PAGE			

TABLE	. Electri	cal performance characteristics -	Continued.			
Test	Symbol	Conditions -55°C ≤ T _C ≤ +125°C	Group A subgroups	 Min 	Max	Unit
Quiescent current	I _{CCL}	V _{IN}	1,2,3	 	80 80	 μ A
Input capacitance	CIN	 See 4.3.1c	4		8.0	pF
Power dissipation 3/ capacitance	C _{PD}	See 4.3.1c	4		50	pF
Functional tests	 	Tested at V_{CC} = 3.0 V and repeated at V_{CC} = 5.5 V See 4.3.1d	7,8			
Propagation delay time high-to-low low-to-high	t _{PHL}	$T_{C} = +25^{\circ}C$ $C_{L} = 50 \text{ pF}$ $R_{L} = 500\Omega$ See figure 3 $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 4.5 \text{ V}$	9	1.0	7.0 6.0 8.5	n
In to on		$T_{C} = -55^{\circ}\text{C}/+125^{\circ}\text{C}$ $V_{CC} = 3.0 \text{ V}$ $V_{CC} = 50 \text{ pF}$ $V_{CC} = 500 \text{ N}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 3.0 \text{ V}$ $V_{CC} = 3.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ V_{CC}	10,11	1.0	7.0	


 $^{1/}V_{OH}$ and V_{OL} tests will be tested at V_{CC} = 3.0 V and V_{CC} = 4.5 V. All other voltages are guaranteed, if not tested. Limits shown apply to operation at V_{CC} = 3.3 V ±0.3 V and V_{CC} = 5.0 V ±0.5 V. Transmission driving tests are performed at V_{CC} = 5.5 V with a 2 ms duration maximum.


MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A	14933	DWG NO. 5962-87613
DAYTON, OHIO		REV	PAGE 5

 $[\]underline{2}/~\text{V}_{IH}$ and V_{IL} tests are guaranteed by the V_{OH} and V_{OL} tests.

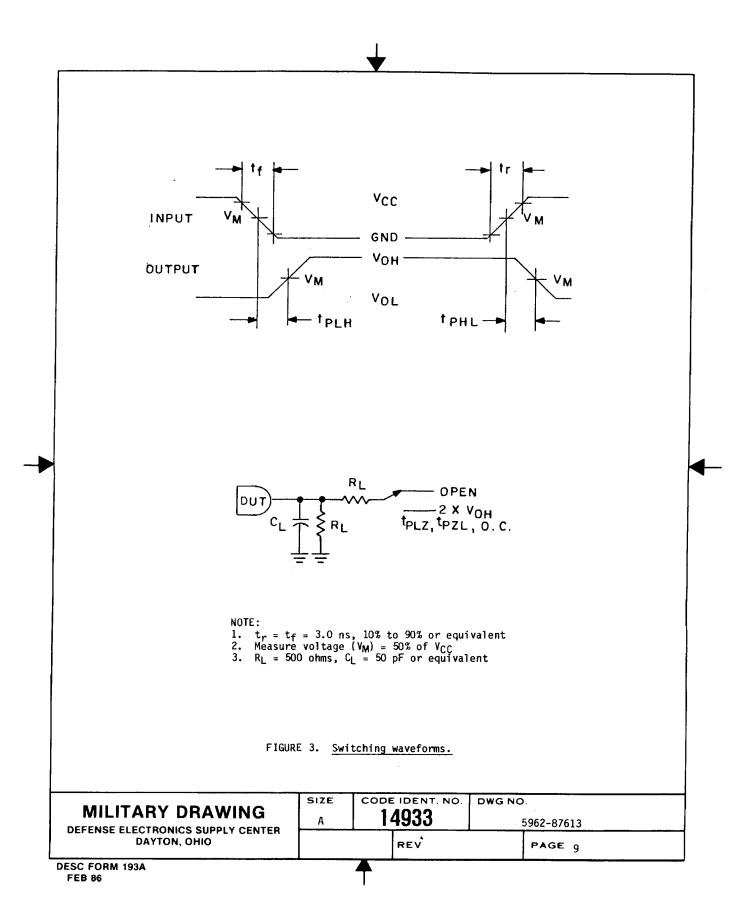
 $[\]frac{3/}{\text{V}_{CC}2} \begin{array}{ll} \text{Power dissipation capacitance (Cpp), determines the dynamic power consumption, P}_D = (Cpp + C_L) \\ \text{V}_{CC}2 \begin{array}{ll} \text{f} + \text{I}_{CC} \end{array} \begin{array}{ll} \text{V}_{CC} \begin{array}{ll} \text{f} + \text{I}_{CC} \end{array} \end{array}$

