
 ARM610
Data Sheet

Zarlink Part Number: P610ARM-B/KG/FPNR

Notes

1) The original P610ARM/KG/FPNR is obsolete

2) This datasheet includes the performance data previously supplied in supplement
MS4397 - Jan 1996

DS3554 ISSUE 3.2 October 2001

Manufactured under licence from Advanced RISC Machines Ltd
ARM and the ARM logo are trademarks of Advanced RISC Machines Ltd
© Advanced RISC Machines Ltd 1999

P610ARM-B/KW/FPNR

ARM610 Data Sheet

Preface-ii

Preface

The ARM610 is a general purpose 32-bit microprocessor with

4

kByte cache, write buffer and Memory
Management Unit (MMU) combined in a single chip. The ARM610 offers high level RISC performance yet
its fully static design ensures minimal power consumption, making it ideal for portable, low-cost systems.

The innovative MMU supports a conventional two-level page-table structure and a number of extensions
which make it ideal for embedded control, UNIX and Object Oriented systems. This results in a high
instruction throughput and impressive real-time interrupt response from a small and cost-effective chip.

Applications

The ARM610 is ideally suited to those applications requiring RISC performance from a compact, power
efficient processor. These include:

•

Personal computer devices eg.PDAs

•

High-performance real-time control systems

•

Portable telecommunications

•

Data communications equipment

•

Consumer products

•

Automotive

Feature Summary
• High performance RISC

25 MIPS sustained @ 33 MHz

(33 MIPS peak)

• Fast sub microsecond interrupt response
for real-time applications

• Memory Management Unit (MMU)
support for virtual memory systems

• Excellent high-level language support
• 4kByte of instruction & data cache
• Big and Little Endian operating modes
• Write Buffer

enhancing performance

• IEEE 1149.1 Boundary Scan
• Fully static operation, low power consumption

ideal for power sensitive applications

• 144 Thin Quad Flat Pack (TQFP) package

Address
Bus

JTAG

ARM6

Write

MMU

4Kbyte

Control

CPU

Buffer

Cache

ARM610 Data Sheet Contents-1

1 Introduction 1-1
1.1 Introduction 1-2
1.2 Block Diagram 1-4
1.3 Functional Diagram 1-5

2 Signal Description 2-1
2.1 Signal Description 2-2

3 Programmer’s Model 3-1
3.1 Introduction 3-2
3.2 Register Configuration 3-2
3.3 Operating Mode Selection 3-3
3.4 Registers 3-3
3.5 Exceptions 3-6
3.6 Reset 3-10

4 Instruction Set 4-1
4.1 Instruction Set Summary 4-2
4.2 The Condition Field 4-5
4.3 Branch and Branch with Link (B, BL) 4-7
4.4 Data Processing 4-9
4.5 PSR Transfer (MRS, MSR) 4-17
4.6 Multiply and Multiply-Accumulate (MUL, MLA) 4-22
4.7 Single Data Transfer (LDR, STR) 4-24
4.8 Halfword and Signed Data Transfer 4-30
4.9 Block Data Transfer (LDM, STM) 4-36
4.10 Single Data Swap (SWP) 4-43
4.11 Software Interrupt (SWI) 4-45
4.12 Coprocessor Data Operations (CDP) 4-47

ContentsTOC

Contents

ARM610 Data Sheet

Contents-2

4.13 Coprocessor Data Transfers (LDC, STC) 4-49
4.14 Coprocessor Register Transfers (MRC, MCR) 4-53
4.15 Undefined Instruction 4-55
4.16 Instruction Set Examples 4-56

5 Configuration 5-1

5.1 Configuration 5-2
5.2 Internal Coprocessor Instructions 5-2
5.3 Registers 5-2

6 Instruction and Data Cache (IDC) 6-1

6.1 Introduction 6-2
6.2 Cacheable Bit - C 6-2
6.3 Updateable Bit - U 6-2
6.4 IDC Operation 6-2
6.5 IDC Validity 6-3
6.6 Read-Lock-Write 6-3
6.7 IDC Enable/Disable and Reset 6-4

7 Write Buffer (WB) 7-1

7.1 Introduction 7-2
7.2 Bufferable Bit 7-2
7.3 Write Buffer Operation 7-2

8 Coprocessors 8-1

8.1 Overview 8-2

9 Memory Management Unit 9-1

9.1 Memory Management Unit (MMU) 9-2
9.2 MMU Program Accessible Registers 9-2
9.3 Address Translation 9-3
9.4 Translation Process 9-4
9.5 Level One Descriptor 9-5
9.6 Page Table Descriptor 9-5
9.7 Section Descriptor 9-6
9.8 Translating Section References 9-7
9.9 Level Two Descriptor 9-8
9.10 Translating Small Page References 9-9
9.11 Translating Large Page References 9-10
9.12 MMU Faults and CPU Aborts 9-11
9.13 Fault Address and Fault Status Registers (FAR and FSR) 9-11
9.14 Domain Access Control 9-13
9.15 Fault Checking Sequence 9-14
9.16 External Aborts 9-16
9.17 Interaction of the MMU, IDC and Write Buffer 9-17
9.18 Effect of Reset 9-18

10 Bus interface 10-1

10.1 Introduction 10-2
10.2 ARM610 Cycle Speed 10-2

Contents

ARM610 Data Sheet

Contents-3

10.3 Cycle Types 10-2
10.4 Memory Access 10-2
10.5 Read/Write 10-3
10.6 Byte/Word 10-3
10.7 Maximum Sequential Length 10-3
10.8 Memory Access Types 10-5
10.9 ARM610 Cycle Type Summary 10-9

11 Boundary-Scan Test Interface 11-1

11.1 Introduction 11-2
11.2 Overview 11-2
11.3 Reset 11-3
11.4 Pullup Resistors 11-3
11.5 Instruction Register 11-3
11.6 Public Instructions 11-3
11.7 Test Data Registers 11-7
11.8 Boundary-Scan Interface Signals 11-10

12 DC Parameters 12-1

12.1 Absolute Maximum Ratings 12-2
12.2 DC Operating Conditions 12-2
12.3 DC Characteristics 12-3

13 AC Parameters 13-1

13.1 Test Conditions 13-2
13.2 Relationship between FCLK and MCLK 13-2
13.3 Main Bus Signals 13-4

14 Physical details 14-1

14.1 Physical Details 14-2

15 Pinout 15-1

15.1 Pinout 15-2

Backward Compatibility A-1

Backward Compatibility A-2

Contents

ARM610 Data Sheet

Contents-4

ARM610 Data Sheet 1-1

Introduction

This chapter introduces the ARM610 datasheet.

1.1 Introduction 1-2

1.2 Block Diagram 1-4

1.3 Functional Diagram 1-5

1

Introduction

ARM610 Data Sheet

1-2

1.1 Introduction

ARM610, is a general purpose 32-bit microprocessor with 4kByte cache, write buffer
and Memory Management Unit (MMU) combined in a single chip. The CPU within
ARM610 is the ARM6. The ARM610 is software compatible with the ARM processor
family and can be used with ARM support chips, eg. I/O, memory and video.

The ARM610 architecture is based on 'Reduced Instruction Set Computer' (RISC)
principles, and the instruction set and related decode mechanism are greatly simplified
compared with microprogrammed 'Complex Instruction Set Computers' (CISC).

The on-chip mixed data and instruction cache together with the write buffer
substantially raise the average execution speed and reduce the average amount of
memory bandwidth required by the processor. This allows the external memory to
support additional processors or Direct Memory Access (DMA) channels with minimal
performance loss.

The MMU supports a conventional two-level page-table structure and a number of
extensions which make it ideal for embedded control, UNIX and Object Oriented
systems.

The instruction set comprises ten basic instruction types:

• Two of these make use of the on-chip arithmetic logic unit, barrel shifter and
multiplier to perform high-speed operations on the data in a bank of 31
registers, each 32 bits wide.

• Three classes of instruction control data transfer between memory and the
registers, one optimised for flexibility of addressing, another for rapid context
switching and the third for swapping data.

• Two instructions control the flow and privilege level of execution.

• Three types are dedicated to the control of external coprocessors which allow
the functionality of the instruction set to be extended off-chip in an open and
uniform way.

The ARM instruction set is a good target for compilers of many different high-level
languages. Where required for critical code segments, assembly code programming is
also straightforward, unlike some RISC processors which depend on sophisticated
compiler technology to manage complicated instruction interdependencies.

The memory interface has been designed to allow the performance potential to be
realised without incurring high costs in the memory system. Speed-critical control
signals are pipelined to allow system control functions to be implemented in standard
low-power logic, and these control signals permit the exploitation of paged mode
access offered by industry standard DRAMs.

ARM610 is a fully static part and has been designed to minimise its power
requirements. This makes it ideal for portable applications where both these features
are essential.

Introduction

ARM610 Data Sheet

1-3

Datasheet notation

0x marks a Hexadecimal quantity

BOLD

external signals are shown in bold capital letters

binary where it is not clear that a quantity is binary it is followed by the word
binary

Introduction

ARM610 Data Sheet

1-4

1.2 Block Diagram

 Figure 1-1: ARM610 block diagram

MMU Cache CPU

Write
Buffer

Address Buffer C
o
n
t
r
o
l

Clock

ABE

JTAG Test

TCK TDI TMS nTRST TDO nWAIT MCLK SnA FCLK nRESET

MSE

nMREQ

SEQ

ABORT

nIRQ

nFIQ

Internal Data Bus

D[31:0]DBE

Internal Address Bus

ALEA[31:0] nR/W nB/W LOCK

COPROC
 #15

ARM64 kByte

TESTOUT[2:0]

TESTIN[16:0]

Introduction

ARM610 Data Sheet

1-5

1.3 Functional Diagram

 Figure 1-2: Functional diagram

ABE

DBE

ALE

MSE

nIRQ

nFIQ

Bus

Interrupts

nRESET

SnA

FCLK

MCLK

nWAIT

Clocks

VDD

VSS
Power

TCK

TDI

TDO

TMS

nTRST

JTAG

nRW

nBW

LOCK

D[31:0]

A[31:0]
Address

Bus

Data
Bus

Control
Bus

nMREQ

SEQ

ABORT

Memory
Interface

Controls

Chip
Test

Test

ARM610

TESTOUT[2:0]

TESTIN[16:0]

Introduction

ARM610 Data Sheet

1-6

ARM610 Data Sheet 2-1

Signal Description

This chapter gives information on the ARM610 signals.

2.1 Signal Description 2-2

2

Signal Description

ARM610 Data Sheet

2-2

2.1 Signal Description

Key to Signal Types

IT

Input, TTL threshold

OCZ

Output, CMOS levels, tristateable

ITOTZ

Input/output tristateable, TTL thresholds

ICK

Input, clock levels

Name Type Description

A[31:0]

OCZ Address Bus. This bus signals the address requested for memory
accesses. Normally it changes during

MCLK

 HIGH.

ABE

IT Address bus enable. When this input is LOW, the address bus

A[31:0]

,

nRW

,

nBW

 and

LOCK

 are put into a high impedance state (Note 1).

ABORT

IT External abort. Allows the memory system to tell the processor that a
requested access has failed. Only monitored when

ARM610

 is accessing
external memory.

ALE

IT Address latch enable. This input is used to control transparent latches on
the address bus

A[31:0]

,

nBWTT

,

nRW

 and

LOCK

. Normally these signals
change during

MCLK

 HIGH, but they may be held by driving

ALE

 LOW.
See

➲

13.2.2 Tald measurement on page 13-3

.

D[31:0]

ITOTZ Data bus. These are bidirectional signal paths used for data transfers
between the processor and external memory. For read operations (when

nRW

is LOW), the input data must be valid before the falling edge of

MCLK

. For write operations (when

nRW

 is HIGH), the output data will
become valid while

MCLK

 is LOW. At high clock frequencies the data may
not become valid until just after the

MCLK

 rising edge (see

➲

13.3 Main Bus
Signals on page 13-3

).

DBE

IT Data bus enable. When this input is LOW, the data bus,

D[31:0]

 is put into
a high impedance state (Note 1). The drivers will always be high
impedance except during write operations, and

DBE

 must be driven HIGH
in systems which do not require the data bus for DMA or similar activities.

FCLK

ICK Fast clock input. When the

ARM610

 CPU is accessing the cache or
performing an internal cycle, it is clocked with the Fast Clock,

FCLK

.

LOCK

OCZ Locked operation.

LOCK

 is driven HIGH, to signal a

locked

 memory
access sequence, and the memory manager should wait until

LOCK

 goes
LOW before allowing another device to access the memory.

LOCK

changes while

MCLK

 is HIGH and remains HIGH during the locked
memory sequence.

LOCK

 is latched by

ALE

.

MCLK

ICK Memory clock input. This clock times all

ARM610

 memory accesses. The
LOW or HIGH period of

MCLK

 may be stretched for slow peripherals;
alternatively, the

nWAIT

 input may be used with a free-running

MCLK

 to
achieve similar effects.

 Table 2-1: Signal descriptions

Signal Description

ARM610 Data Sheet

2-3

MSE

IT Memory request/sequential enable. When this input is LOW, the

nMREQ

and

SEQ

 outputs are put into a high impedance state (Note 1).

nBW

OCZ Not byte / word. An output signal used by the processor to indicate to the
external memory system when a data transfer of a byte length is required.

nBW

 is HIGH for word transfers and LOW for byte transfers, and is valid for
both read and write operations. The signal changes while

MCLK

 is HIGH.

nBW

 is latched by

ALE

.

nFIQ

IT Not fast interrupt request. If FIQs are enabled, the processor will respond
to a LOW level on this input by taking the FIQ interrupt exception. This is an
asynchronous, level-sensitive input, and must be held LOW until a suitable
response is received from the processor.

nIRQ

IT Not interrupt request. As

nFIQ

, but with lower priority. May be taken LOW
asynchronously to interrupt the processor when the IRQ enable is active.

nMREQ

OCZ Not memory request. A pipelined signal that changes while

MCLK

 is LOW
to indicate whether or not in the following cycle, the processor will be
accessing external memory. When

nMREQ

 is LOW, the processor will be
accessing external memory.

nRESET

IT Not reset. This is a level sensitive input which is used to start the processor
from a known address. A LOW level will cause the current instruction to
terminate abnormally, and the on-chip cache, MMU, and write buffer to be
disabled. When

nRESET

 is driven HIGH, the processor will re-start from
address 0.

nRESET

 must remain LOW for at least two full

FCLK

 cycles or
five full

MCLK

 cycles whichever is greater. While

nRESET

 is LOW the
processor will perform idle cycles with incrementing addresses and

nWAIT

must be HIGH.

nRW

OCZ Not read/write. When HIGH this signal indicates a processor write
operation; when LOW, a read. The signal changes while

MCLK

 is HIGH.

nRW

 is latched by

ALE

.

nTRST

IT Test interface reset. Note this pin does NOT have an internal pullup
resistor. This pin must be pulsed or driven LOW to achieve normal device
operation, in addition to the normal device reset (

nRESET

).

nWAIT

IT Not wait. When LOW this allows extra

MCLK

 cycles to be inserted in
memory accesses. It must change during the LOW phase of the

MCLK

cycle to be extended.

SEQ

OCZ Sequential address. This signal is the inverse of

nMREQ

, and is provided
for compatibility with existing ARM memory systems.

SnA

IT This pin should be hard wired HIGH.

TEST
IN[16:0]

IT Test bus input. This bus is used for off-board testing of the device. When
the device is fitted to a circuit all these pins must be tied LOW.

Name Type Description

 Table 2-1: Signal descriptions (Continued)Table 2-1: Signal descriptions (continued)

Signal Description

ARM610 Data Sheet

2-4

Notes

1 When output pads are placed in the high impedance state for long periods,
take care that they do not float to an undefined logic level, as this can dissipate
power, especially in the pads.

2 Although the input pads have TTL thresholds, and will correctly interpret a TTL
level input, note that unless all inputs are driven to the voltage rails, the input
circuits will consume power.

TEST
OUT[2:0]

OCZ Test bus output. This bus is used for off-board testing of the device. When
the device is fitted to a circuit and all the

TESTIN[16:0]

 pins are driven
LOW, these three outputs will be driven LOW. Note that these pins may not
be tristated, except via the JTAG test port.

TCK

IT Test interface reference Clock. This times all the transfers on the JTAG test
interface.

TDI

IT Test interface data input. Note this pin does NOT have an internal pullup
resistor.

TDO

OCZ Test interface data output. Note this pin does NOT have an internal pullup
resistor.

TMS

IT Test interface mode select. Note this pin does NOT have an internal pullup
resistor.

VDD

Positive supply. 16 pins are allocated to

VDD

 in the 160 PQFP package.

VSS

Ground supply. 16 pins are allocated to

VSS

 in the 160 PQFP package.

Name Type Description

 Table 2-1: Signal descriptions (Continued)Table 2-1: Signal descriptions (continued)

ARM610 Data Sheet

3-1

Programmer’s Model

This chapter describes the programmer’s model for the ARM610.

3.1 Introduction 3-2

3.2 Register Configuration 3-2

3.3 Operating Mode Selection 3-3

3.4 Registers 3-3

3.5 Exceptions 3-6

3.6 Reset 3-10

3

Programmer’s Model

ARM610 Data Sheet

3-2

3.1 Introduction

ARM610 supports a variety of operating configurations. Some are controlled by
register bits and are known as the

register configurations

. Others may be controlled by
software and these are known as

operating modes

.

3.2 Register Configuration

The ARM610 processor provides 4 register configurations which may be changed
while the processor is running and which are detailed in

➲

Chapter 4, Instruction Set.

The bigend bit, in the Control Register, sets whether the

ARM610 treats words in
memory as being stored in big-endian or little-endian format, see

➲

Chapter 5,
Configuration

. Memory is viewed as a linear collection of bytes numbered upwards
from zero. Bytes 0 to 3 hold the first stored word, bytes 4 to 7 the second and so on.

In the little-endian scheme the lowest numbered byte in a word is considered to be the
least significant byte of the word and the highest numbered byte is the most significant.
Byte 0 of the memory system should be connected to data lines 7 through 0 (

D[7:0]

)
in this scheme.

In the big-endian scheme the most significant byte of a word is stored at the lowest
numbered byte and the least significant byte is stored at the highest numbered byte.
Byte 0 of the memory system should therefore be connected to data lines 31 through
24 (

D[31:24]

).

The lateabt bit in the Control Register, see

➲

Chapter 5, Configuration

, sets the
processor's behaviour when a data abort exception occurs. It only affects the
behaviour of load/store register instructions and is discussed more fully in

➲

Chapter
3, Programmer’s Model

 and

➲

Chapter 4, Instruction Set

.

The other two configuration bits, prog32 and data32 are used for backward
compatibility with earlier ARM processors (see appendix A-1) but should normally be
set to 1. This configuration extends the address space to 32 bits, introduces major
changes in the programmer's model as described below and provides support for
running existing 26-bit programs in the 32-bit environment. This mode is
recommended for compatibility with future ARM processors and all new code should
be written to use only the 32-bit operating modes.

Because the original ARM instruction set has been modified to accommodate 32-bit
operation, there are certain additional restrictions which programmers must be aware
of. These are indicated in the text by the words shall and shall not. Reference should
also be made to the

ARM Application Notes “Rules for ARM Code Writers”

 and

“Notes
for ARM Code Writers”

 available from your supplier.

Programmer’s Model

ARM610 Data Sheet

3-3

3.3 Operating Mode Selection

ARM610 has a 32-bit data bus and a 32-bit address bus. The data types the processor
supports are Bytes (8 bits) and Words (32 bits), where words must be aligned to four
byte boundaries. Instructions are exactly one word, and data operations (e.g. ADD)
are only performed on word quantities. Load and store operations can transfer either
bytes or words.

ARM610 supports six modes of operation:

1 User mode (usr): the normal program execution state

2 FIQ mode (fiq): designed to support a data transfer or channel process

3 IRQ mode (irq): used for general purpose interrupt handling

4 Supervisor mode (svc): a protected mode for the operating system

5 Abort mode (abt): entered after a data or instruction prefetch

abort

6 Undefined mode (und): entered when an undefined instruction is executed

Mode changes may be made under software control or may be brought about by
external interrupts or exception processing. Most application programs will execute in
User mode. The other modes, known as

privileged modes

, will be entered to service
interrupts or exceptions or to access protected resources.

3.4 Registers

 The processor has a total of 37 registers made up of 31 general 32-bit registers and
6 status registers. At any one time 16 general registers (R0 to R15) and one or two
status registers are visible to the programmer. The visible registers depend on the
processor mode and the other registers (the

banked registers

) are switched in to
support IRQ, FIQ, Supervisor,

Abort and Undefined mode processing. The register
bank organisation is shown in

➲

Figure 3-1: Register organisation

 on page 3-4. The
banked registers are shaded in the diagram.

 In all modes 16 registers, R0 to R15, are directly accessible. All registers except R15
are general purpose and may be used to hold data or address values. Register R15
holds the Program Counter (PC). When R15 is read, bits [1:0] are zero and bits [31:2]
contain the PC. A seventeenth register (the CPSR - Current Program Status Register)
is also accessible. It contains condition code flags and the current mode bits and may
be thought of as an extension to the PC.

R14 is used as the subroutine link register and receives a copy of R15 when a Branch
and Link instruction is executed. It may be treated as a general purpose register at all
other times. R14_svc, R14_irq, R14_fiq, R14_abt and R14_und are used similarly to
hold the return values of R15 when interrupts and exceptions arise, or when Branch
and Link instructions are executed within interrupt or exception routines.

Programmer’s Model

ARM610 Data Sheet

3-4

 Figure 3-1: Register organisation

FIQ mode has seven banked registers mapped to R8-14 (R8_fiq-R14_fiq). Many FIQ
programs will not need to save any registers. User mode, IRQ mode, Supervisor
mode,

Abort mode and Undefined mode each have two banked registers mapped to
R13 and R14. The two banked registers allow these modes to each have a private
stack pointer and link register. Supervisor, IRQ,

Abort and Undefined mode programs
which require more than these two banked registers are expected to save some or all
of the caller's registers (R0 to R12) on their respective stacks. They are then free to
use these registers which they will restore before returning to the caller. In addition
there are also five SPSRs (Saved Program Status Registers) which are loaded with
the CPSR when an exception occurs. There is one SPSR for each privileged mode.

General Registers and Program Counter Modes

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

R15 (PC)

User32 FIQ32 Supervisor32 Abort32 IRQ32 Undefined32

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

Program Status Registers

Programmer’s Model

ARM610 Data Sheet

3-5

 Figure 3-2: Format of the program status registers (PSRs)

The format of the Program Status Registers is shown in

➲

Figure 3-2: Format of the
program status registers (PSRs)

. The N, Z, C and V bits are the

condition code flags

.
The condition code flags in the CPSR may be changed as a result of arithmetic and
logical operations in the processor and may be tested by all instructions to determine
if the instruction is to be executed.

The I and F bits are the

 interrupt disable bits.

 The I bit disables IRQ interrupts when it
is set and the F bit disables FIQ interrupts when it is set. The M0, M1, M2, M3 and M4
bits (M[4:0]) are the

mode bits

, and these determine the mode in which the processor
operates. The interpretation of the mode bits is shown. Not all combinations of the
mode bits define a valid processor mode. Only those explicitly described shall be used.

The bottom 28 bits of a PSR (incorporating I, F and M[4:0]) are known collectively as
the

control bits

. The control bits will change when an exception arises and in addition
can be manipulated by software when the processor is in a privileged mode. Unused
bits in the PSRs are reserved and their state shall be preserved when changing the
flag or control bits. Programs shall not rely on specific values from the reserved bits
when checking the PSR status, since they may read as one or zero in future
processors.

0123456782728293031

M0M1M2M3M4.FIVCZN

Overflow
Carry / Borrow / Extend
Zero
Negative / Less Than

Mode bits
FIQ disable
IRQ disable

. ..

flags control

M[4:0] Mode Accessible register set

 10000 usr PC, R14..R0 CPSR

 10001 fiq PC, R14_fiq..R8_fiq, R7..R0 CPSR, SPSR_fiq

 10010 irq PC, R14_irq..R13_irq, R12..R0 CPSR, SPSR_irq

 10011 svc PC, R14_svc..R13_svc, R12..R0 CPSR, SPSR_svc

 10111 abt PC, R14_abt..R13_abt, R12..R0 CPSR, SPSR_abt

 11011 und PC, R14_und..R13_und, R12..R0 CPSR, SPSR_und

 Table 3-1: The mode bits

Programmer’s Model

ARM610 Data Sheet

3-6

3.5 Exceptions

Exceptions arise whenever there is a need for the normal flow of program execution to
be broken, so that (for example) the processor can be diverted to handle an interrupt
from a peripheral. The processor state just prior to handling the exception must be
preserved so that the original program can be resumed when the exception routine
has completed. Many exceptions may arise at the same time.

ARM610 handles exceptions by making use of the banked registers to save state. The
old PC and CPSR contents are copied into the appropriate R14 and SPSR and the PC
and mode bits in the CPSR bits are forced to a value which depends on the exception.
Interrupt disable flags are set where required to prevent otherwise unmanageable
nestings of exceptions. In the case of a re-entrant interrupt handler, R14 and the SPSR
should be saved onto a stack in main memory before re-enabling the interrupt; when
transferring the SPSR register to and from a stack, it is important to transfer the whole
32-bit value, and not just the flag or control fields. When multiple exceptions arise
simultaneously, a fixed priority determines the order in which they are handled. The
priorities are listed later in this chapter.

3.5.1 FIQ

The FIQ (Fast Interrupt reQuest) exception is externally generated by taking the

nFIQ

input LOW. This input can accept asynchronous transitions, and is delayed by one
clock cycle for synchronisation before it can affect the processor execution flow. It is
designed to support a data transfer or channel process, and has sufficient private
registers to remove the need for register saving in such applications (thus minimising
the overhead of context switching). The FIQ exception may be disabled by setting the
F flag in the CPSR (but note that this is not possible from User mode). If the F flag is
clear, ARM610 checks for a LOW level on the output of the FIQ synchroniser at the
end of each instruction.

When a FIQ is detected, ARM610 performs the following:

1 Saves the address of the next instruction to be executed plus 4 in R14_fiq;
saves CPSR in SPSR_fiq

2 Forces M[4:0]=10001 (FIQ mode) and sets the F and I bits in the CPSR

3 Forces the PC to fetch the next instruction from address 0x1C

To return normally from FIQ, use SUBS PC, R14_fiq,#4 which will restore both the PC
(from R14) and the CPSR (from SPSR_fiq) and resume execution of the interrupted
code.

3.5.2 IRQ

The IRQ (Interrupt ReQuest) exception is a normal interrupt caused by a LOW level
on the

 nIRQ

input. It has a lower priority than FIQ, and is masked out when a FIQ
sequence is entered. Its effect may be masked out at any time by setting the I bit in the
CPSR (but note that this is not possible from User mode). If the I flag is clear, ARM610
checks for a LOW level on the output of the IRQ synchroniser at the end of each
instruction.

Programmer’s Model

ARM610 Data Sheet

3-7

When an IRQ is detected, ARM610 performs the following:

1 Saves the address of the next instruction to be executed plus 4 in R14_irq;
saves CPSR in SPSR_irq

2 Forces M[4:0]=10010 (IRQ mode) and sets the I bit in the CPSR

3 Forces the PC to fetch the next instruction from address 0x18

To return normally from IRQ, use SUBS PC,R14_irq,#4 which will restore both the PC
and the CPSR and resume execution of the interrupted code.

3.5.3 Abort

An

ABORT can be signalled by either the internal Memory Management Unit or from
the external

ABORT

 input. ABORT indicates that the current memory access cannot
be completed. For instance, in a virtual memory system the data corresponding to the
current address may have been moved out of memory onto a disc, and considerable
processor activity may be required to recover the data before the access can be
performed successfully. ARM610 checks for ABORT during memory access cycles.
When successfully

aborted ARM610 will respond in one of two ways:

1 If the

abort occurred during an instruction prefetch (a

Prefetch

Abort

), the
prefetched instruction is marked as invalid but the

abort exception does not
occur immediately. If the instruction is not executed, for example as a result of
a branch being taken while it is in the pipeline, no

abort will occur. An

abort
will take place if the instruction reaches the head of the pipeline and is about
to be executed.

2 If the

abort occurred during a data access (a

Dat

a

Abort

), the action depends
on the instruction type.

a) Single data transfer instructions (LDR, STR) are

aborted as though the
instruction had not executed if the processor is configured for Early

Abort.
When configured for Late

Abort, these instructions are able to write back
modified base registers and the Abort handler must be aware of this.

b) The swap instruction (SWP) is

aborted as though it had not executed,
though externally the read access may take place.

c) Block data transfer instructions (LDM, STM) complete, and if write-back is
set, the base is updated. If the instruction would normally have overwritten
the base with data (i.e. LDM with the base in the transfer list), this
overwriting is prevented. All register overwriting is prevented after the

Abort is indicated, which means in particular that R15 (which is always
last to be transferred) is preserved in an aborted LDM instruction.

Note that on Data Aborts the ARM610 fault address and fault status registers are
updated.

Programmer’s Model

ARM610 Data Sheet

3-8

When either a prefetch or data abort occurs, ARM610 performs the following:

1 Saves the address of the

aborted instruction plus 4 (for prefetch

aborts) or 8
(for data aborts) in R14_abt; saves CPSR in SPSR_abt.

2 Forces M[4:0]=10111 (Abort mode) and sets the I bit in the CPSR.

3 Forces the PC to fetch the next instruction from either address 0x0C (prefetch
abort) or address 0x10 (data

abort).

To return after fixing the reason for the

abort, use SUBS PC,R14_abt,#4 (for a prefetch

abort) or SUBS PC,R14_abt,#8 (for a data abort). This will restore both the PC and the
CPSR and retry the

aborted instruction.

The

abort mechanism allows a

demand paged virtual memory system

to be
implemented when suitable memory management software is available. The
processor is allowed to generate arbitrary addresses, and when the data at an address
is unavailable the MMU signals an

abort. The processor traps into system software
which must work out the cause of the

abort, make the requested data available, and
retry the

aborted instruction. The application program needs no knowledge of the
amount of memory available to it, nor is its state in any way affected by the abort.

Note that there are restrictions on the use of the external abort pin. See

➲

Chapter 9,
Memory Management Unit

.

3.5.4 Software interrupt

The software interrupt instruction (SWI) is used for getting into Supervisor mode,
usually to request a particular supervisor function. When a SWI is executed, ARM610
performs the following:

1 Saves the address of the SWI instruction plus 4 in R14_svc; saves CPSR in
SPSR_svc

2 Forces M[4:0]=10011 (Supervisor mode) and sets the I bit in the CPSR

3 Forces the PC to fetch the next instruction from address 0x08

To return from a SWI, use MOVS PC,R14_svc. This will restore the PC and CPSR and
return to the instruction following the SWI.

3.5.5 Undefined instruction trap

When the ARM610 comes across an instruction which it cannot handle (see

➲

Chapter
4, Instruction Set

), it offers it to any coprocessors which may be present. If a
coprocessor can perform this instruction but is busy at that time, ARM610 will wait until
the coprocessor is ready or until an interrupt occurs. If no coprocessor can handle the
instruction then ARM610 will take the undefined instruction trap.

The trap may be used for software emulation of a coprocessor in a system which does
not have the coprocessor hardware, or for general purpose instruction set extension
by software emulation.

Programmer’s Model

ARM610 Data Sheet

3-9

When ARM610 takes the undefined instruction trap it performs the following:

1 Saves the address of the Undefined or coprocessor instruction plus 4 in
R14_und; saves CPSR in SPSR_und

2 Forces M[4:0]=11011 (Undefined mode) and sets the I bit in the CPSR

3 Forces the PC to fetch the next instruction from address 0x04

To return from this trap after emulating the failed instruction, use MOVS PC,R14_und.
This will restore the CPSR and return to the instruction following the undefined
instruction.

3.5.6 Vector summary

These are byte addresses, and will normally contain a branch instruction pointing to
the relevant routine.

The FIQ routine might reside at 0x1C onwards, and thereby avoid the need for (and
execution time of) a branch instruction.

The reserved entry is for an Address Exception vector which is only operative when
the processor is configured for a 26-bit program space. See

➲

Chapter A, Backward
Compatibility

.

Address Exception Mode on entry

0x00000000 Reset Supervisor

0x00000004 Undefined instruction Undefined

0x00000008 Software interrupt Supervisor

0x0000000C Abort (prefetch) Abort

0x00000010 Abort (data) Abort

0x00000014 -- reserved -- --

0x00000018 IRQ IRQ

0x0000001C FIQ FIQ

 Table 3-2: Vector summary

Programmer’s Model

ARM610 Data Sheet3-10

3.5.7 Exception priorities

When multiple exceptions arise at the same time, a fixed priority system determines
the order in which they will be handled:

1 Reset (highest priority)

2 Data abort

3 FIQ

4 IRQ

5 Prefetch abort

6 Undefined Instruction, Software interrupt (lowest priority)

Note that not all exceptions can occur at once. Undefined instruction and software
interrupt are mutually exclusive since they each correspond to particular (non-
overlapping) decodings of the current instruction.

If a data abort occurs at the same time as a FIQ, and FIQs are enabled (i.e. the F flag
in the CPSR is clear), ARM610 will enter the data abort handler and then immediately
proceed to the FIQ vector. A normal return from FIQ will cause the data abort handler
to resume execution. Placing data abort at a higher priority than FIQ is necessary to
ensure that the transfer error does not escape detection; the time for this exception
entry should be added to worst case FIQ latency calculations.

3.5.8 Interrupt latencies

Calculating the worst case interrupt latency for the ARM610 is quite complex due to
the cache, MMU and write buffer and is dependant on the configuration of the whole
system. Please see Application Note - Calculating the ARM610 Interrupt Latency.

3.6 Reset
When the nRESET signal goes LOW, ARM610 abandons the executing instruction
and then performs idle cycles from incrementing word addresses. At the end of the
reset sequence ARM610 performs either 1 or 2 memory accesses from the address
reached before nRESET goes HIGH.

When nRESET goes HIGH again, ARM610 performs the following:

1 Overwrites R14_svc and SPSR_svc by copying the current values of the PC
and CPSR into them. The value of the saved PC and CPSR is not defined.

2 Forces M[4:0]=10011 (Supervisor mode) and sets the I and F bits in the
CPSR.

3 Performs either one or two memory accesses from the address output at the
end of the reset.

4 Forces the PC to fetch the next instruction from address 0x00

Programmer’s Model

ARM610 Data Sheet 3-11

At the end of the reset sequence, the MMU is disabled and the TLB is flushed, so
forces “flat” translation (i.e. the physical address is the virtual address, and there is no
permission checking); alignment faults are also disabled; the cache is disabled and
flushed; the write buffer is disabled and flushed; the ARM6 CPU core is put into 26-bit
data and address mode, with early abort timing and little-endian mode.

Programmer’s Model

ARM610 Data Sheet3-12

ARM610 Data Sheet 4-1

O
p

en
 A

cc
es

s

Instruction Set

This chapter describes the ARM instruction set.

4.1 Instruction Set Summary 4-2

4.2 The Condition Field 4-5

4.3 Branch and Branch with Link (B, BL) 4-7

4.4 Data Processing 4-9

4.5 PSR Transfer (MRS, MSR) 4-17

4.6 Multiply and Multiply-Accumulate (MUL, MLA) 4-22

4.7 Single Data Transfer (LDR, STR) 4-24

4.8 Halfword and Signed Data Transfer 4-30

4.9 Block Data Transfer (LDM, STM) 4-36

4.10 Single Data Swap (SWP) 4-43

4.11 Software Interrupt (SWI) 4-45

4.12 Coprocessor Data Operations (CDP) 4-47

4.13 Coprocessor Data Transfers (LDC, STC) 4-49

4.14 Coprocessor Register Transfers (MRC, MCR) 4-53

4.15 Undefined Instruction 4-55

4.16 Instruction Set Examples 4-56

4

Instruction Set - Summary

ARM610 Data Sheet

4-2

O
p

en
 A

cc
es

s

4.1 Instruction Set Summary

4.1.1 Format summary

The ARM instruction set formats are shown below.

 Figure 4-1: ARM instruction set formats

Note

Some instruction codes are not defined but do not cause the Undefined instruction trap
to be taken, for instance a Multiply instruction with bit 6 changed to a 1. These
instructions should not be used, as their action may change in future ARM
implementations.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Cond 0 0 I Opcode S Rn Rd Operand 2 Data Processing /
PSR Transfer

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm Multiply

Cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm Single Data Swap

Cond 0 1 I P U B W L Rn Rd Offset Single Data Transfer

Cond 0 1 1 1 Undefined

Cond 1 0 0 P U S W L Rn Register List Block Data Transfer

Cond 1 0 1 L Offset Branch

Cond 1 1 0 P U N W L Rn CRd CP# Offset Coprocessor Data
Transfer

Cond 1 1 1 0 CP Opc CRn CRd CP# CP 0 CRm Coprocessor Data
Operation

Cond 1 1 1 0 CP Opc L CRn Rd CP# CP 1 CRm Coprocessor Register
Transfer

Cond 1 1 1 1 Ignored by processor Software Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction Set - Summary

ARM610 Data Sheet

4-3

O
p

en
 A

cc
es

s

4.1.2 Instruction summary

Mnemonic Instruction Action See Section:

ADC Add with carry Rd := Rn + Op2 + Carry 4.4

ADD Add Rd := Rn + Op2 4.4

AND AND Rd := Rn AND Op2 4.4

B Branch R15 := address 4.3

BIC Bit Clear Rd := Rn AND NOT Op2 4.4

BL Branch with Link R14 := R15, R15 := address 4.3

CDP Coprocessor Data Process-
ing

(Coprocessor-specific) 4.12

CMN Compare Negative CPSR flags := Rn + Op2 4.4

CMP Compare CPSR flags := Rn - Op2 4.4

EOR Exclusive OR Rd := (Rn AND NOT Op2)
OR (op2 AND NOT Rn)

4.4

LDC Load coprocessor from
memory

Coprocessor load 4.13

LDM Load multiple registers Stack manipulation (Pop) 4.9

LDR Load register from memory Rd := (address) 4.7, 4.8

MCR Move CPU register to
coprocessor register

cRn := rRn {<op>cRm} 4.14

MLA Multiply Accumulate Rd := (Rm * Rs) + Rn 4.6

MOV Move register or constant Rd : = Op2 4.4

MRC Move from coprocessor
register to CPU register

Rn := cRn {<op>cRm} 4.14

MRS Move PSR status/flags to
register

Rn := PSR 4.5

MSR Move register to PSR
status/flags

PSR := Rm 4.5

MUL Multiply Rd := Rm * Rs 4.6

MVN Move negative register Rd := 0xFFFFFFFF EOR Op2 4.4

ORR OR Rd := Rn OR Op2 4.4

RSB Reverse Subtract Rd := Op2 - Rn 4.4

 Table 4-1: The ARM Instruction set

Instruction Set - Summary

ARM610 Data Sheet

4-4

O
p

en
 A

cc
es

s

RSC Reverse Subtract with Carry Rd := Op2 - Rn - 1 + Carry 4.4

SBC Subtract with Carry Rd := Rn - Op2 - 1 + Carry 4.4

STC Store coprocessor register to
memory

address := CRn 4.13

STM Store Multiple Stack manipulation (Push) 4.9

STR Store register to memory <address> := Rd 4.7, 4.8

SUB Subtract Rd := Rn - Op2 4.4

SWI Software Interrupt OS call 4.11

SWP Swap register with memory Rd := [Rn], [Rn] := Rm 4.10

TEQ Test bitwise equality CPSR flags := Rn EOR Op2 4.4

TST Test bits CPSR flags := Rn AND Op2 4.4

Mnemonic Instruction Action See Section:

 Table 4-1: The ARM Instruction set (Continued)

Instruction Set - Condition Field

ARM610 Data Sheet

4-5

O
p

en
 A

cc
es

s

4.2 The Condition Field

In ARM state, all instructions are conditionally executed according to the state of the
CPSR condition codes and the instruction’s condition field. This field (bits 31:28)
determines the circumstances under which an instruction is to be executed.