 $[\]frac{4/}{}$ AC limits at 5.5 V V_{CC} are equal to limits at 4.5 V V_{CC} and guaranteed by testing at 4.5 V V_{CC}. Minimum ac guaranteed for 5.5 V V_{CC} by guardbanding 4.5 V V_{CC} limits to 1.5 n minimum.

	Inpi	ut		 Output
A	В	С	D	Y
L	L	L	L	Н .
Н	L	L	L	н
L	Н	L	L	н
Н	Н	L	Ĺ	! н !
	L.	Н	L] н]
Н	L	Н	L	Н
֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡֡	н	н	L] н [
ļ н	H	н	L	н
 L	L	L	н	н
 H	L	L	Н	н
ļ L	Н	L	Н	Н
H	Н	L	н	Н
 L	L	н	Н	н
l I H	L	Н	н	H
 L	Н	Н	н	! н !
! ! H !	н	Н	Н	 L

H = High voltage level
L = Low voltage level
Each gate

FIGURE 2. Truth table.


MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO

SIZE CODE IDENT. NO. DWG NO.

14933

5962-87613

REV PAGE 8

- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.4 herein.
- 3.5 Certificate of compliance. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.4. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.8 <u>Verification and review.</u> DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test (method 1015 of MIL-STD-883).
 - Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125$ °C, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 (C_{IN} and C_{PD} measurement) shall be measured only for the initial test and after process or design changes which may affect capacitance.
 - d. Subgroups 7 and 8 tests sufficient to verify the truth table.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	SIZE	14933	DWG NO. 5962-87613
		REV	PAGE 10

DESC FORM 193A

FEB 86

TABLE II. Electrical test requirements.

. —————————————————————————————————————	
 MIL-STD-883 test requirements 	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004) 	
Final electrical test parameters (method 5004)	1*,2,3,7,8,9 10,11
Group A test requirements (method 5005) 	1,2,3,4,7,8,9 10,11
Groups C and D end-point electrical parameters (method 5005)	1,2,3
Additional electrical subgroups for group C periodic inspections	

^{*} PDA applies to subgroup 1.

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - (1) Test condition A, B, C, or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.
- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
 - 6.2 Replaceability. Replaceability is determined as follows:
 - a. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
 - b. When a QPL source is established, the part numbered device specified in this drawing will be replaced by the microcircuit identified as part number M38510/75003B--.

MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A	14933	DWG NO. 5962-87613
DAYTON, OHIO		REV	PAGE 11

- 6.3 <u>Comments</u>. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone 513-296-5375.
- 6.4 Approved source of supply. An approved source of supply is listed herein. Additional sources will be added as they become available. The vendor listed herein has agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Vendor similar part number <u>1</u> /	Replacement military specification part number
 5962-8761301CX / 	07263	54AC2ODMQB	M38510/75003BCX
5962-8761302CX	01295	SNJ54AC11020J	M38510/75023BCX
5962-8761301DX ~	07263	54AC20FMQB	M38510/75003BDX
5962-8761302DX	01295	SNJ54AC11020W	M38510/75023BDX
5962-87613012X /	07263	54AC2OLMQB	M38510/75003B2X
5962-87613022X /	01295 	SNJ54AC11020FK	M38510/75023B2X

 $\frac{1}{}$ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number

Vendor name and address

07263

Fairchild Semiconductor 333 Western Ave. Portland, ME 04106

01295

Texas Instruments P.O. Box 6448 Midland, TX 79711

MILITARY	DRAWING	
DEFENSE ELECTRON		
DAYTON, OHIO		

SIZE	CODE IDENT. NO.	DWG NO.
Α	14933	5962-87613
	REV	PAGE 12

DESC FORM 193A FEB 86

011741 _ _ _