If the state of the C, N, Z and V flags fulfils the conditions encoded by the field, the
instruction is executed, otherwise it is ignored.

There are 16 possible conditions, each represented by a two-character suffix that can
be appended to the instruction’s mnemonic. For example, a Branch (

B

 in assembly
language) becomes

BEQ

 for "Branch if Equal", which means the Branch will only be
taken if the Z flag is set.

In practice, 15 different conditions may be used: these are listed in

➲

Table 4-2:
Condition code summary

. The sixteenth (1111) is reserved, and must not be used.

In the absence of a suffix, the condition field of most instructions is set to "Always"
(suffix AL). This means the instruction will always be executed regardless of the CPSR
condition codes.

31 28 27 0

Cond

Condition field
0000 = EQ - Z set (equal)
0001 = NE - Z clear (not equal)
0010 = CS - C set (unsigned higher or same)
0011 = CC - C clear (unsigned lower)
0100 = MI - N set (negative)
0101 = PL - N clear (positive or zero)
0110 = VS - V set (overflow)
0111 = VC - V clear (no overflow)
1000 = HI - C set and Z clear (unsigned higher)
1001 = LS - C clear or Z set (unsigned lower or same)
1010 = GE - N set and V set, or N clear and V clear (greater or equal)
1011 = LT - N set and V clear, or N clear and V set (less than)
1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 = LE - Z set, or N set and V clear, or N clear and V set (less than or equal)
1110 = AL - always
1111 = NV - never

Instruction Set - Condition Field

ARM610 Data Sheet

4-6

O
p

en
 A

cc
es

s

Code Suffix Flags Meaning

0000 EQ Z set equal

0001 NE Z clear not equal

0010 CS C set unsigned higher or same

0011 CC C clear unsigned lower

0100 MI N set negative

0101 PL N clear positive or zero

0110 VS V set overflow

0111 VC V clear no overflow

1000 HI C set and Z clear unsigned higher

1001 LS C clear or Z set unsigned lower or same

1010 GE N equals V greater or equal

1011 LT N not equal to V less than

1100 GT Z clear AND (N equals V) greater than

1101 LE Z set OR (N not equal to V) less than or equal

1110 AL (ignored) always

 Table 4-2: Condition code summary

Instruction Set - B, BL

ARM610 Data Sheet

4-7

O
p

en
 A

cc
es

s

4.3 Branch and Branch with Link (B, BL)

The instruction is only executed if the condition is true. The various conditions are
defined

➲

Table 4-2: Condition code summary

 on page 4-6. The instruction encoding
is shown in

➲

Figure 4-2: Branch instructions

, below.

 Figure 4-2: Branch instructions

Branch instructions contain a signed two's complement 24-bit offset. This is shifted left
two bits, sign extended to 32 bits, and added to the PC. The instruction can therefore
specify a branch of +/- 32Mbytes. The branch offset must take account of the prefetch
operation, which causes the PC to be 2 words (8 bytes) ahead of the current
instruction.

Branches beyond +/- 32Mbytes must use an offset or absolute destination which has
been previously loaded into a register. In this case the PC should be manually saved
in R14 if a Branch with Link type operation is required.

4.3.1 The link bit

Branch with Link (BL) writes the old PC into the link register (R14) of the current bank.
The PC value written into R14 is adjusted to allow for the prefetch, and contains the
address of the instruction following the branch and link instruction. Note that the CPSR
is not saved with the PC and R14[1:0] are always cleared.

To return from a routine called by Branch with Link use MOV PC,R14 if the link register
is still valid or LDM Rn!,{..PC} if the link register has been saved onto a stack pointed
to by Rn.

31 28 27 25 24 23 0

Cond 101 L offset

Link bit
0 = Branch
1 = Branch with Link

Condition field

Instruction Set - B, BL

ARM610 Data Sheet

4-8

O
p

en
 A

cc
es

s

4.3.2 Assembler syntax

Items in {} are optional. Items in <> must be present.

B{L}{cond} <expression>

{L} is used to request the Branch with Link form of the instruction.
If absent, R14 will not be affected by the instruction.

{cond} is a two-character mnemonic as shown in

➲

Table 4-2:
Condition code summary

 on page 4-6. If absent then AL
(ALways) will be used.

<expression> is the destination. The assembler calculates the offset.

4.3.3 Examples

here BAL here ; assembles to 0xEAFFFFFE (note effect of
 ; PC offset).
B there ; Always condition used as default.
CMP R1,#0 ; Compare R1 with zero and branch to fred

; if R1 was zero, otherwise continue
BEQ fred ; continue to next instruction.

BL sub+ROM ; Call subroutine at computed address.
ADDS R1,#1 ; Add 1 to register 1, setting CPSR flags

; on the result then call subroutine if
BLCC sub ; the C flag is clear, which will be the

; case unless R1 held 0xFFFFFFFF.

Instruction Set - Data processing

ARM610 Data Sheet

4-9

O
p

en
 A

cc
es

s

4.4 Data

Processing

The data processing instruction is only executed if the condition is true. The conditions
are defined in

➲

Table 4-2: Condition code summary

 on page 4-6.

The instruction encoding is shown in

➲

Figure 4-3: Data processing instructions

below.

31 28 27 26 25 24 21 20 19 16 15 12 11 0

Cond 00 I OpCode S Rn Rd Operand 2

Destination register
1st operand register
Set condition codes

0 = do not alter condition codes
1 = set condition codes

Operation Code
0000 = AND - Rd:=Op1 AND Op2
0001 = EOR- Rd:=Op1 EOR Op2
0010 = SUB - Rd:=Op1 - Op2
0011 = RSB - Rd:=Op2 - Op1
0100 = ADD - Rd:=Op1 + Op2
0101 = ADC - Rd:=Op1 + Op2 + C
0110 = SBC - Rd:=Op1 - Op2 + C - 1
0111 = RSC - Rd:=Op2 - Op1 + C - 1
1000 = TST - set condition codes on Op1 AND Op2
1001 = TEQ - set condition codes on Op1 EOR Op2
1010 = CMP- set condition codes on Op1 - Op2
1011 = CMN- set condition codes on Op1 + Op2
1100 = ORR- Rd:=Op1 OR Op2
1101 = MOV- Rd:=Op2
1110 = BIC - Rd:=Op1 AND NOT Op2
1111 = MVN- Rd:=NOT Op2

Immediate Operand
0 = operand 2 is a register

11 4 3 0

Shift Rm

shift applied to Rm
2nd operand register

1 = operand 2 is an immediate value

11 8 7 0

Rotate lmm

shift applied to lmm
Unsigned 8-bit immediate value

Condition field

Instruction Set - Data processing

ARM610 Data Sheet

4-10

O
p

en
 A

cc
es

s

 Figure 4-3: Data processing instructions

The instruction produces a result by performing a specified arithmetic or logical
operation on one or two operands. The first operand is always a register (Rn).

The second operand may be a shifted register (Rm) or a rotated 8-bit immediate value
(Imm) according to the value of the I bit in the instruction. The condition codes in the
CPSR may be preserved or updated as a result of this instruction, according to the
value of the S bit in the instruction.

Certain operations (TST, TEQ, CMP, CMN) do not write the result to Rd. They are used
only to perform tests and to set the condition codes on the result and always have the
S bit set. The instructions and their effects are listed in

➲

Table 4-3: ARM Data
processing instructions

 on page 4-10

.

4.4.1 CPSR flags

The data processing operations may be classified as

logical

 or

arithmetic.

Logical operations

The logical operations (AND, EOR, TST, TEQ, ORR, MOV, BIC, MVN) perform the
logical action on all corresponding bits of the operand or operands to produce the
result. If the S bit is set (and Rd is not R15, see below) the V flag in the CPSR will be
unaffected, the C flag will be set to the carry out from the barrel shifter (or preserved
when the shift operation is LSL #0), the Z flag will be set if and only if the result is all
zeros, and the N flag will be set to the logical value of bit 31 of the result

.

Assembler
Mnemonic OpCode Action

AND 0000 operand1 AND operand2

EOR 0001 operand1 EOR operand2

SUB 0010 operand1 - operand2

RSB 0011 operand2 - operand1

ADD 0100 operand1 + operand2

ADC 0101 operand1 + operand2 + carry

SBC 0110 operand1 - operand2 + carry - 1

RSC 0111 operand2 - operand1 + carry - 1

TST 1000 as AND, but result is not written

TEQ 1001 as EOR, but result is not written

CMP 1010 as SUB, but result is not written

CMN 1011 as ADD, but result is not written

ORR 1100 operand1 OR operand2

 Table 4-3: ARM Data processing instructions

Instruction Set - Shifts

ARM610 Data Sheet

4-11

O
p

en
 A

cc
es

s

Arithmetic operations

The arithmetic operations (SUB, RSB, ADD, ADC, SBC, RSC, CMP, CMN) treat each
operand as a 32-bit integer (either unsigned or two's complement signed, the two are
equivalent). If the S bit is set (and Rd is not R15) the V flag in the CPSR will be set if
an overflow occurs into bit 31 of the result; this may be ignored if the operands were
considered unsigned, but warns of a possible error if the operands were two's
complement signed. The C flag will be set to the carry out of bit 31 of the ALU, the Z
flag will be set if and only if the result was zero, and the N flag will be set to the value
of bit 31 of the result (indicating a negative result if the operands are considered to be
two's complement signed).

4.4.2 Shifts

When the second operand is specified to be a shifted register, the operation of the
barrel shifter is controlled by the Shift field in the instruction. This field indicates the
type of shift to be performed (logical left or right, arithmetic right or rotate right). The
amount by which the register should be shifted may be contained in an immediate field
in the instruction, or in the bottom byte of another register (other than R15). The
encoding for the different shift types is shown in

➲

Figure 4-4: ARM shift operations

.

 Figure 4-4: ARM shift operations

MOV 1101 operand2 (operand1 is ignored)

BIC 1110 operand1 AND NOT operand2 (Bit clear)

MVN 1111 NOT operand2 (operand1 is ignored)

Assembler
Mnemonic OpCode Action

 Table 4-3: ARM Data processing instructions

11 7 6 5 4

0

11 8 7 6 5 4

Rs 0 1

Shift type
00= logical left
01= logical right
10= arithmetic right
11= rotate right

Shift amount
5-bit unsigned integer

Shift type
00= logical left
01= logical right
10= arithmetic right
11= rotate right

Shift amount
shift amount specified
in bottom byte of Rs

Instruction Set - Shifts

ARM610 Data Sheet4-12

O
p

en
 A

cc
es

s

Instruction specified shift amount

When the shift amount is specified in the instruction, it is contained in a 5-bit field which
may take any value from 0 to 31. A logical shift left (LSL) takes the contents of Rm and
moves each bit by the specified amount to a more significant position. The least
significant bits of the result are filled with zeros, and the high bits of Rm which do not
map into the result are discarded, except that the least significant discarded bit
becomes the shifter carry output which may be latched into the C bit of the CPSR when
the ALU operation is in the logical class (see above). For example, the effect of LSL #5
is shown in ➲Figure 4-5: Logical shift left.

 Figure 4-5: Logical shift left

Note LSL #0 is a special case, where the shifter carry out is the old value of the CPSR C
flag. The contents of Rm are used directly as the second operand.

A logical shift right (LSR) is similar, but the contents of Rm are moved to less significant
positions in the result. LSR #5 has the effect shown in ➲Figure 4-6: Logical shift right.

 Figure 4-6: Logical shift right

31 27 26 0

contents of Rm

31 27 26 0

value of operand 2 0 0 0 0 0

carry out

31 5 4 0

contents of Rm

0 0 0 0 0 value of operand 2

carry out

Instruction Set - Shifts

ARM610 Data Sheet 4-13

O
p

en
 A

cc
es

s

The form of the shift field which might be expected to correspond to LSR #0 is used to
encode LSR #32, which has a zero result with bit 31 of Rm as the carry output. Logical
shift right zero is redundant as it is the same as logical shift left zero, so the assembler
will convert LSR #0 (and ASR #0 and ROR #0) into LSL #0, and allow LSR #32 to be
specified.

An arithmetic shift right (ASR) is similar to logical shift right, except that the high bits
are filled with bit 31 of Rm instead of zeros. This preserves the sign in two’s
complement notation. For example, ASR #5 is shown in ➲Figure 4-7: Arithmetic shift
right.

 Figure 4-7: Arithmetic shift right

The form of the shift field which might be expected to give ASR #0 is used to encode
ASR #32. Bit 31 of Rm is again used as the carry output, and each bit of operand 2 is
also equal to bit 31 of Rm. The result is therefore all ones or all zeros, according to the
value of bit 31 of Rm.

Rotate right (ROR) operations reuse the bits which “overshoot” in a logical shift right
operation by reintroducing them at the high end of the result, in place of the zeros used
to fill the high end in logical right operations. For example, ROR #5 is shown in ➲Figure
4-8: Rotate right on page 4-13.

 Figure 4-8: Rotate right

31 30 5 4 0

contents of Rm

value of operand 2

carry out

31 5 4 0

contents of Rm

value of operand 2

carry out

Instruction Set - Shifts

ARM610 Data Sheet4-14

O
p

en
 A

cc
es

s

The form of the shift field which might be expected to give ROR #0 is used to encode
a special function of the barrel shifter, rotate right extended (RRX). This is a rotate right
by one bit position of the 33-bit quantity formed by appending the CPSR C flag to the
most significant end of the contents of Rm as shown in ➲Figure 4-9: Rotate right
extended.

 Figure 4-9: Rotate right extended

Register specified shift amount

Only the least significant byte of the contents of Rs is used to determine the shift
amount. Rs can be any general register other than R15.

If this byte is zero, the unchanged contents of Rm will be used as the second operand,
and the old value of the CPSR C flag will be passed on as the shifter carry output.

If the byte has a value between 1 and 31, the shifted result will exactly match that of
an instruction specified shift with the same value and shift operation.

If the value in the byte is 32 or more, the result will be a logical extension of the shift
described above:

1 LSL by 32 has result zero, carry out equal to bit 0 of Rm.

2 LSL by more than 32 has result zero, carry out zero.

3 LSR by 32 has result zero, carry out equal to bit 31 of Rm.

4 LSR by more than 32 has result zero, carry out zero.

5 ASR by 32 or more has result filled with and carry out equal to bit 31 of Rm.

6 ROR by 32 has result equal to Rm, carry out equal to bit 31 of Rm.

7 ROR by n where n is greater than 32 will give the same result and carry out
as ROR by n-32; therefore repeatedly subtract 32 from n until the amount is in
the range 1 to 32 and see above.

Note The zero in bit 7 of an instruction with a register controlled shift is compulsory; a one
in this bit will cause the instruction to be a multiply or undefined instruction.

1 0

contents of Rm

value of operand 2

carry out
C
in

31 1 0

contents of Rm

value of operand 2

carry out

Instruction Set - TEQ, TST, CMP, CMN

ARM610 Data Sheet 4-15

O
p

en
 A

cc
es

s

4.4.3 Immediate operand rotates

The immediate operand rotate field is a 4-bit unsigned integer which specifies a shift
operation on the 8-bit immediate value. This value is zero extended to 32 bits, and then
subject to a rotate right by twice the value in the rotate field. This enables many
common constants to be generated, for example all powers of 2.

4.4.4 Writing to R15

When Rd is a register other than R15, the condition code flags in the CPSR may be
updated from the ALU flags as described above.

When Rd is R15 and the S flag in the instruction is not set the result of the operation
is placed in R15 and the CPSR is unaffected.

When Rd is R15 and the S flag is set the result of the operation is placed in R15 and
the SPSR corresponding to the current mode is moved to the CPSR. This allows state
changes which atomically restore both PC and CPSR. This form of instruction should
not be used in User mode.

4.4.5 Using R15 as an operand

If R15 (the PC) is used as an operand in a data processing instruction the register is
used directly.

The PC value will be the address of the instruction, plus 8 or 12 bytes due to instruction
prefetching. If the shift amount is specified in the instruction, the PC will be 8 bytes
ahead. If a register is used to specify the shift amount the PC will be 12 bytes ahead.

4.4.6 TEQ, TST, CMP and CMN opcodes

Note TEQ, TST, CMP and CMN do not write the result of their operation but do set flags in
the CPSR. An assembler should always set the S flag for these instructions even if this
is not specified in the mnemonic.

The TEQP form of the TEQ instruction used in earlier ARM processors must not be
used: the PSR transfer operations should be used instead.

The action of TEQP in the ARM610 is to move SPSR_<mode> to the CPSR if the
processor is in a privileged mode and to do nothing if in User mode.

4.4.7 Assembler syntax

1 MOV,MVN (single operand instructions.)

<opcode>{cond}{S} Rd,<Op2>

2 CMP,CMN,TEQ,TST (instructions which do not produce a result.)

<opcode>{cond} Rn,<Op2>

3 AND,EOR,SUB,RSB,ADD,ADC,SBC,RSC,ORR,BIC

<opcode>{cond}{S} Rd,Rn,<Op2>

Instruction Set - TEQ, TST, CMP, CMN

ARM610 Data Sheet4-16

O
p

en
 A

cc
es

s

where:

<Op2> is Rm{,<shift>} or,<#expression>

{cond} is a two-character condition mnemonic. See ➲Table 4-2:
Condition code summary on page 4-6.

{S} set condition codes if S present (implied for CMP, CMN, TEQ,
TST).

Rd, Rn and Rm are expressions evaluating to a register number.

<#expression> if this is used, the assembler will attempt to generate a shifted
immediate 8-bit field to match the expression. If this is
impossible, it will give an error.

<shift> is <shiftname> <register> or <shiftname> #expression, or
RRX (rotate right one bit with extend).

<shiftname>s are: ASL, LSL, LSR, ASR, ROR. (ASL is a synonym for LSL,
they assemble to the same code.)

4.4.8 Examples

ADDEQ R2,R4,R5 ; If the Z flag is set make R2:=R4+R5
TEQS R4,#3 ; test R4 for equality with 3.

 ; (The S is in fact redundant as the
 ; assembler inserts it automatically.)

SUB R4,R5,R7,LSR R2; Logical right shift R7 by the number in
 ; the bottom byte of R2, subtract result
 ; from R5, and put the answer into R4.

MOV PC,R14 ; Return from subroutine.
MOVS PC,R14 ; Return from exception and restore CPSR

 ; from SPSR_mode.

Instruction Set - MRS, MSR

ARM610 Data Sheet 4-17

O
p

en
 A

cc
es

s

4.5 PSR Transfer (MRS, MSR)
The instruction is only executed if the condition is true. The various conditions are
defined in ➲Table 4-2: Condition code summary on page 4-6.

The MRS and MSR instructions are formed from a subset of the Data Processing
operations and are implemented using the TEQ, TST, CMN and CMP instructions
without the S flag set. The encoding is shown in ➲Figure 4-10: PSR transfer on page
4-18.

These instructions allow access to the CPSR and SPSR registers. The MRS
instruction allows the contents of the CPSR or SPSR_<mode> to be moved to a
general register. The MSR instruction allows the contents of a general register to be
moved to the CPSR or SPSR_<mode> register.

The MSR instruction also allows an immediate value or register contents to be
transferred to the condition code flags (N,Z,C and V) of CPSR or SPSR_<mode>
without affecting the control bits. In this case, the top four bits of the specified register
contents or 32-bit immediate value are written to the top four bits of the relevant PSR.

4.5.1 Operand restrictions

• In User mode, the control bits of the CPSR are protected from change, so only
the condition code flags of the CPSR can be changed. In other (privileged)
modes the entire CPSR can be changed.
Note that the software must never change the state of the T bit in the CPSR.
If this happens, the processor will enter an unpredictable state.

• The SPSR register which is accessed depends on the mode at the time of
execution. For example, only SPSR_fiq is accessible when the processor is in
FIQ mode.

• You must not specify R15 as the source or destination register.

• Also, do not attempt to access an SPSR in User mode, since no such register
exists.

Instruction Set - MRS, MSR

ARM610 Data Sheet4-18

O
p

en
 A

cc
es

s

 Figure 4-10: PSR transfer

11 8 7 0

Rotate Imm

11 4 3 0

00000000 Rm

28 27 23 22 21 12 11 0

nd 00 I 10 Pd 1010001111 Source operand

28 27 23 22 21 12 11 4 3 0

nd 00010 Pd 1010011111 00000000 Rm

28 27 23 22 21 16 15 12 11 0

nd 00010 Ps 001111 Rd 000000000000

MRS (transfer PSR contents to a register)

Destination register
Source PSR

Condition field

0=CPSR
1=SPSR_<current mode>

SR (transfer register contents to PSR)

Source register
Destination PSR

Condition field

0=CPSR

1=SPSR_<current mode>

MSR (transfer register contents or immediate value to PSR flag bits only)

Destination PSR

Immediate Operand

0=CPSR
1=SPSR_<current mode>

0=source operand is a register

1=source operand is an immediate value

Condition field

Source register

Unsigned 8-bit immediate value

shift applied to Imm

11 8 7 0

Rotate Imm

11 4 3 0

00000000 Rm

31 28 27 23 22 21 12 11 0

Cond 00 I 10 Pd 1010001111 Source operand

31 28 27 23 22 21 12 11 4 3 0

Cond 00010 Pd 1010011111 00000000 Rm

31 28 27 23 22 21 16 15 12 11 0

Cond 00010 Ps 001111 Rd 000000000000

MRS (transfer PSR contents to a register)

Destination register
Source PSR

Condition field

0=CPSR
1=SPSR_<current mode>

MSR (transfer register contents to PSR)

Source register
Destination PSR

Condition field

0=CPSR

1=SPSR_<current mode>

MSR (transfer register contents or immediate value to PSR flag bits only)

Destination PSR

Immediate Operand

0=CPSR
1=SPSR_<current mode>

0=source operand is a register

1=source operand is an immediate value

Condition field

Source register

Unsigned 8-bit immediate value

shift applied to Imm

Instruction Set - MRS, MSR

ARM610 Data Sheet 4-19

O
p

en
 A

cc
es

s

4.5.2 Reserved bits

Only twelve bits of the PSR are defined in ARM610 (N,Z,C,V,I,F, T & M[4:0]); the
remaining bits are reserved for use in future versions of the processor. Refer to
➲Figure 3-6: Program status register format on page 3-8 for a full description of the
PSR bits.

To ensure the maximum compatibility between ARM610 programs and future
processors, the following rules should be observed:

• The reserved bits should be preserved when changing the value in a PSR.

• Programs should not rely on specific values from the reserved bits when
checking the PSR status, since they may read as one or zero in future
processors.

A read-modify-write strategy should therefore be used when altering the control bits of
any PSR register; this involves transferring the appropriate PSR register to a general
register using the MRS instruction, changing only the relevant bits and then
transferring the modified value back to the PSR register using the MSR instruction.

Example

The following sequence performs a mode change:

MRS R0,CPSR ; Take a copy of the CPSR.
BIC R0,R0,#0x1F ; Clear the mode bits.
ORR R0,R0,#new_mode ; Select new mode
MSR CPSR,R0 ; Write back the modified

; CPSR.

When the aim is simply to change the condition code flags in a PSR, a value can be
written directly to the flag bits without disturbing the control bits. The following
instruction sets the N,Z,C and V flags:

MSR CPSR_flg,#0xF0000000 ; Set all the flags
; regardless of their
; previous state (does not
; affect any control bits).

No attempt should be made to write an 8-bit immediate value into the whole PSR since
such an operation cannot preserve the reserved bits.

Instruction Set - MRS, MSR

ARM610 Data Sheet4-20

O
p

en
 A

cc
es

s

4.5.3 Assembler syntax

1 MRS - transfer PSR contents to a register

MRS{cond} Rd,<psr>

2 MSR - transfer register contents to PSR

MSR{cond} <psr>,Rm

3 MSR - transfer register contents to PSR flag bits only

MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C
& V flags respectively.

4 MSR - transfer immediate value to PSR flag bits only

MSR{cond} <psrf>,<#expression>

The expression should symbolise a 32-bit value of which the most significant
four bits are written to the N,Z,C and V flags respectively.

Key

{cond} two-character condition mnemonic. See ➲Table 4-2:
Condition code summary on page 4-6.

Rd and Rm are expressions evaluating to a register number other than
R15

<psr> is CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and
CPSR_all are synonyms as are SPSR and SPSR_all)

<psrf> is CPSR_flg or SPSR_flg

<#expression> where this is used, the assembler will attempt to generate a
shifted immediate 8-bit field to match the expression. If this is
impossible, it will give an error.

Instruction Set - MRS, MSR

ARM610 Data Sheet 4-21

O
p

en
 A

cc
es

s

4.5.4 Examples

In User mode the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0xA0000000 ; CPSR[31:28] <- 0xA

;(set N,C; clear Z,V)
MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_all,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm[31:28]
MSR CPSR_flg,#0x50000000 ; CPSR[31:28] <- 0x5

;(set Z,V; clear N,C)
MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]
MSR SPSR_all,Rm ;SPSR_<mode>[31:0]<- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm[31:28]
MSR SPSR_flg,#0xC0000000 ; SPSR_<mode>[31:28] <- 0xC

;(set N,Z; clear C,V)
MRS Rd,SPSR ; Rd[31:0] <- SPSR_<mode>[31:0]

Instruction Set - MUL, MLA

ARM610 Data Sheet4-22

O
p

en
 A

cc
es

s

4.6 Multiply and Multiply-Accumulate (MUL, MLA)
The instruction is only executed if the condition is true. The various conditions are
defined in ➲Table 4-2: Condition code summary on page 4-6. The instruction encoding
is shown in ➲Figure 4-11: Multiply instructions.

The multiply and multiply-accumulate instructions use an 8-bit Booth's algorithm to
perform integer multiplication.

 Figure 4-11: Multiply instructions

The multiply form of the instruction gives Rd:=Rm*Rs. Rn is ignored, and should be
set to zero for compatibility with possible future upgrades to the instruction set.

The multiply-accumulate form gives Rd:=Rm*Rs+Rn, which can save an explicit ADD
instruction in some circumstances.

Both forms of the instruction work on operands which may be considered as signed
(two’s complement) or unsigned integers.

The results of a signed multiply and of an unsigned multiply of 32-bit operands differ
only in the upper 32 bits - the low 32 bits of the signed and unsigned results are
identical. As these instructions only produce the low 32 bits of a multiply, they can be
used for both signed and unsigned multiplies.

For example consider the multiplication of the operands:

Operand A Operand B Result

0xFFFFFFF6 0x0000001 0xFFFFFF38

If the operands are interpreted as signed

Operand A has the value -10, operand B has the value 20, and the result is -200 which
is correctly represented as 0xFFFFFF38

If the operands are interpreted as unsigned

Operand A has the value 4294967286, operand B has the value 20 and the result is
85899345720, which is represented as 0x13FFFFFF38, so the least significant 32 bits
are 0xFFFFFF38.

31 28 27 22 21 20 19 16 15 12 11 8 7 4 3 0

Cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

Operand registers
Destination register
Set condition code

Accumulate

0 = do not alter condition codes
1 = set condition codes

0 = multiply only
1 = multiply and accumulate

Condition Field

Instruction Set - MUL, MLA

ARM610 Data Sheet 4-23

O
p

en
 A

cc
es

s

4.6.1 Operand restrictions

The destination register Rd must not be the same as the operand register Rm. R15
must not be used as an operand or as the destination register.

All other register combinations will give correct results, and Rd, Rn and Rs may use
the same register when required.

4.6.2 CPSR flags

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction. The
N (Negative) and Z (Zero) flags are set correctly on the result (N is made equal to bit
31 of the result, and Z is set if and only if the result is zero). The C (Carry) flag is set
to a meaningless value and the V (oVerflow) flag is unaffected.

4.6.3 Assembler syntax

MUL{cond}{S} Rd,Rm,Rs

MLA{cond}{S} Rd,Rm,Rs,Rn

{cond} two-character condition mnemonic. See ➲Table 4-2:
Condition code summary on page 4-6.

{S} set condition codes if S present

Rd, Rm, Rs and Rn are expressions evaluating to a register number other
than R15.

4.6.4 Examples

MUL R1,R2,R3 ; R1:=R2*R3
MLAEQS R1,R2,R3,R4 ; Conditionally R1:=R2*R3+R4,

; setting condition codes.

Instruction Set - LDR, STR

ARM610 Data Sheet4-24

O
p

en
 A

cc
es

s

4.7 Single Data Transfer (LDR, STR)
The instruction is only executed if the condition is true. The various conditions are
defined in ➲Table 4-2: Condition code summary on page 4-6. The instruction encoding
is shown in ➲Figure 4-12: Single data transfer instructions on page 4-24.

The single data transfer instructions are used to load or store single bytes or words of
data. The memory address used in the transfer is calculated by adding an offset to or
subtracting an offset from a base register.

The result of this calculation may be written back into the base register if auto-indexing
is required.

 Figure 4-12: Single data transfer instructions

8 27 26 25 24 23 22 21 20 19 16 15 12 11 0

01 I P U B W L Rn Rd Offset

Source/Destination register
Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = No write-back
1 = Write address into space

Byte/Word bit
0 = Transfer word quantity
1 = Transfer byte quantity

Up/Down bit
0 = Down; subtract offset from base
1 = Up; add offset from base

Pre/Post indexing bit
0 = Post; add offset after transfer
1 = Pre; add offset before transfer

Immediate offset
0 = Offset is an immediate value

11 0

Immediate offset

Unsigned 12-bit immediate offset

Shift Rm

1 = Offset is a register

11 4 3 0

Shift Rm

shift applied to Rm Offset register

Condition field

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

Cond 01 I P U B W L Rn Rd Offset

Source/Destination register
Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = No write-back
1 = Write address into space

Byte/Word bit
0 = Transfer word quantity
1 = Transfer byte quantity

Up/Down bit
0 = Down; subtract offset from base
1 = Up; add offset from base

Pre/Post indexing bit
0 = Post; add offset after transfer
1 = Pre; add offset before transfer

Immediate offset
0 = Offset is an immediate value

11 0

Immediate offset

Unsigned 12-bit immediate offset

Shift Rm

1 = Offset is a register

11 4 3 0

Shift Rm

shift applied to Rm Offset register

Condition field

Instruction Set - LDR, STR

ARM610 Data Sheet 4-25

O
p

en
 A

cc
es

s

4.7.1 Offsets and auto-indexing

The offset from the base may be either a 12-bit unsigned binary immediate value in
the instruction, or a second register (possibly shifted in some way). The offset may be
added to (U=1) or subtracted from (U=0) the base register Rn. The offset modification
may be performed either before (pre-indexed, P=1) or after (post-indexed, P=0) the
base is used as the transfer address.

The W bit gives optional auto increment and decrement addressing modes. The
modified base value may be written back into the base (W=1), or the old base value
may be kept (W=0). In the case of post-indexed addressing, the write back bit is
redundant and is always set to zero, since the old base value can be retained by setting
the offset to zero. Therefore post-indexed data transfers always write back the modified
base. The only use of the W bit in a post-indexed data transfer is in privileged mode
code, where setting the W bit forces non-privileged mode for the transfer, allowing the
operating system to generate a user address in a system where the memory
management hardware makes suitable use of this hardware.

4.7.2 Shifted register offset

The 8 shift control bits are described in the data processing instructions section.
However, the register specified shift amounts are not available in this instruction class.
See ➲4.4.2 Shifts on page 4-11.

4.7.3 Bytes and words

This instruction class may be used to transfer a byte (B=1) or a word (B=0) between
an ARM610 register and memory.

The action of LDR(B) and STR(B) instructions is influenced by the BIGEND control
signal. The two possible configurations are described below.

Little-endian configuration

A byte load (LDRB) expects the data on data bus inputs 7 through 0 if the supplied
address is on a word boundary, on data bus inputs 15 through 8 if it is a word address
plus one byte, and so on. The selected byte is placed in the bottom 8 bits of the
destination register, and the remaining bits of the register are filled with zeros. Please
see ➲Figure 3-2: Little endian addresses of bytes within words on page 3-3.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across
data bus outputs 31 through 0. The external memory system should activate the
appropriate byte subsystem to store the data.

A word load (LDR) will normally use a word aligned address. However, an address
offset from a word boundary will cause the data to be rotated into the register so that
the addressed byte occupies bits 0 to 7. This means that halfwords accessed at offsets
0 and 2 from the word boundary will be correctly loaded into bits 0 through 15 of the
register. Two shift operations are then required to clear or to sign extend the upper 16
bits. This is illustrated in ➲Figure 4-13: Little-endian offset addressing on page 4-26.

Instruction Set - LDR, STR

ARM610 Data Sheet4-26

O
p

en
 A

cc
es

s

 Figure 4-13: Little-endian offset addressing

A word store (STR) should generate a word aligned address. The word presented to
the data bus is not affected if the address is not word aligned. That is, bit 31 of the
register being stored always appears on data bus output 31.

Big-endian configuration

A byte load (LDRB) expects the data on data bus inputs 31 through 24 if the supplied
address is on a word boundary, on data bus inputs 23 through 16 if it is a word address
plus one byte, and so on. The selected byte is placed in the bottom 8 bits of the
destination register and the remaining bits of the register are filled with zeros. Please
see ➲Figure 3-1: Big endian addresses of bytes within words on page 3-3.

A byte store (STRB) repeats the bottom 8 bits of the source register four times across
data bus outputs 31 through 0. The external memory system should activate the
appropriate byte subsystem to store the data.

A word load (LDR) should generate a word aligned address. An address offset of 0 or
2 from a word boundary will cause the data to be rotated into the register so that the
addressed byte occupies bits 31 through 24. This means that halfwords accessed at
these offsets will be correctly loaded into bits 16 through 31 of the register. A shift
operation is then required to move (and optionally sign extend) the data into the bottom
16 bits. An address offset of 1 or 3 from a word boundary will cause the data to be
rotated into the register so that the addressed byte occupies bits 15 through 8.

A

B

C

D

memory

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

register

24

16

8

0

LDR from word aligned address

A

B

C

D

A+3

A+2

A+1

A

24

16

8

0

A

B

C

D

24

16

8

0

LDR from address offset by 2

Instruction Set - LDR, STR

ARM610 Data Sheet 4-27

O
p

en
 A

cc
es

s

A word store (STR) should generate a word aligned address. The word presented to
the data bus is not affected if the address is not word aligned. That is, bit 31 of the
register being stored always appears on data bus output 31.

4.7.4 Use of R15

Write-back must not be specified if R15 is specified as the base register (Rn). When
using R15 as the base register you must remember it contains an address 8 bytes on
from the address of the current instruction.

R15 must not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a register store (STR) instruction, the stored
value will be address of the instruction plus 12.

4.7.5 Restriction on the use of base register

When configured for late aborts, the following example code is difficult to unwind as
the base register, Rn, gets updated before the abort handler starts. Sometimes it may
be impossible to calculate the initial value.

After an abort, the following example code is difficult to unwind as the base register,
Rn, gets updated before the abort handler starts. Sometimes it may be impossible to
calculate the initial value.

Example:

LDR R0,[R1],R1

Therefore a post-indexed LDR or STR where Rm is the same register as Rn should
not be used.

4.7.6 Data aborts

A transfer to or from a legal address may cause problems for a memory management
system. For instance, in a system which uses virtual memory the required data may
be absent from main memory. The memory manager can signal a problem by taking
the processor ABORT input HIGH whereupon the Data Abort trap will be taken. It is
up to the system software to resolve the cause of the problem, then the instruction can
be restarted and the original program continued.

4.7.7 Instruction cycle times

Normal LDR instructions take 1S + 1N + 1I and LDR PC take 2S + 2N +1I incremental
cycles, where S,N and I are as defined in ➲6.2 Cycle Types on page 6-2.

STR instructions take 2N incremental cycles to execute.

Instruction Set - LDR, STR

ARM610 Data Sheet4-28

O
p

en
 A

cc
es

s

4.7.8 Assembler syntax

<LDR|STR>{cond}{B}{T} Rd,<Address>

where:

LDR load from memory into a register

STR store from a register into memory

{cond} two-character condition mnemonic. See ➲Table 4-2: Condition code
summary on page 4-6.

{B} if B is present then byte transfer, otherwise word transfer

{T} if T is present the W bit will be set in a post-indexed instruction, forcing
non-privileged mode for the transfer cycle. T is not allowed when a
pre-indexed addressing mode is specified or implied.

Rd is an expression evaluating to a valid register number.

Rn and Rm are expressions evaluating to a register number. If Rn is R15 then the
assembler will subtract 8 from the offset value to allow for ARM610
pipelining. In this case base write-back should not be specified.

<Address> can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using
the PC as a base and a corrected immediate offset to
address the location given by evaluating the expression. This
will be a PC relative, pre-indexed address. If the address is
out of range, an error will be generated.

2 A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression>
bytes

[Rn,{+/-}Rm{,<shift>}]{!} offset of +/- contents of
index register, shifted
by <shift>

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression>
bytes

[Rn],{+/-}Rm{,<shift>} offset of +/- contents of
index register, shifted
as by <shift>

Instruction Set - LDR, STR

ARM610 Data Sheet 4-29

O
p

en
 A

cc
es

s

<shift> general shift operation (see data processing instructions) but
you cannot specify the shift amount by a register.

{!} writes back the base register (set the W bit) if! is present.

4.7.9 Examples

STR R1,[R2,R4]! ; Store R1 at R2+R4 (both of which are
 ; registers) and write back address to

; R2.
STR R1,[R2],R4 ; Store R1 at R2 and write back

 ; R2+R4 to R2.
LDR R1,[R2,#16] ; Load R1 from contents of R2+16, but

; don't write back.
LDR R1,[R2,R3,LSL#2] ; Load R1 from contents of R2+R3*4.
LDREQBR1,[R6,#5] ; Conditionally load byte at R6+5 into

; R1 bits 0 to 7, filling bits 8 to 31
; with zeros.

STR R1,PLACE ; Generate PC relative offset to
; address PLACE.

•
PLACE

Instruction Set - LDR, STR

ARM610 Data Sheet4-30

O
p

en
 A

cc
es

s

4.8 Halfword and Signed Data Transfer

(LDRH/STRH/LDRSB/LDRSH)
The instruction is only executed if the condition is true. The various conditions are
defined in ➲Table 4-2: Condition code summary on page 4-6. The instruction encoding
is shown in ➲Figure 4-14: Halfword and signed data transfer with register offset,
below, and ➲Figure 4-15: Halfword and signed data transfer with immediate offset on
page 4-31.

These instructions are used to load or store halfwords of data and also load
sign-extended bytes or halfwords of data. The memory address used in the transfer is
calculated by adding an offset to or subtracting an offset from a base register. The
result of this calculation may be written back into the base register if auto-indexing is
required.

 Figure 4-14: Halfword and signed data transfer with register offset

31 28 27 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

Cond 00010 P U 0 W L Rn Rd 0 0 0 0 1 S H 1 Rm

Offset register
S H

00 = SWP instruction
01 = Unsigned halfwords
10 = Signed byte
11 = Signed halfwords

Source/Destination register
Base register
Load/Store

0 = store to memory
1 = load from memory

Write-back
0 = no write-back
1 = write address into base

Up/Down
0 = down: subtract offset from base
1 = up: add offset to base

Pre/Post indexing
0 = post: add/subtract offset after transfer
1 = pre: add/subtract offset before transfer

Condition field

Instruction Set - LDR, STR

ARM610 Data Sheet 4-31

O
p

en
 A

cc
es

s

 Figure 4-15: Halfword and signed data transfer with immediate offset

4.8.1 Offsets and auto-indexing

The offset from the base may be either a 8-bit unsigned binary immediate value in the
instruction, or a second register. The 8-bit offset is formed by concatenating bits 11 to
8 and bits 3 to 0 of the instruction word, such that bit 11 becomes the MSB and bit 0
becomes the LSB. The offset may be added to (U=1) or subtracted from (U=0) the
base register Rn. The offset modification may be performed either before (pre-indexed,
P=1) or after (post-indexed, P=0) the base register is used as the transfer address.

The W bit gives optional auto-increment and decrement addressing modes. The
modified base value may be written back into the base (W=1), or the old base may be
kept (W=0). In the case of post-indexed addressing, the write back bit is redundant and
is always set to zero, since the old base value can be retained if necessary by setting
the offset to zero. Therefore post-indexed data transfers always write back the modified
base.

The Write-back bit should not be set high (W=1) when post-indexed addressing is
selected.

Immediate Offset
(Low nibble)
S H

00 = SWP instruction
01 = Unsigned halfwords
10 = Signed byte
11 = Signed halfwords

Immediate Offset
(High nibble)
Source/Destination register
Base register
Load/Store

0 = Store to memory
1 = Load from memory

Write-back
0 = No write-back
1 = Write address into base

Up/Down
0 = Down: subtract offset from base
1 = Up: add offset to base

Pre/Post indexing
0 = Post: add/subtract offset after transfer
1 = Pre: add/subtract offset before transfer

31 28 27 25 24 23 22 21 20 19 16 15 12 11 8 7 6 5 4 3 0

Cond 0 0 0 P U 1 W L Rn Rd Offset 1 S H 1 Offset

Instruction Set - LDR, STR

ARM610 Data Sheet4-32

O
p

en
 A

cc
es

s

4.8.2 Halfword load and stores

Setting S=0 and H=1 may be used to transfer unsigned halfwords between an
ARM610 register and memory.

The action of LDRH and STRH instructions is influenced by the BIGEND control
signal. The two possible configurations are described in the section below.

4.8.3 Signed byte and halfword loads

The S bit controls the loading of sign-extended data. When S=1 the H bit selects
between Bytes (H=0) and halfwords (H=1). The L bit should not be set low (Store)
when Signed (S=1) operations have been selected.

The LDRSB instruction loads the selected Byte into bits 7 to 0 of the destination
register and bits 31 to 8 of the destination register are set to the value of bit 7, the sign
bit.

The LDRSH instruction loads the selected halfword into bits 15 to 0 of the destination
register and bits 31 to 16 of the destination register are set to the value of bit 15, the
sign bit.

The action of the LDRSB and LDRSH instructions is influenced by the BIGEND control
signal. The two possible configurations are described in the following section.

4.8.4 Endianness and byte/halfword selection

Little-endian configuration

A signed byte load (LDRSB) expects data on data bus inputs 7 through to 0 if the
supplied address is on a word boundary, on data bus inputs 15 through to 8 if it is a
word address plus one byte, and so on. The selected byte is placed in the bottom 8 bit
of the destination register, and the remaining bits of the register are filled with the sign
bit, bit 7 of the byte. Please see ➲Figure 3-2: Little endian addresses of bytes within
words on page 3-3

A halfword load (LDRSH or LDRH) expects data on data bus inputs 15 through to 0 if
the supplied address is on a word boundary and on data bus inputs 31 through to 16
if it is a halfword boundary, (A[1]=1).The supplied address should always be on a
halfword boundary. If bit 0 of the supplied address is HIGH, the ARM610 will load an
unpredictable value. The selected halfword is placed in the bottom 16 bits of the
destination register. For unsigned halfwords (LDRH), the top 16 bits of the register are
filled with zeros and for signed halfwords (LDRSH) the top 16 bits are filled with the
sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across
the data bus outputs 31 through to 0. The external memory system should activate the
appropriate halfword subsystem to store the data. Note that the address must be
halfword aligned, if bit 0 of the address is HIGH this will cause unpredictable
behaviour.

Instruction Set - LDR, STR

ARM610 Data Sheet 4-33

O
p

en
 A

cc
es

s

Big-endian configuration

A signed byte load (LDRSB) expects data on data bus inputs 31 through to 24 if the
supplied address is on a word boundary, on data bus inputs 23 through to 16 if it is a
word address plus one byte, and so on. The selected byte is placed in the bottom 8
bits of the destination register, and the remaining bits of the register are filled with the
sign bit, bit 7 of the byte. Please see ➲Figure 3-1: Big endian addresses of bytes within
words on page 3-3

A halfword load (LDRSH or LDRH) expects data on data bus inputs 31 through to 16
if the supplied address is on a word boundary and on data bus inputs 15 through to 0
if it is a halfword boundary, (A[1]=1). The supplied address should always be on a
halfword boundary. If bit 0 of the supplied address is HIGH then the ARM610 will load
an unpredictable value. The selected halfword is placed in the bottom 16 bits of the
destination register. For unsigned halfwords (LDRH), the top 16 bits of the register are
filled with zeros and for signed halfwords (LDRSH) the top 16 bits are filled with the
sign bit, bit 15 of the halfword.

A halfword store (STRH) repeats the bottom 16 bits of the source register twice across
the data bus outputs 31 through to 0. The external memory system should activate the
appropriate halfword subsystem to store the data. Note that the address must be
halfword aligned, if bit 0 of the address is HIGH this will cause unpredictable
behaviour.

4.8.5 Use of R15

Writeback should not be specified if R15 is specified as the base register (Rn). When
using R15 as the base register you must remember it contains an address 8 bytes on
from the address of the current instruction.

R15 should not be specified as the register offset (Rm).

When R15 is the source register (Rd) of a halfword store (STRH) instruction, the
stored address will be address of the instruction plus 12.

4.8.6 Data aborts

A transfer to or from a legal address may cause problems for a memory management
system. For instance, in a system which uses virtual memory the required data may
be absent from the main memory. The memory manager can signal a problem by
taking the processor ABORT input HIGH whereupon the Data Abort trap will be taken.
It is up to the system software to resolve the cause of the problem, then the instruction
can be restarted and the original program continued.

4.8.7 Instruction cycle times

Normal LDR(H,SH,SB) instructions take 1S + 1N + 1I

LDR(H,SH,SB) PC take 2S + 2N + 1I incremental cycles.

S,N and I are defined in➲6.2 Cycle Types on page 6-2.

STRH instructions take 2N incremental cycles to execute.

Instruction Set - LDR, STR

ARM610 Data Sheet4-34

O
p

en
 A

cc
es

s

4.8.8 Assembler syntax

<LDR|STR>{cond}<H|SH|SB> Rd,<address>

LDR load from memory into a register

STR Store from a register into memory

{cond} two-character condition mnemonic. See ➲Table 4-2: Condition code
summary on page 4-6.

H Transfer halfword quantity

SB Load sign extended byte (Only valid for LDR)

SH Load sign extended halfword (Only valid for LDR)

Rd is an expression evaluating to a valid register number.

<address> can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using
the PC as a base and a corrected immediate offset to
address the location given by evaluating the expression. This
will be a PC relative, pre-indexed address. If the address is
out of range, an error will be generated.

2 A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

[Rn,{+/-}Rm]{!} offset of +/- contents of
index register

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

[Rn],{+/-}Rm offset of +/- contents of
index register.

Rn and Rm are expressions evaluating to a register number.
If Rn is R15 then the assembler will subtract 8 from the offset
value to allow for ARM610 pipelining. In this case base write-
back should not be specified.

{!} writes back the base register (set the W bit) if ! is present.

Instruction Set - LDR, STR

ARM610 Data Sheet 4-35

O
p

en
 A

cc
es

s

4.8.9 Examples

LDRH R1,[R2,-R3]! ; Load R1 from the contents of the
; halfword address contained in
; R2-R3 (both of which are registers)
; and write back address to R2

STRH R3,[R4,#14] ; Store the halfword in R3 at R14+14
; but don't write back.

LDRSB R8,[R2],#-223 ; Load R8 with the sign extended
; contents of the byte address
; contained in R2 and write back
; R2-223 to R2.

LDRNESH R11,[R0] ; conditionally load R11 with the sign
; extended contents of the halfword
; address contained in R0.

HERE ; Generate PC relative offset to
; address FRED.
; Store the halfword in R5 at address
; FRED.

STRH R5, [PC, #(FRED-HERE-8)]
.

FRED

Instruction Set - LDM, STM

ARM610 Data Sheet4-36

O
p

en
 A

cc
es

s

4.9 Block Data Transfer (LDM, STM)
The instruction is only executed if the condition is true. The various conditions are
defined in ➲Table 4-2: Condition code summary on page 4-6. The instruction encoding
is shown in ➲Figure 4-16: Block data transfer instructions.

Block data transfer instructions are used to load (LDM) or store (STM) any subset of
the currently visible registers. They support all possible stacking modes, maintaining
full or empty stacks which can grow up or down memory, and are very efficient
instructions for saving or restoring context, or for moving large blocks of data around
main memory.

4.9.1 The register list

The instruction can cause the transfer of any registers in the current bank (and
non-user mode programs can also transfer to and from the user bank, see below). The
register list is a 16-bit field in the instruction, with each bit corresponding to a register.
A 1 in bit 0 of the register field will cause R0 to be transferred, a 0 will cause it not to
be transferred; similarly bit 1 controls the transfer of R1, and so on.

Any subset of the registers, or all the registers, may be specified. The only restriction
is that the register list should not be empty.

Whenever R15 is stored to memory the stored value is the address of the STM
instruction plus 12.

 Figure 4-16: Block data transfer instructions

31 28 27 25 24 23 22 21 20 19 16 15 0

Cond 100 P U S W L Rn Register list

Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = No write-back
1 = Write address into base

PSR and force user bit
0 = Do not load PSR or force user mode
1 = Load PSR or force user mode

Up/Down bit
0 = Down; subtract offset from base
1 = Up; add offset from base

Pre/Post indexing bit
0 = Post; add offset after transfer
1 = Pre; add offset before transfer

Condition field

Instruction Set - LDM, STM

ARM610 Data Sheet 4-37

O
p

en
 A

cc
es

s

4.9.2 Addressing modes

The transfer addresses are determined by the contents of the base register (Rn), the
pre/post bit (P) and the up/down bit (U). The registers are transferred in the order
lowest to highest, so R15 (if in the list) will always be transferred last. The lowest
register also gets transferred to/from the lowest memory address. By way of
illustration, consider the transfer of R1, R5 and R7 in the case where Rn=0x1000 and
write back of the modified base is required (W=1). ➲Figure 4-17: Post-increment
addressing, ➲Figure 4-18: Pre-increment addressing, ➲Figure 4-19: Post-decrement
addressing and ➲Figure 4-20: Pre-decrement addressing show the sequence of
register transfers, the addresses used, and the value of Rn after the instruction has
completed.

In all cases, had write back of the modified base not been required (W=0), Rn would
have retained its initial value of 0x1000 unless it was also in the transfer list of a load
multiple register instruction, when it would have been overwritten with the loaded
value.

4.9.3 Address alignment

The address should normally be a word aligned quantity and non-word aligned
addresses do not affect the instruction. However, the bottom 2 bits of the address will
appear on A[1:0] and might be interpreted by the memory system.

 Figure 4-17: Post-increment addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

Instruction Set - LDM, STM

ARM610 Data Sheet4-38

O
p

en
 A

cc
es

s

 Figure 4-18: Pre-increment addressing

 Figure 4-19: Post-decrement addressing

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

Instruction Set - LDM, STM

ARM610 Data Sheet 4-39

O
p

en
 A

cc
es

s

 Figure 4-20: Pre-decrement addressing

4.9.4 Use of the S bit

When the S bit is set in a LDM/STM instruction its meaning depends on whether or not
R15 is in the transfer list and on the type of instruction. The S bit should only be set if
the instruction is to execute in a privileged mode.

LDM with R15 in transfer list and S bit set (Mode changes)

If the instruction is a LDM then SPSR_<mode> is transferred to CPSR at the same
time as R15 is loaded.

STM with R15 in transfer list and S bit set (User bank transfer)

The registers transferred are taken from the User bank rather than the bank
corresponding to the current mode. This is useful for saving the user state on process
switches. Base write-back should not be used when this mechanism is employed.

R15 not in list and S bit set (User bank transfer)

For both LDM and STM instructions, the User bank registers are transferred rather
than the register bank corresponding to the current mode. This is useful for saving the
user state on process switches. Base write-back should not be used when this
mechanism is employed.

When the instruction is LDM, care must be taken not to read from a banked register
during the following cycle (inserting a dummy instruction such as MOV R0, R0 after
the LDM will ensure safety).

0x100C

0x1000

0x0FF4

Rn

1

0x100C

0x1000

0x0FF4

2

R1

0x100C

0x1000

0x0FF4

3

0x100C

0x1000

0x0FF4

4

R1

R7

R5

R1

R5

Rn

Instruction Set - LDM, STM

ARM610 Data Sheet4-40

O
p

en
 A

cc
es

s

4.9.5 Use of R15 as the base

R15 should not be used as the base register in any LDM or STM instruction.

4.9.6 Inclusion of the base in the register list

When write-back is specified, the base is written back at the end of the second cycle
of the instruction. During a STM, the first register is written out at the start of the
second cycle. A STM which includes storing the base, with the base as the first register
to be stored, will therefore store the unchanged value, whereas with the base second
or later in the transfer order, will store the modified value. A LDM will always overwrite
the updated base if the base is in the list.

4.9.7 Data aborts

Some legal addresses may be unacceptable to a memory management system, and
the memory manager can indicate a problem with an address by taking the ABORT
signal HIGH. This can happen on any transfer during a multiple register load or store,
and must be recoverable if ARM610 is to be used in a virtual memory system.

Aborts during STM instructions

If the abort occurs during a store multiple instruction, ARM610 takes little action until
the instruction completes, whereupon it enters the data abort trap. The memory
manager is responsible for preventing erroneous writes to the memory. The only
change to the internal state of the processor will be the modification of the base
register if write-back was specified, and this must be reversed by software (and the
cause of the abort resolved) before the instruction may be retried.

Aborts during LDM instructions

When ARM610 detects a data abort during a load multiple instruction, it modifies the
operation of the instruction to ensure that recovery is possible.

1 Overwriting of registers stops when the abort happens. The aborting load will
not take place but earlier ones may have overwritten registers. The PC is
always the last register to be written and so will always be preserved.

2 The base register is restored, to its modified value if write-back was
requested. This ensures recoverability in the case where the base register is
also in the transfer list, and may have been overwritten before the abort
occurred.

The data abort trap is taken when the load multiple has completed, and the system
software must undo any base modification (and resolve the cause of the abort) before
restarting the instruction.

Instruction Set - LDM, STM

ARM610 Data Sheet 4-41

O
p

en
 A

cc
es

s

4.9.8 Assembler syntax

<LDM|STM>{cond}<FD|ED|FA|EA|IA|IB|DA|DB> Rn{!},<Rlist>{^}

where:

{cond} two character condition mnemonic. See ➲Table 4-2: Condition code
summary on page 4-6.

Rn is an expression evaluating to a valid register number

<Rlist> is a list of registers and register ranges enclosed in {} (e.g. {R0,R2-
R7,R10}).

{!} if present requests write-back (W=1), otherwise W=0

{^} if present set S bit to load the CPSR along with the PC, or force
transfer of user bank when in privileged mode

Addressing mode names

There are different assembler mnemonics for each of the addressing modes,
depending on whether the instruction is being used to support stacks or for other
purposes. The equivalence between the names and the values of the bits in the
instruction are shown in the following table:

FD, ED, FA, EA define pre/post indexing and the up/down bit by reference to the form
of stack required. The F and E refer to a “full” or “empty” stack, i.e. whether a pre-index
has to be done (full) before storing to the stack. The A and D refer to whether the stack
is ascending or descending. If ascending, a STM will go up and LDM down, if
descending, vice-versa.

IA, IB, DA, DB allow control when LDM/STM are not being used for stacks and simply
mean Increment After, Increment Before, Decrement After, Decrement Before.

Name Stack Other L bit P bit U bit

pre-increment load LDMED LDMIB 1 1 1

post-increment load LDMFD LDMIA 1 0 1

pre-decrement load LDMEA LDMDB 1 1 0

post-decrement load LDMFA LDMDA 1 0 0

pre-increment store STMFA STMIB 0 1 1

post-increment store STMEA STMIA 0 0 1

pre-decrement store STMFD STMDB 0 1 0

post-decrement store STMED STMDA 0 0 0

 Table 4-4: Addressing mode names

Instruction Set - LDM, STM

ARM610 Data Sheet4-42

O
p

en
 A

cc
es

s

4.9.9 Examples

LDMFD SP!,{R0,R1,R2} ; Unstack 3 registers.
STMIA R0,{R0-R15} ; Save all registers.
LDMFD SP!,{R15} ; R15 <- (SP),CPSR unchanged.
LDMFD SP!,{R15}^ ; R15 <- (SP), CPSR <- SPSR_mode

; (allowed only in privileged modes).
STMFD R13,{R0-R14}^ ; Save user mode regs on stack

; (allowed only in privileged modes).

These instructions may be used to save state on subroutine entry, and restore it
efficiently on return to the calling routine:

STMED SP!,{R0-R3,R14} ; Save R0 to R3 to use as workspace
; and R14 for returning.

BL somewhere ; This nested call will overwrite R14
LDMED SP!,{R0-R3,R15} ; restore workspace and return.

Instruction Set - SWP

ARM610 Data Sheet 4-43

O
p

en
 A

cc
es

s

4.10 Single Data Swap (SWP)

 Figure 4-21: Swap instruction

The instruction is only executed if the condition is true. The various conditions are
defined in ➲Table 4-2: Condition code summary on page 4-6. The instruction encoding
is shown in ➲Figure 4-21: Swap instruction.

The data swap instruction is used to swap a byte or word quantity between a register
and external memory. This instruction is implemented as a memory read followed by
a memory write which are “locked” together (the processor cannot be interrupted until
both operations have completed, and the memory manager is warned to treat them as
inseparable). This class of instruction is particularly useful for implementing software
semaphores.

The swap address is determined by the contents of the base register (Rn). The
processor first reads the contents of the swap address. Then it writes the contents of
the source register (Rm) to the swap address, and stores the old memory contents in
the destination register (Rd). The same register may be specified as both the source
and destination.

The LOCK output goes HIGH for the duration of the read and write operations to signal
to the external memory manager that they are locked together, and should be allowed
to complete without interruption. This is important in multi-processor systems where
the swap instruction is the only indivisible instruction which may be used to implement
semaphores; control of the memory must not be removed from a processor while it is
performing a locked operation.

4.10.1 Bytes and words

This instruction class may be used to swap a byte (B=1) or a word (B=0) between an
ARM610 register and memory. The SWP instruction is implemented as a LDR followed
by a STR and the action of these is as described in the section on single data transfers.
In particular, the description of big and little-endian configuration applies to the SWP
instruction.

31 28 27 23 22 21 20 19 16 15 12 11 8 7 4 3 0

Cond 00010 B 00 Rn Rd 0000 1001 Rm

Source register
Destination register
Base register
Byte/Word bit

0 = Swap word quantity
1 = Swap byte quantity

Condition field

Instruction Set - SWP

ARM610 Data Sheet4-44

O
p

en
 A

cc
es

s

4.10.2 Use of R15

Do not use R15 as an operand (Rd, Rn or Rs) in a SWP instruction.

4.10.3 Data aborts

If the address used for the swap is unacceptable to a memory management system,
the memory manager can flag the problem by driving ABORT HIGH. This can happen
on either the read or the write cycle (or both), and in either case, the Data Abort trap
will be taken. It is up to the system software to resolve the cause of the problem, then
the instruction can be restarted and the original program continued.

4.10.4 Instruction cycle times

Swap instructions take 1S + 2N +1I incremental cycles to execute, where S,N and I are
as defined in ➲6.2 Cycle Types on page 6-2.

4.10.5 Assembler syntax

<SWP>{cond}{B} Rd,Rm,[Rn]

{cond} two-character condition mnemonic. See ➲Table 4-2:
Condition code summary on page 4-6.

{B} if B is present then byte transfer, otherwise word transfer

Rd,Rm,Rn are expressions evaluating to valid register numbers

4.10.6 Examples

SWP R0,R1,[R2] ; Load R0 with the word addressed by R2, and
; store R1 at R2.

SWPB R2,R3,[R4] ; Load R2 with the byte addressed by R4, and
; store bits 0 to 7 of R3 at R4.

SWPEQ R0,R0,[R1] ; Conditionally swap the contents of the
; word addressed by R1 with R0.

Instruction Set - SWI

ARM610 Data Sheet 4-45

O
p

en
 A

cc
es

s

4.11 Software Interrupt (SWI)
The instruction is only executed if the condition is true. The various conditions are
defined in ➲Table 4-2: Condition code summary on page 4-6. The instruction encoding
is shown in ➲Figure 4-22: Software interrupt instruction, below.

 Figure 4-22: Software interrupt instruction

The software interrupt instruction is used to enter Supervisor mode in a controlled
manner. The instruction causes the software interrupt trap to be taken, which effects
the mode change. The PC is then forced to a fixed value (0x08) and the CPSR is saved
in SPSR_svc. If the SWI vector address is suitably protected (by external memory
management hardware) from modification by the user, a fully protected operating
system may be constructed.

4.11.1 Return from the supervisor

The PC is saved in R14_svc upon entering the software interrupt trap, with the PC
adjusted to point to the word after the SWI instruction. MOVS PC,R14_svc will return
to the calling program and restore the CPSR.

Note that the link mechanism is not re-entrant, so if the supervisor code wishes to use
software interrupts within itself it must first save a copy of the return address and
SPSR.

4.11.2 Comment field

The bottom 24 bits of the instruction are ignored by the processor, and may be used
to communicate information to the supervisor code. For instance, the supervisor may
look at this field and use it to index into an array of entry points for routines which
perform the various supervisor functions.

4.11.3 Instruction cycle times

Software interrupt instructions take 2S + 1N incremental cycles to execute, where S
and N are as defined in ➲6.2 Cycle Types on page 6-2.

31 28 27 24 23 0

Cond 1111 Comment field (ignored by Processor)

Condition field

Instruction Set - SWI

ARM610 Data Sheet4-46

O
p

en
 A

cc
es

s

4.11.4 Assembler syntax

SWI{cond} <expression>

{cond} two character condition mnemonic, ➲Table 4-2: Condition
code summary on page 4-6.

<expression> is evaluated and placed in the comment field (which is
ignored by ARM610).

4.11.5 Examples

SWI ReadC ; Get next character from read stream.
SWI WriteI+”k” ; Output a “k” to the write stream.
SWINE 0 ; Conditionally call supervisor

; with 0 in comment field.

Supervisor code

The previous examples assume that suitable supervisor code exists, for instance:

0x08 B Supervisor ; SWI entry point
EntryTable ; addresses of supervisor routines

 DCD ZeroRtn
 DCD ReadCRtn
 DCD WriteIRtn
 . . .

Zero EQU 0
ReadC EQU 256
WriteI EQU 512

Supervisor

; SWI has routine required in bits 8-23 and data (if any) in
; bits 0-7.
; Assumes R13_svc points to a suitable stack

STMFD R13,{R0-R2,R14} ; Save work registers and return
; address.

LDR R0,[R14,#-4] ; Get SWI instruction.
BIC R0,R0,#0xFF000000 ; Clear top 8 bits.
MOV R1,R0,LSR#8 ; Get routine offset.
ADR R2,EntryTable ; Get start address of entry table.
LDR R15,[R2,R1,LSL#2] ; Branch to appropriate routine.

WriteIRtn ; Enter with character in R0 bits 0-7.

LDMFD R13,{R0-R2,R15}^ ; Restore workspace and return,
; restoring processor mode and flags.

Instruction Set - CDP

ARM610 Data Sheet 4-47

O
p

en
 A

cc
es

s

4.12 Coprocessor Data Operations (CDP)
The instruction is only executed if the condition is true. The various conditions are
defined in ➲Table 4-2: Condition code summary on page 4-6. The instruction encoding
is shown in ➲Figure 4-23: Coprocessor data operation instruction.

This class of instruction is used to tell a coprocessor to perform some internal
operation. No result is communicated back to ARM610, and it will not wait for the
operation to complete. The coprocessor could contain a queue of such instructions
awaiting execution, and their execution can overlap other activity, allowing the
coprocessor and ARM610 to perform independent tasks in parallel.

 Figure 4-23: Coprocessor data operation instruction

4.12.1 The coprocessor fields

Only bit 4 and bits 24 to 31 are significant to ARM610. The remaining bits are used by
coprocessors. The above field names are used by convention, and particular
coprocessors may redefine the use of all fields except CP# as appropriate. The CP#
field is used to contain an identifying number (in the range 0 to 15) for each
coprocessor, and a coprocessor will ignore any instruction which does not contain its
number in the CP# field.

The conventional interpretation of the instruction is that the coprocessor should
perform an operation specified in the CP Opc field (and possibly in the CP field) on the
contents of CRn and CRm, and place the result in CRd.

4.12.2 Instruction cycle times

Coprocessor data operations take 1S + bI incremental cycles to execute, where b is
the number of cycles spent in the coprocessor busy-wait loop.

S and I are as defined in ➲6.2 Cycle Types on page 6-2.

31 28 27 24 23 20 19 16 15 12 11 8 7 5 4 3 0

Cond 1110 CP Opc CRn CRd CP# CP 0 CRm

Coprocessor operand register
Coprocessor information
Coprocessor number
Coprocessor destination register
Coprocessor operand register
Coprocessor operation code
Condition field

Instruction Set - CDP

ARM610 Data Sheet4-48

O
p

en
 A

cc
es

s

4.12.3 Assembler syntax

CDP{cond} p#,<expression1>,cd,cn,cm{,<expression2>}

{cond} two character condition mnemonic. See ➲Table 4-2:
Condition code summary on page 4-6.

p# the unique number of the required coprocessor

<expression1> evaluated to a constant and placed in the CP Opc field

cd, cn and cm evaluate to the valid coprocessor register numbers CRd, CRn
and CRm respectively

<expression2> where present is evaluated to a constant and placed in the
CP field

4.12.4 Examples

CDP p1,10,c1,c2,c3 ; Request coproc 1 to do operation 10
; on CR2 and CR3, and put the result
; in CR1.

CDPEQ p2,5,c1,c2,c3,2 ; If Z flag is set request coproc 2
; to do operation 5 (type 2) on CR2
; and CR3,and put the result in CR1.

Instruction Set - LDC, STC

ARM610 Data Sheet 4-49

O
p

en
 A

cc
es

s

4.13 Coprocessor Data Transfers (LDC, STC)
The instruction is only executed if the condition is true. The various conditions are
defined in ➲Table 4-2: Condition code summary on page 4-6. The instruction encoding
is shown in ➲Figure 4-24: Coprocessor data transfer instructions.

This class of instruction is used to load (LDC) or store (STC) a subset of a
coprocessors’s registers directly to memory. ARM610 is responsible for supplying the
memory address, and the coprocessor supplies or accepts the data and controls the
number of words transferred.

 Figure 4-24: Coprocessor data transfer instructions

4.13.1 The coprocessor fields

The CP# field is used to identify the coprocessor which is required to supply or accept
the data, and a coprocessor will only respond if its number matches the contents of
this field.

The CRd field and the N bit contain information for the coprocessor which may be
interpreted in different ways by different coprocessors, but by convention CRd is the
register to be transferred (or the first register where more than one is to be transferred),
and the N bit is used to choose one of two transfer length options. For instance N=0
could select the transfer of a single register, and N=1 could select the transfer of all the
registers for context switching.

31 28 27 25 24 23 22 21 20 19 16 15 12 11 8 7 0

Cond 1110 P U N W L Rn CRd CP# Offset

Unsigned 8-bit immediate offset
Coprocessor number
Coprocessor source/destination register
Base register
Load/Store bit

0 = Store to memory
1 = Load from memory

Write-back bit
0 = No write-back
1 = Write address into base

Transfer length
Up/Down bit

0 = Down; subtract offset from base
1 = Up; add offset to base

Pre/Post Indexing bit
0 = Post; add offset after transfer
1 = Pre; add offset before transfer

Condition field

Instruction Set - LDC, STC

ARM610 Data Sheet4-50

O
p

en
 A

cc
es

s

4.13.2 Addressing modes

ARM610 is responsible for providing the address used by the memory system for the
transfer, and the addressing modes available are a subset of those used in single data
transfer instructions. Note, however, that the immediate offsets are 8 bits wide and
specify word offsets for coprocessor data transfers, whereas they are 12 bits wide and
specify byte offsets for single data transfers.

The 8-bit unsigned immediate offset is shifted left 2 bits and either added to (U=1) or
subtracted from (U=0) the base register (Rn); this calculation may be performed either
before (P=1) or after (P=0) the base is used as the transfer address. The modified base
value may be overwritten back into the base register (if W=1), or the old value of the
base may be preserved (W=0). Note that post-indexed addressing modes require
explicit setting of the W bit, unlike LDR and STR which always write-back when post-
indexed.

The value of the base register, modified by the offset in a pre-indexed instruction, is
used as the address for the transfer of the first word. The second word (if more than
one is transferred) will go to or come from an address one word (4 bytes) higher than
the first transfer, and the address will be incremented by one word for each subsequent
transfer.

4.13.3 Address alignment

The base address should normally be a word-aligned quantity. The bottom 2 bits of the
address will appear on A[1:0] and might be interpreted by the memory system.

4.13.4 Use of R15

If Rn is R15, the value used will be the address of the instruction plus 8 bytes. Base
write-back to R15 must not be specified.

4.13.5 Data aborts

If the address is legal but the memory manager generates an abort, the data trap will
be taken. The writeback of the modified base will take place, but all other processor
state will be preserved. The coprocessor is partly responsible for ensuring that the
data transfer can be restarted after the cause of the abort has been resolved, and must
ensure that any subsequent actions it undertakes can be repeated when the
instruction is retried.

4.13.6 Instruction cycle times

Coprocessor data transfer instructions take (n-1)S + 2N + bI incremental cycles to
execute, where:

n is the number of words transferred.

b is the number of cycles spent in the coprocessor busy-wait loop.

S, N and I are as defined in ➲6.2 Cycle Types on page 6-2.

Instruction Set - LDC, STC

ARM610 Data Sheet 4-51

O
p

en
 A

cc
es

s

4.13.7 Assembler syntax

<LDC|STC>{cond}{L} p#,cd,<Address>

LDC load from memory to coprocessor

STC store from coprocessor to memory

{L} when present perform long transfer (N=1), otherwise perform short
transfer (N=0)

{cond} two character condition mnemonic. See ➲Table 4-2: Condition code
summary on page 4-6.

p# the unique number of the required coprocessor

cd is an expression evaluating to a valid coprocessor register number
that is placed in the CRd field

<Address> can be:

1 An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using
the PC as a base and a corrected immediate offset to
address the location given by evaluating the expression. This
will be a PC relative, pre-indexed address. If the address is
out of range, an error will be generated.

2 A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

3 A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

{!} write back the base register
(set the W bit) if! is present

Rn is an expression evaluating
to a valid ARM610 register
number.

Note If Rn is R15, the assembler will subtract 8 from the offset value to allow for ARM610
pipelining.

Instruction Set - LDC, STC

ARM610 Data Sheet4-52

O
p

en
 A

cc
es

s

4.13.8 Examples

LDC p1,c2,table ; Load c2 of coproc 1 from address
; table, using a PC relative address.

STCEQL p2,c3,[R5,#24]!; Conditionally store c3 of coproc 2
; into an address 24 bytes up from R5,
; write this address back to R5, and use
; long transfer option (probably to
; store multiple words).

Note Although the address offset is expressed in bytes, the instruction offset field is in
words. The assembler will adjust the offset appropriately.

Instruction Set - MRC, MCR

ARM610 Data Sheet 4-53

O
p

en
 A

cc
es

s

4.14 Coprocessor Register Transfers (MRC, MCR)
The instruction is only executed if the condition is true. The various conditions are
defined in ➲Table 4-2: Condition code summary on page 4-6. The instruction encoding
is shown in ➲Figure 4-25: Coprocessor register transfer instructions.

This class of instruction is used to communicate information directly between ARM610
and a coprocessor. An example of a coprocessor to ARM610 register transfer (MRC)
instruction would be a FIX of a floating point value held in a coprocessor, where the
floating point number is converted into a 32-bit integer within the coprocessor, and the
result is then transferred to ARM610 register. A FLOAT of a 32-bit value in ARM610
register into a floating point value within the coprocessor illustrates the use of ARM610
register to coprocessor transfer (MCR).

An important use of this instruction is to communicate control information directly from
the coprocessor into the ARM610 CPSR flags. As an example, the result of a
comparison of two floating point values within a coprocessor can be moved to the
CPSR to control the subsequent flow of execution.

 Figure 4-25: Coprocessor register transfer instructions

4.14.1 The coprocessor fields

The CP# field is used, as for all coprocessor instructions, to specify which coprocessor
is being called upon.

The CP Opc, CRn, CP and CRm fields are used only by the coprocessor, and the
interpretation presented here is derived from convention only. Other interpretations
are allowed where the coprocessor functionality is incompatible with this one. The
conventional interpretation is that the CP Opc and CP fields specify the operation the
coprocessor is required to perform, CRn is the coprocessor register which is the
source or destination of the transferred information, and CRm is a second coprocessor
register which may be involved in some way which depends on the particular operation
specified.

31 28 27 24 23 21 20 19 16 15 12 11 8 7 5 4 3 0

Cond 1110 CP Opc L CRn Rd CP# CP 1 CRm

Coprocessor operand register
Coprocessor information
Coprocessor number
ARM source/destination register
Coprocessor source/destination
Load/Store bit

0 = Store to coprocessor
1 = Load from coprocessor

Coprocessor operation mode
Condition field

Instruction Set - MRC, MCR

ARM610 Data Sheet4-54

O
p

en
 A

cc
es

s

4.14.2 Transfers to R15

When a coprocessor register transfer to ARM610 has R15 as the destination, bits 31,
30, 29 and 28 of the transferred word are copied into the N, Z, C and V flags
respectively. The other bits of the transferred word are ignored, and the PC and other
CPSR bits are unaffected by the transfer.

4.14.3 Transfers from R15

A coprocessor register transfer from ARM610 with R15 as the source register will store
the PC+12.

4.14.4 Instruction cycle times

MRC instructions take 1S + (b+1)I +1C incremental cycles to execute, where S, I and
C are as defined in ➲6.2 Cycle Types on page 6-2.

MCR instructions take 1S + bI +1C incremental cycles to execute, where b is the
number of cycles spent in the coprocessor busy-wait loop.

4.14.5 Assembler syntax

<MCR|MRC>{cond} p#,<expression1>,Rd,cn,cm{,<expression2>}

MRC move from coprocessor to ARM610 register (L=1)

MCR move from ARM610 register to coprocessor (L=0)

{cond} two character condition mnemonic. See ➲Table 4-2:
Condition code summary on page 4-6.

p# the unique number of the required coprocessor

 <expression1> evaluated to a constant and placed in the CP Opc field

Rd is an expression evaluating to a valid ARM610 register
number

cn and cm are expressions evaluating to the valid coprocessor register
numbers CRn and CRm respectively

<expression2> where present is evaluated to a constant and placed in the
CP field

4.14.6 Examples

MRC p2,5,R3,c5,c6 ; Request coproc 2 to perform operation 5
; on c5 and c6, and transfer the (single
; 32-bit word) result back to R3.

MCR p6,0,R4,c5,c6 ; Request coproc 6 to perform operation 0
; on R4 and place the result in c6.

MRCEQ p3,9,R3,c5,c6,2 ; Conditionally request coproc 3 to
; perform operation 9 (type 2) on c5 and
; c6, and transfer the result back to R3.

Instruction Set - Undefined

ARM610 Data Sheet 4-55

O
p

en
 A

cc
es

s

4.15 Undefined Instruction
The instruction is only executed if the condition is true. The various conditions are
defined in ➲Table 4-2: Condition code summary on page 4-6. The instruction format
is shown in ➲Figure 4-26: Undefined instruction.

 Figure 4-26: Undefined instruction

If the condition is true, the undefined instruction trap will be taken.

Note that the undefined instruction mechanism involves offering this instruction to any
coprocessors which may be present, and all coprocessors must refuse to accept it by
driving CPA and CPB HIGH.

4.15.1 Assembler syntax

The assembler has no mnemonics for generating this instruction. If it is adopted in the
future for some specified use, suitable mnemonics will be added to the assembler.
Until such time, this instruction must not be used.

31 28 27 25 24 5 4 3 0

Cond 011 xxxxxxxxxxxxxxxxxxxx 1 xxxx

Instruction Set - Examples

ARM610 Data Sheet4-56

O
p

en
 A

cc
es

s

4.16 Instruction Set Examples
The following examples show ways in which the basic ARM610 instructions can
combine to give efficient code. None of these methods saves a great deal of execution
time (although they may save some), mostly they just save code.

4.16.1 Using the conditional instructions

Using conditionals for logical OR
CMP Rn,#p ; If Rn=p OR Rm=q THEN GOTO Label.
BEQ Label
CMP Rm,#q
BEQ Label

This can be replaced by

CMP Rn,#p
CMPNE Rm,#q ; If condition not satisfied try

; other test.
BEQ Label

Absolute value
TEQ Rn,#0 ; Test sign
RSBMI Rn,Rn,#0 ; and 2's complement if necessary.

Multiplication by 4, 5 or 6 (run time)
MOV Rc,Ra,LSL#2 ; Multiply by 4,
CMP Rb,#5 ; test value,
ADDCS Rc,Rc,Ra ; complete multiply by 5,
ADDHI Rc,Rc,Ra ; complete multiply by 6.

Combining discrete and range tests
TEQ Rc,#127 ; Discrete test,
CMPNE Rc,#” ”-1 ; range test
MOVLS Rc,#”.” ; IF Rc<=” ” OR Rc=ASCII(127)

; THEN Rc:=”.”

Division and remainder

A number of divide routines for specific applications are provided in source form as
part of the ANSI C library provided with the ARM Cross Development Toolkit, available
from your supplier. A short general purpose divide routine follows.

; Enter with numbers in Ra and Rb.
;

MOV Rcnt,#1 ; Bit to control the division.
Div1 CMP Rb,#0x80000000 ; Move Rb until greater than Ra.

CMPCC Rb,Ra
MOVCC Rb,Rb,ASL#1
MOVCC Rcnt,Rcnt,ASL#1
BCC Div1
MOV Rc,#0

Instruction Set - Examples

ARM610 Data Sheet 4-57

O
p

en
 A

cc
es

s

Div2 CMP Ra,Rb ; Test for possible subtraction.
SUBCS Ra,Ra,Rb ; Subtract if ok,
ADDCS Rc,Rc,Rcnt ; put relevant bit into result
MOVS Rcnt,Rcnt,LSR#1 ; shift control bit
MOVNE Rb,Rb,LSR#1 ; halve unless finished.
BNE Div2

;
; Divide result in Rc,
; remainder in Ra.

Overflow detection in the ARM610

1 Overflow in unsigned multiply with a 32-bit result

UMULL Rd,Rt,Rm,Rn ;3 to 6 cycles
TEQ Rt,#0 ;+1 cycle and a register
BNE overflow

2 Overflow in signed multiply with a 32-bit result

SMULL Rd,Rt,Rm,Rn ;3 to 6 cycles
TEQ Rt,Rd ASR#31 ;+1 cycle and a register
BNE overflow

3 Overflow in unsigned multiply accumulate with a 32-bit result

UMLAL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,#0 ;+1 cycle and a register
BNE overflow

4 Overflow in signed multiply accumulate with a 32-bit result

SMLAL Rd,Rt,Rm,Rn ;4 to 7 cycles
TEQ Rt,Rd, ASR#31 ;+1 cycle and a register
BNE overflow

5 Overflow in unsigned multiply accumulate with a 64-bit result

UMULL Rl,Rh,Rm,Rn ;3 to 6 cycles
ADDS Rl,Rl,Ra1 ;lower accumulate
ADC Rh,Rh,Ra2 ;upper accumulate
BCS overflow ;1 cycle and 2 registers

6 Overflow in signed multiply accumulate with a 64-bit result

SMULL Rl,Rh,Rm,Rn ;3 to 6 cycles
ADDS Rl,Rl,Ra1 ;lower accumulate
ADC Rh,Rh,Ra2 ;upper accumulate
BVS overflow ;1 cycle and 2 registers

Note Overflow checking is not applicable to unsigned and signed multiplies with a 64-bit
result, since overflow does not occur in such calculations.

Instruction Set - Examples

ARM610 Data Sheet4-58

O
p

en
 A

cc
es

s

4.16.2 Pseudo-random binary sequence generator

It is often necessary to generate (pseudo-) random numbers and the most efficient
algorithms are based on shift generators with exclusive-OR feedback rather like a
cyclic redundancy check generator. Unfortunately the sequence of a 32-bit generator
needs more than one feedback tap to be maximal length (i.e. 2^32-1 cycles before
repetition), so this example uses a 33-bit register with taps at bits 33 and 20. The basic
algorithm is newbit:=bit 33 eor bit 20, shift left the 33-bit number and put in newbit at
the bottom; this operation is performed for all the newbits needed (i.e. 32 bits). The
entire operation can be done in 5 S cycles:

; Enter with seed in Ra (32 bits),
 Rb (1 bit in Rb lsb), uses Rc.
;

TST Rb,Rb,LSR#1 ; Top bit into carry
MOVS Rc,Ra,RRX ; 33-bit rotate right
ADC Rb,Rb,Rb ; carry into lsb of Rb
EOR Rc,Rc,Ra,LSL#12 ; (involved!)
EOR Ra,Rc,Rc,LSR#20 ; (similarly involved!)

; new seed in Ra, Rb as before

4.16.3 Multiplication by constant using the barrel shifter

Multiplication by 2^n (1,2,4,8,16,32..)

MOV Ra, Rb, LSL #n

Multiplication by 2^n+1 (3,5,9,17..)

ADDRa,Ra,Ra,LSL #n

Multiplication by 2^n-1 (3,7,15..)

RSB Ra,Ra,Ra,LSL #n

Multiplication by 6

ADD Ra,Ra,Ra,LSL #1; multiply by 3

MOV Ra,Ra,LSL#1; and then by 2

Multiply by 10 and add in extra number

ADD Ra,Ra,Ra,LSL#2; multiply by 5

ADD Ra,Rc,Ra,LSL#1; multiply by 2 and add in next digit

General recursive method for Rb := Ra*C, C a constant:

1 If C even, say C = 2^n*D, D odd:

D=1: MOV Rb,Ra,LSL #n
D<>1: {Rb := Ra*D}

MOV Rb,Rb,LSL #n

Instruction Set - Examples

ARM610 Data Sheet 4-59

O
p

en
 A

cc
es

s

2 If C MOD 4 = 1, say C = 2^n*D+1, D odd, n>1:

D=1: ADD Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

ADD Rb,Ra,Rb,LSL #n

3 If C MOD 4 = 3, say C = 2^n*D-1, D odd, n>1:

D=1: RSB Rb,Ra,Ra,LSL #n
D<>1: {Rb := Ra*D}

RSB Rb,Ra,Rb,LSL #n

This is not quite optimal, but close. An example of its non-optimality is multiply
by 45 which is done by:

RSB Rb,Ra,Ra,LSL#2 ; multiply by 3
RSB Rb,Ra,Rb,LSL#2 ; multiply by 4*3-1 = 11
ADD Rb,Ra,Rb,LSL# 2; multiply by 4*11+1 = 45

rather than by:

ADD Rb,Ra,Ra,LSL#3 ; multiply by 9
ADD Rb,Rb,Rb,LSL#2 ; multiply by 5*9 = 45

4.16.4 Loading a word from an unknown alignment

; enter with address in Ra (32 bits)
; uses Rb, Rc; result in Rd.
; Note d must be less than c e.g. 0,1
;

BIC Rb,Ra,#3 ; get word aligned address
LDMIA Rb,{Rd,Rc} ; get 64 bits containing answer
AND Rb,Ra,#3 ; correction factor in bytes
MOVS Rb,Rb,LSL#3 ; ...now in bits and test if aligned
MOVNE Rd,Rd,LSR Rb ; produce bottom of result word

; (if not aligned)
RSBNE Rb,Rb,#32 ; get other shift amount
ORRNE Rd,Rd,Rc,LSL Rb; combine two halves to get result

Instruction Set - Examples

ARM610 Data Sheet4-60

O
p

en
 A

cc
es

s

ARM610 Data Sheet 5-1

Configuration

This chapter explains how to configure the ARM610.

5.1 Configuration 5-2

5.2 Internal Coprocessor Instructions 5-2

5.3 Registers 5-2

5

Configuration

ARM610 Data Sheet

5-2

5.1 Configuration

The operation and configuration of ARM610 is controlled both directly via coprocessor
instructions and indirectly via the Memory Management Page tables. The coprocessor
instructions manipulate a number of on-chip registers which control the configuration
of the Cache, write buffer, MMU and a number of other configuration options.

To ensure backwards compatibility of future CPUs, all reserved or unused bits in
registers and coprocessor instructions should be programmed to '0'. Invalid registers
must not be read or written. The following bits should be programmed to '0'.

Register 1 bits[31:9]
Register 2 bits[13:0]
Register 5 bits[31:0]
Register 6 bits[11:0]
Register 7 bits[31:0]

Note:

The grey areas in the register and translation diagrams are reserved and should be
programmed 0 for future compatibility.

5.2 Internal Coprocessor Instructions

The on-chip registers may be read using MRC instructions and written using MCR
instructions. These operations are only allowed in non-user modes and the undefined
instruction trap will be taken if accesses are attempted in user mode.

 Figure 5-1: Format of internal coprocessor instructions MRC and MCR

5.3 Registers

ARM610 contains registers which control the cache and MMU operation. These
registers are accessed using CPRT instructions to Coprocessor #15 with the
processor in a privileged mode. Only some of registers 0-7 are valid: an access to an
invalid register will cause neither the access nor an undefined instruction trap, and
therefore should never be carried out; an access to any of the registers 8-15 will cause
the undefined instruction trap to be taken.

1 1 1 0 n 1 1 1 1 1

034578111215161920212324272831

Cond CRn Rd

ARM condition codes ARM610 Register ARM Register

-1 MRC register read
0 MCR register write

Configuration

ARM610 Data Sheet

5-3

5.3.1 Register 0 ID

Register 0 is a read-only identity register that returns the ARM Ltd code for this chip:
0x4156061x.

5.3.2 Register 1 Control

Register 1 is write only and contains control bits. All bits in this register are forced LOW
by reset.

M Bit 0 Enable/disable

0 - on-chip Memory Management Unit turned off
1 - on-chip Memory Management Unit turned on.

A Bit 1 Address Fault Enable/Disable

0 - alignment fault disabled
1 - alignment fault enabled

Register Register reads Register writes

0 ID Register Reserved

1 Reserved Control

2 Reserved Translation Table Base

3 Reserved Domain Access Control

4 Reserved Reserved

5 Fault Status Flush TLB

6 Fault Address Purge TLB

7 Reserved Flush IDC

8-15 Reserved Reserved

 Table 5-1: Cache and MMU control registers

56

0341516232431

41 Revision061

01234567893031

0 S B L D P W AC M

Configuration

ARM610 Data Sheet

5-4

C Bit 2 Cache Enable/Disable

0 - Instruction / data cache turned off
1 - Instruction / data cache turned on

W Bit 3 Write buffer Enable/Disable

0 - Write buffer turned off
1 - Write buffer turned on

P Bit 4 ARM 32/26-bit Program Space

0 - 26-bit Program Space selected
1 - 32-bit Program Space selected

D Bit 5 ARM 32/26-bit Data Space

0 - 26-bit Data Space selected
1 - 32-bit Data Space selected

L Bit 6 Late Abort Timing

0 - Early abort mode selected
1 - Late abort mode selected

B Bit 7 Big/Little Endian

0 - Little-endian operation
1 - Big-endian operation

S Bit 8 System

This bit controls the ARM610 permission system.

5.3.3 Register 2 Translation Table Base

Register 2 is a write-only register which holds the base of the currently active Level
One page table.

5.3.4 Register 3 Domain Access Control

Register 3 is a write-only register which holds the current access control for domains
0 to 15. See

➲

9.14 Domain Access Control

 on page 9-14 for the access permission
definitions and other details.

0131431

Translation Table Base

012345678910111213141516171819202122232425262728293031

0123456789101112131415

Configuration

ARM610 Data Sheet

5-5

5.3.5 Register 4 Reserved

Register 4 is Reserved. Accessing this register has no effect, but should never be
attempted.

5.3.6 Register 5

Read: Fault Status

Reading register 5 returns the status of the last data fault. It is not updated for a
prefetch fault. See

➲

Chapter 9, Memory Management Unit

 for more details. Note that
only the bottom 12 bits are returned. The upper 20 bits will be the last value on the
internal data bus, and therefore will have no meaning. Bits 11:8 are always returned
as zero.

Write: Translation Lookaside Buffer Flush

Writing Register 5 flushes the TLB. (The data written is discarded).

5.3.7 Register 6

Read: Fault Address

Reading register 6 returns the virtual address of the last data fault.

Write: TLB Purge

Writing Register 6 purges the TLB; the data is treated as an address and the TLB is
searched for a corresponding page table descriptor. If a match is found, the
corresponding entry is marked as invalid. This allows the page table descriptors in
main memory to be updated and invalid entries in the on-chip TLB to be purged without
requiring the entire TLB to be flushed.

031

Purge Address

1314

0 0 0 0 Domain Status

03478111231

031

Fault Address

Configuration

ARM610 Data Sheet

5-6

5.3.8 Register 7 IDC Flush

Register 7 is a write-only register. The data written to this register is discarded and the
IDC is flushed.

5.3.9 Registers 8 -15 Reserved

Accessing any of these registers will cause the undefined instruction trap to be taken.

ARM610 Data Sheet 6-1

Instruction and Data Cache (IDC)

This chapter describes the instruction and data cache of the ARM610.

6.1 Introduction 6-2

6.2 Cacheable Bit - C 6-2

6.3 Updateable Bit - U 6-2

6.4 IDC Operation 6-2

6.5 IDC Validity 6-3

6.6 Read-Lock-Write 6-3

6.7 IDC Enable/Disable and Reset 6-4

6

Instruction and Data Cache (IDC)

ARM610 Data Sheet

6-2

6.1 Introduction

ARM610 contains a 4kByte mixed instruction and data cache. The IDC has 256 lines
of 16 bytes (four words), organised as a 64-way set-associative cache, and uses the
virtual addresses generated by the processor core. The IDC is always reloaded a line
at a time (four words). It may be enabled or disabled via the ARM610 Control Register
and is disabled on

nRESET

. The operation of the cache is further controlled by two
bits:

Cacheable

 and

Updateable

, which are stored in the Memory Management Page
Tables (see

➲

Chapter 9, Memory Management Unit

). For this reason, in order to use
the IDC, the MMU must be enabled. The two functions may however be enabled
simultaneously, with a single write to the Control Register.

6.2 Cacheable Bit - C

The

Cacheable

 bit determines whether data being read may be placed in the IDC and
used for subsequent read operations. Typically main memory will be marked as
Cacheable to improve system performance, and I/O space as Non-cacheable to stop
the data being stored in ARM610's cache. For example if the processor is polling a
hardware flag in I/O space, it is important that the processor is forced to read data from
the external peripheral, and not a copy of initial data held in the cache. The

Cacheable

bit can be configured for both pages and sections.

6.3 Updateable Bit - U

The

Updateable

 bit determines whether the data in the cache should be updated
during a write operation to maintain consistency with the external memory. In certain
cases automatic updating of cached data is not required: for instance, when using the
MEMC1a memory manager, a read operation in the address space between
3400000H -3FFFFFFH would access the ROMs, but a write operation in the same
address space would change a MEMC register, and should not affect the cached ROM
data. The

Updateable

bit can only be configured by the Level One descriptor: that is
an entire section or all the pages for a single Level One descriptor share the same
configuration.

6.4 IDC Operation

When the processor performs a read or write operation, the translation entry for that
address is inspected and the state of the cacheable and updateable bits determines
the subsequent action.

6.4.1 Cacheable reads C = 1

The cache is searched for the relevant data; if found in the cache, the data is fed to the
processor using a fast clock cycle (from

FCLK

). If the data is not found in the cache,
an external memory access is initiated to read the appropriate line of data (four words)
from external memory and it is stored in a pseudo-randomly chosen entry in the cache
(a linefetch operation).

Instruction and Data Cache (IDC)

ARM610 Data Sheet

6-3

6.4.2 Uncacheable reads C = 0

The cache is not searched for the relevant data; instead an external memory access
is initiated. No linefetch operation is performed, and the cache is not updated.

6.4.3 Updateable writes U = 1

An external memory access is initiated, and the cache is searched; if the cache holds
a copy of the data from the address being written to, then the cache data is
simultaneously updated.

6.4.4 Non-updateable writes U = 0

An external memory access is initiated, but the cache is not searched and the contents
of the cache are not affected.

6.5 IDC Validity

The IDC operates with virtual addresses, so care must be taken to ensure that its
contents remain consistent with the virtual to physical mappings performed by the
Memory Management Unit. If the Memory Mappings are changed, the IDC validity
must be ensured.

6.5.1 Software IDC flush

The entire IDC may be marked as invalid by writing to the ARM610 IDC Flush Register
(Register 7). The cache will be flushed immediately the register is written, but note that
the following two instruction fetches may come from the cache before the register is
written.

6.5.2 Doubly mapped space

Since the cache works with virtual addresses, it is assumed that every virtual address
maps to a different physical address. If the same physical location is accessed by more
than one virtual address, the cache cannot maintain consistency, since each virtual
address will have a separate entry in the cache, and only one entry will be updated on
a processor write operation. To avoid any cache inconsistencies, both doubly-mapped
virtual addresses should be marked as uncacheable.

6.6 Read-Lock-Write

The IDC treats the Read-Locked-Write instruction as a special case. The read phase
always forces a read of external memory, regardless of whether the data is contained
in the cache. The write phase is treated as a normal write operation (and if marked as
updateable, and the data is already in the cache, the cache will be updated). Externally
the two phases are flagged as indivisible by asserting the

 LOCK

 signal.

Instruction and Data Cache (IDC)

ARM610 Data Sheet

6-4

6.7 IDC Enable/Disable and Reset

The IDC is automatically disabled and flushed on

nRESET

. Once enabled, cacheable
read accesses will cause lines to be placed in the cache. If subsequently disabled, no
new lines will be placed in the cache, and the cache is not searched, but, updateable
write operations will continue to operate, thus maintaining consistency with the
external memory. If the cache is subsequently re-enabled, it must be flushed if data
already in the cache no longer matches that in external memory.

6.7.1 To enable the IDC

To enable the IDC, make sure that the MMU is enabled first by setting bit 0 in Control
Register, then enable the IDC by setting bit 2 in Control Register. The MMU and IDC
may be enabled simultaneously with a single control register write.

6.7.2 To disable the IDC

To disable the IDC clear bit 2 in Control Register.

Note

Updateable writes continue but no linefetches are performed. To fully inhibit the
cache's operation it should be disabled and then flushed to ensure it contains no valid
entries.

ARM610 Data Sheet 7-1

Write Buffer (WB)

This chapter describes the write buffer of the ARM610.

7.1 Introduction 7-2

7.2 Bufferable Bit 7-2

7.3 Write Buffer Operation 7-2

7

Write Buffer (WB)

ARM610 Data Sheet

7-2

7.1 Introduction

The ARM610 write buffer is provided to improve system performance. It can buffer up
to eight words of data, and two independent addresses. It may be enabled or disabled
via the W bit (bit 3) in the ARM610 Control Register and the buffer is disabled and
flushed on reset. The operation of the write buffer is further controlled by one bit, B, or
Bufferable, which is stored in the Memory Management Page Tables. For this reason,
in order to use the write buffer, the MMU must be enabled. The two functions may
however be enabled simultaneously, with a single write to the Control Register. For a
write to use the write buffer, both the W bit in the Control Register, and the B bit in the
corresponding page table must be set.

7.2 Bufferable Bit

This bit controls whether a write operation may or may not use the write buffer.
Typically main memory will be bufferable and I/O space unbufferable. The Bufferable
bit can be configured for both pages and sections.

7.3 Write Buffer Operation

When the CPU performs a write operation, the translation entry for that address is
inspected and the state of the B bit determines the subsequent action. If the write
buffer is disabled via the ARM610 Control Register, bufferable writes are treated in the
same way as unbuffered writes.

7.3.1 Bufferable write

If the write buffer is enabled and the processor performs a write to a bufferable area,
the data is placed in the write buffer at

FCLK

 speeds and the CPU continues
execution. The write buffer then performs the external write in parallel. If however the
write buffer is full (either because there are already eight words of data in the buffer,
or because there is no slot for the new address) then the processor is stalled until there
is sufficient space in the buffer.

7.3.2 Unbufferable writes

If the write buffer is disabled or the CPU performs a write to an unbufferable area, the
processor is stalled until the write buffer empties and the write completes externally,
which may require synchronisation and several external clock cycles.

7.3.3 Read-lock-write

The write phase of a read-lock-write sequence is treated as an Unbuffered write, even
if it is marked as buffered.

Note

A single write requires one address slot and one data slot in the write buffer; a
sequential write of n words requires one address slot and n data slots. The total of 8
data slots in the buffer may be used as required. So for instance there could be one
non-sequential write and one sequential write of seven words in the buffer, and the
processor could continue as normal: a third write or an eighth word in the second write
would stall the processor until the first write had completed.

Write Buffer (WB)

ARM610 Data Sheet

7-3

7.3.4 To enable the write buffer

To enable the write buffer, ensure the MMU is enabled by setting bit 0 in Control
Register, then enable the write buffer by setting bit 3 in Control Register. The MMU and
write buffer may be enabled simultaneously with a single write to the Control Register.

7.3.5 To disable the write buffer

To disable the write buffer, clear bit 3 in Control Register.

Note

Any writes already in the write buffer will complete normally.

Write Buffer (WB)

ARM610 Data Sheet

7-4

ARM610 Data Sheet 8-1

Coprocessors

This chapter introduces the use of coprocessors with the ARM610.

8.1 Overview 8-2

8

Coprocessors

ARM610 Data Sheet

8-2

8.1 Overview

ARM610 has no external coprocessor bus, so it is not possible to add external
coprocessors to this device.

ARM610 does have an internal coprocessor designated #15 for internal control of the
device. If a coprocessor other than #15 is accessed, the CPU will take the undefined
instruction trap.

ARM610 Data Sheet 9-1

Memory Management Unit

This chapter describes the ARM610 Memory Management Unit (MMU).

9.1 Memory Management Unit (MMU) 9-2

9.2 MMU Program Accessible Registers 9-2

9.3 Address Translation 9-3

9.4 Translation Process 9-4

9.5 Level One Descriptor 9-5

9.6 Page Table Descriptor 9-6

9.7 Section Descriptor 9-7

9.8 Translating Section References 9-8

9.9 Level Two Descriptor 9-9

9.10 Translating Small Page References 9-10

9.11 Translating Large Page References 9-11

9.12 MMU Faults and CPU Aborts 9-12

9.13 Fault Address and Fault Status Registers (FAR and FSR) 9-12

9.14 Domain Access Control 9-14

9.15 Fault Checking Sequence 9-15

9.16 External Aborts 9-17

9.17 Interaction of the MMU, IDC and Write Buffer 9-18

9.18 Effect of Reset 9-19

9

Memory Management Unit

ARM610 Data Sheet

9-2

9.1 Memory Management Unit (MMU)

The MMU performs two primary functions: it translates virtual addresses into physical
addresses, and it controls memory access permissions. The MMU hardware required
to perform these functions consists of a Translation Look-aside Buffer (TLB), access
control logic, and translation table walking logic.

The MMU supports memory accesses based on Sections or Pages. Sections are
comprised of 1MB blocks of memory. Two different page sizes are supported: Small
Pages consist of 4Kb blocks of memory and Large Pages consist of 64Kb blocks of
memory. (Large Pages are supported to allow mapping of a large region of memory
while using only a single entry in the TLB). Additional access control mechanisms are
extended within Small Pages to 1Kb Sub-Pages and within Large Pages to 16Kb Sub-
Pages.

The MMU also supports the concept of domains—areas of memory that can be
defined to possess individual access rights. The Domain Access Control Register is
used to specify access rights for up to 16 separate domains.

The TLB caches 32 translated entries. During most memory accesses, the TLB
provides the translation information to the access control logic.

If the TLB contains a translated entry for the virtual address, the access control logic
determines whether access is permitted. If access is permitted, the MMU outputs the
appropriate physical address corresponding to the virtual address. If access is not
permitted, the MMU signals the CPU to abort.

If the TLB misses (ie. does not contain a translated entry for the virtual address), the
translation table walk hardware is invoked to retrieve the translation information from
a translation table in physical memory. Once retrieved, the translation information is
placed into the TLB, possibly overwriting an existing value. The entry to be overwritten
is chosen by cycling sequentially through the TLB locations.

When the MMU is turned off (as happens on reset), the virtual address is output
directly onto the physical address bus.

9.2 MMU Program Accessible Registers

The ARM610 Processor provides several 32-bit registers which determine the
operation of the MMU. The format for these registers is shown in

➲

Figure 0-1: MMU
register summary

 on page -3. A brief description of the registers is provided below.
Each register will be discussed in more detail within the section that describes its use.

Data is written to and read from the MMU's registers using the ARM CPU's MRC and
MCR coprocessor instructions.

Memory Management Unit

ARM610 Data Sheet

9-3

Translation Table Base Register

This holds the physical address of the base of the translation table maintained in main
memory. Note that this base must reside on a 16Kb boundary.

Domain Access Control Register

This consists of sixteen 2-bit fields, each of which defines the access permissions for
one of the sixteen Domains (D15-D0).

Note

The registers not shown are reserved and should not be used.

Fault Status Register

This indicates the domain and type of access being attempted when an abort
occurred. Bits 7:4 specify which of the sixteen domains (D15-D0) was being accessed
when a fault occurred. Bits 3:1 indicate the type of access being attempted. The
encoding of these bits is different for internal and external faults (as indicated by bit 0
in the register) and is shown in

➲

Table 9-4: Priority encoding of fault status

 on page
9-12. A write to this register flushes the TLB.

Fault Address Register

This holds the virtual address of the access which was attempted when a fault
occurred. A write to this register causes the data written to be treated as an address
and, if it is found in the TLB, the entry is marked as invalid. (This operation is known
as a TLB purge). The Fault Status Register and Fault Address Register are only
updated for data faults, not for prefetch faults.

9.3 Address Translation

The MMU translates virtual addresses generated by the CPU into physical addresses
to access external memory, and also derives and checks the access permission.
Translation information, which consists of both the address translation data and the

Domain Access Control

0 Control L D P W AC M

Translation Table Base

0123456789101112131415

0 0 0 0 Domain Status

012345678910111213141516171819202122232425262728293031

Flush TLB

Purge Address

Fault Address

Register

1 write

2 write

3 write

5 read

5 write

6 read

6 write

Fault Status

S B

 Figure 9-1: MMU register summary

Memory Management Unit

ARM610 Data Sheet

9-4

access permission data, resides in a translation table located in physical memory. The
MMU provides the logic needed to traverse this translation table, obtain the translated
address, and check the access permission.

There are three routes by which the address translation (and hence the permission
check) takes place. The route taken depends on whether the address in question has
been marked as a section-mapped access or a page-mapped access; and there are
two sizes of page-mapped access (large pages and small pages). However, the
translation process always starts out in the same way, as described below, with a Level
One fetch. A section-mapped access only requires a Level One fetch, but a page-
mapped access also requires a Level Two fetch.

9.4 Translation Process

9.4.1 Translation Table Base

The translation process is initiated when the on-chip TLB does not contain an entry for
the requested virtual address. The Translation Table Base (TTB) Register points to the
base of a table in physical memory which contains Section and/or Page descriptors.
The 14 low-order bits of the TTB Register are set to zero as illustrated in

➲

Figure 9-2:
Translation table base register

; the table must reside on a 16Kb boundary.

 Figure 9-2: Translation table base register

9.4.2 Level One Fetch

Bits 31:14 of the Translation Table Base register are concatenated with bits 31:20 of
the virtual address to produce a 30-bit address as illustrated in

➲

Figure 9-3: Accessing
the translation table first level descriptors

. This address selects a four-byte translation
table entry which is a First Level Descriptor for either a Section or a Page (bit 1 of the
descriptor returned specifies whether it is for a Section or Page).

0131431

Translation Table Base

Memory Management Unit

ARM610 Data Sheet

9-5

 Figure 9-3: Accessing the translation table first level descriptors

9.5 Level One Descriptor

The Level One Descriptor returned is either a Page Table Descriptor or a Section
Descriptor, and its format varies accordingly. The following figure illustrates the format
of Level One Descriptors.

 Figure 9-4: Level One Descriptors

0192031

031

Table Index Section Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

18
12

First Level Descriptor
031

01234589101112192031

0 Fault

Page

Section

Reserved

0

0 1

1 0

1 1

C B

Domain

DomainAP

Page Table Base Address

Section Base Address U

U

Memory Management Unit

ARM610 Data Sheet

9-6

The two least significant bits indicate the descriptor type and validity, and are
interpreted as shown below.

9.6 Page Table Descriptor

Bits 3:2

 are always written as 0.

Bit 4 Updateable

: indicates that the data in the cache should be updated during a
write operation to maintain consistency with external memory (if the cache is enabled).

Bits 8:5

 specify one of the sixteen possible domains (held in the Domain Access
Control Register) that contain the primary access controls.

Bits 31:10

 form the base for referencing the Page Table Entry. (The page table index
for the entry is derived from the virtual address as illustrated in

➲

Figure 9-7: Small
page translation

 on page 9-10).

If a Page Table Descriptor is returned from the Level One fetch, a Level Two fetch is
initiated as described below.

Value Meaning Notes

 0 0 Invalid Generates a Section Translation Fault

 0 1 Page Indicates that this is a Page Descriptor

 1 0 Section Indicates that this is a Section Descriptor

 1 1 Reserved Reserved for future use

 Table 9-1: Interpreting Level One Descriptor Bits [1:0]

Memory Management Unit

ARM610 Data Sheet

9-7

9.7 Section Descriptor

Bits 4:2 (U,C, & B)

 control the cache- and write-buffer-related functions as follows:

U - Updateable

: indicates that the data in the cache should be updated during a write
operation to maintain consistency with external memory (if the cache is enabled).

C - Cacheable

: indicates that data at this address will be placed in the cache (if the
cache is enabled).

B - Bufferable

: indicates that data at this address will be written through the write
buffer (if the write buffer is enabled).

Bits 8:5

 specify one of the sixteen possible domains (held in the Domain Access
Control Register) that contain the primary access controls.

Bits 11:10 (AP)

 specify the access permissions for this section and are interpreted as
shown in

➲

Table 9-2: Interpreting access permission (AP) Bits

. Their interpretation is
dependent upon the setting of the S bit (Control Register bit 8). Note that the Domain
Access Control specifies the primary access control; the AP bits only have an effect in
client mode. Refer to section on access permissions.

Bits 19:12

 are always written as 0.

Bits 31:20

 form the corresponding bits of the physical address for the 1Mb section.

AP S Supervisor
permissions

User
permissions

Notes

00 0 No Access No Access Any access generates a permission fault

00 1 Read Only No Access Supervisor read only permitted

01 x Read/Write No Access Access allowed only in Supervisor mode

10 x Read/Write Read Only Writes in User mode cause permission fault

11 x Read/Write Read/Write All access types permitted in both modes.

 Table 9-2: Interpreting access permission (AP) Bits

Memory Management Unit

ARM610 Data Sheet

9-8

9.8 Translating Section References

➲

Figure 9-5: Section translation

 illustrates the complete Section translation sequence.
Note that the access permissions contained in the Level One Descriptor must be
checked before the physical address is generated. The sequence for checking access
permissions is described below.

 Figure 9-5: Section translation

0192031

1 0C BDomainAPSection Base Address

031

Table Index Section Index

Virtual Address

Translation Base

01234589101112192031

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

0192031

Section Base Address Section Index

Physical Address
12

20

18
12

U

Memory Management Unit

ARM610 Data Sheet

9-9

9.9 Level Two Descriptor

If the Level One fetch returns a Page Table Descriptor, this provides the base address
of the page table to be used. The page table is then accessed as described in

➲

Figure
9-7: Small page translation

 on page 9-10, and a Page Table Entry, or Level Two
Descriptor, is returned. This in turn may define either a Small Page or a Large Page
access. The figure below shows the format of Level Two Descriptors.

 Figure 9-6: Page Table Entry (Level Two descriptor)

The two least significant bits indicate the page size and validity, and are interpreted as
follows.

Bit 2 B - Bufferable

: indicates that data at this address will be written through the write
buffer (if the write buffer is enabled).

Bit 3 C - Cacheable

: indicates that data at this address will be placed in the IDC (if the
cache is enabled).

Bits 11:4

specify the access permissions (ap3 - ap0) for the four sub-pages and
interpretation of these bits is described earlier in

➲

Table 9-1: Interpreting Level One
Descriptor Bits [1:0]

 on page 9-6.

For large pages,

bits 15:12

 are programmed as 0

Bits 31:12

(small pages) or bits

31:16

 (large pages) are used to form the
corresponding bits of the physical address - the physical page number. (The page
index is derived from the virtual address as illustrated in

➲

Figure 9-7: Small page
translation

 on page 9-10 and

➲

Figure 9-8: Large page translation

 on page 9-11).

01234589101112192031

0 Fault

Large Page

Small Page

Reserved

0

0 1

1 0

1 1

C Bap3

Large Page Base Address

Small Page Base Address

671516

ap3

ap2

ap2

ap1

ap1

ap0

ap0 C B

Value Meaning Notes

 0 0 Invalid Generates a Page Translation Fault

 0 1 Large Page Indicates that this is a 64Kb Page

 1 0 Small Page Indicates that this is a 4 Kb Page

 1 1 Reserved Reserved for future use

 Table 9-3: Interpreting page table entry bits 1:0

Memory Management Unit

ARM610 Data Sheet9-10

9.10 Translating Small Page References
➲Figure 9-7: Small page translation illustrates the complete translation sequence for
a 4Kb Small Page. Page translation involves one additional step beyond that of a
section translation: the Level One descriptor is the Page Table descriptor, and this is
used to point to the Level Two descriptor, or Page Table Entry. (Note that the access
permissions are now contained in the Level Two descriptor and must be checked
before the physical address is generated. The sequence for checking access
permissions is described later.)

 Figure 9-7: Small page translation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

1 0C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

0111231

Page Index

Physical Address

12

8

U

Memory Management Unit

ARM610 Data Sheet 9-11

9.11 Translating Large Page References
➲Figure 9-8: Large page translation illustrates the complete translation sequence for
a 64Kb Large Page. Note that since the upper four bits of the Page Index and low-order
four bits of the Page Table index overlap, each Page Table Entry for a Large Page must
be duplicated 16 times (in consecutive memory locations) in the Page Table.

 Figure 9-8: Large page translation

0192031

031

Table Index Page Index

Virtual Address

Translation Base

1314

Translation Table Base

031

Translation Base

1314

0 0

12

Table Index

First Level Descriptor

18

12

0 1DomainPage Table Base Address

01245891031

0 0Page Table Base Address

01291031

L2 Table Index

1112

L2 Table Index

0 1C Bap3Page Base Address

0123458910111231

Second Level Descriptor
67

ap2 ap1 ap0

Page Base Address

031

Page Index

Physical Address

12

8

1516

1516

1516

U

Memory Management Unit

ARM610 Data Sheet9-12

9.12 MMU Faults and CPU Aborts
The MMU generates four types of faults:

• Alignment

• Translation

• Domain

• Permission

In addition, an external abort may be raised on external data access.

The access control mechanisms of the MMU detect the conditions that produce these
faults. If a fault is detected as the result of a memory access, the MMU will abort the
access and signal the fault condition to the CPU. The MMU is also capable of retaining
status and address information about the abort. The CPU recognises two types of
abort: data aborts and prefetch aborts, and these are treated differently by the MMU.

If the MMU detects an access violation, it will do so before the external memory access
takes place, and it will therefore inhibit the access. External aborts will not necessarily
inhibit the external access, as described in the section on external aborts.

9.13 Fault Address and Fault Status Registers (FAR and FSR)
Aborts resulting from data accesses (data aborts) are acted upon by the CPU
immediately, and the MMU places an encoded 4-bit value FS[3:0], along with the 4-bit
encoded Domain number, in the Fault Status Register (FSR). In addition, the virtual
processor address which caused the data abort is latched into the Fault Address
Register (FAR). If an access violation simultaneously generates more than one source
of abort, they are encoded in the priority given in ➲Table 9-4: Priority encoding of fault
status.

CPU instructions on the other hand are prefetched, so a prefetch abort simply flags
the instruction as it enters the instruction pipeline. Only when (and if) the instruction is
executed does it cause an abort; an abort is not acted upon if the instruction is not
used (ie. it is branched around). Because instruction prefetch aborts may or may not
be acted upon, the MMU status information is not preserved for the resulting CPU
abort; for a prefetch abort, the MMU does not update the FSR or FAR.

The sections that follow describe the various access permissions and controls
supported by the MMU and detail how these are interpreted to generate faults.

Source FS[3210] Domain[3:0] FAR

Highest Write Buffer 00x0 x Note 3

Bus Error (linefetch) Section 0100 valid Note 4

 Page 0110 valid valid

 Bus Error (other) Section 1000 valid valid

 Table 9-4: Priority encoding of fault status

Memory Management Unit

ARM610 Data Sheet 9-13

x is undefined: may read as 0 or 1

Notes:

1 Any abort masked by the priority encoding may be regenerated by fixing the
primary abort and restarting the instruction.

2 In fact this register will contain bits[8:5] of the Level 1 entry which are
undefined, but would encode the domain in a valid entry.

3 The Write Buffer Bus Error is asynchronous and not restartable. The Fault
Address Register reflects the first data operation that could be aborted. The
areas of memory which generate external aborts should not be marked as
bufferable.

4 The entry will be valid if the error was flagged on word 0 of the linefetch.
Otherwise the domain and FAR may be invalid and the cache line may contain
invalid data.

 Page 1010 valid valid

Alignment 00x1 x valid

Bus Error (translation) Level1 1100 x valid

 Level2 1110 valid valid

Translation Section 0101 Note 2 valid

 Page 0111 valid valid

Domain Section 1001 valid valid

 Page 1011 valid valid

Permission Section 1101 valid valid

Lowest Page 1111 valid valid

Source FS[3210] Domain[3:0] FAR

 Table 9-4: Priority encoding of fault status (Continued)

Memory Management Unit

ARM610 Data Sheet9-14

9.14 Domain Access Control
MMU accesses are primarily controlled via domains. There are 16 domains, and each
has a 2-bit field to define it. Two basic kinds of users are supported: Clients and
Managers. Clients use a domain; Managers control the behaviour of the domain. The
domains are defined in the Domain Access Control Register. ➲Figure 9-9: Domain
access control register format illustrates how the 32 bits of the register are allocated
to define the sixteen 2-bit domains.

 Figure 9-9: Domain access control register format

➲Table 9-5: Interpreting access bits in domain access control register defines how the
bits within each domain are interpreted to specify the access permissions.

012345678910111213141516171819202122232425262728293031

0123456789101112131415

Value Meaning Notes

00 No Access Any access will generate a Domain Fault.

01 Client Accesses are checked against the access permission bits in
the Section or Page descriptor.

10 Reserved Reserved. Currently behaves like the no access mode.

11 Manager Accesses are not checked against the access Permission bits
so a Permission fault cannot be generated.

 Table 9-5: Interpreting access bits in domain access control register

Memory Management Unit

ARM610 Data Sheet 9-15

9.15 Fault Checking Sequence
The sequence by which the MMU checks for access faults is slightly different for
Sections and Pages. The figure below illustrates the sequence for both types of
accesses. The sections and figures that follow describe the conditions that generate
each of the faults.

 Figure 9-10: Sequence for checking faults

violation

no access(00)
reserved(10)

Virtual Address

Check Address Alignment

no access(00)
reserved(10)

client(01)client(01)

manager(01)

Check Access
Permissions

Check Access
Permissions

Physical Address

violation

misaligned Alignment
Fault

invalid
Section
Translation
Fault

get Level One Descriptor

Section Page

Section
Domain
Fault

get Page
Table Entry invalid

check Domain Status

Section Page

Page
Domain
Fault

Page
Translation
Fault

sub-Page
Permission
Fault

Section
Permission
Fault

Memory Management Unit

ARM610 Data Sheet9-16

9.15.1 Alignment fault

If Alignment Fault is enabled (bit 1 in Control Register set), the MMU will generate an
alignment fault on any data word access the address of which is not word-aligned
irrespective of whether the MMU is enabled or not; in other words, if either of virtual
address bits [1:0] are not 0. Alignment fault will not be generated on any instruction
fetch, nor on any byte access. If the access generates an alignment fault, the access
sequence will abort without reference to further permission checks.

9.15.2 Translation fault

There are two types of translation fault: section and page.

1 A Section Translation Fault is generated if the Level One descriptor is marked
as invalid. This happens if bits [1:0] of the descriptor are both 0 or both 1.

2 A Page Translation Fault is generated if the Page Table Entry is marked as
invalid. This happens if bits [1:0] of the entry are both 0 or both 1.

9.15.3 Domain fault

There are two types of domain fault: section and page. In both cases the Level One
descriptor holds the 4-bit Domain field which selects one of the sixteen 2-bit domains
in the Domain Access Control Register. The two bits of the specified domain are then
checked for access permissions as detailed in ➲Table 9-2: Interpreting access
permission (AP) Bits on page 9-7. In the case of a section, the domain is checked once
the Level One descriptor is returned, and in the case of a page, the domain is checked
once the Page Table Entry is returned.

If the specified access is either No Access (00) or Reserved (10) then either a Section
Domain Fault or Page Domain Fault occurs.

9.15.4 Permission fault

There are two types of permission fault: section and sub-page. Permission fault is
checked at the same time as Domain fault. If the 2-bit domain field returns client (01),
then the permission access check is invoked as follows:

section
If the Level One descriptor defines a section-mapped access, then the AP bits
of the descriptor define whether or not the access is allowed according to
➲Table 9-2: Interpreting access permission (AP) Bits on page 9-7. Their
interpretation is dependent upon the setting of the S bit (Control Register bit
8). If the access is not allowed, then a Section Permission fault is generated.

sub-page
If the Level One descriptor defines a page-mapped access, then the Level
Two descriptor specifies four access permission fields (ap3..ap0) each
corresponding to one quarter of the page. Hence for small pages, ap3 is
selected by the top 1Kb of the page, and ap0 is selected by the bottom 1Kb of
the page; for large pages, ap3 is selected by the top 16Kb of the page, and
ap0 is selected by the bottom 16Kb of the page. The selected AP bits are then

Memory Management Unit

ARM610 Data Sheet 9-17

interpreted in exactly the same way as for a section (see ➲Table 9-2:
Interpreting access permission (AP) Bits on page 9-7), the only difference
being that the fault generated is a sub-page permission fault.

9.16 External Aborts
In addition to the MMU-generated aborts, ARM610 has an external abort pin which
may be used to flag an error on an external memory access. However, some accesses
aborted in this way are not restartable, so this pin must be used with great care. The
following section describes the restrictions.

The following accesses may be aborted and restarted safely. If any of the following are
aborted the external access will cease on the next cycle. In the case of a read-lock-
write sequence in which the read aborts, the write will not happen.

Uncacheable reads
Unbuffered writes
Level One descriptor fetch
Level Two descriptor fetch
read-lock-write sequence

Cacheable reads (linefetches)

A linefetch may be aborted safely provided the abort is flagged on word 0. In this case,
the IDC will not be updated or corrupted and the access will be restartable. It is not
advisable to flag an abort on any word other than word 0 of a linefetch, as the IDC will
contain a corrupt line, and the instruction may not be restartable. On the external bus,
an externally aborted linefetch will continue to the end as though it had not aborted.

Buffered writes

Buffered writes cannot be safely externally aborted. Because the processor will have
moved on before the external abort is received, this class of abort is not restartable. If
the system does flag this type of abort, then the Fault Status Register will record the
fact, but this is a non-recoverable error, and the machine must be reset. Therefore, the
system should be configured such that it does not do buffered writes to areas of
memory which are capable of flagging an external abort. If a buffered write burst is
externally aborted, then the external write will continue to the end.

Memory Management Unit

ARM610 Data Sheet9-18

9.17 Interaction of the MMU, IDC and Write Buffer
The MMU, IDC and WB may be enabled/disabled independently. However there are
only five valid combinations. There are no hardware interlocks on these restrictions, so
invalid combinations will cause undefined results.

The following procedures must be observed.

To enable the MMU

1 Program the Translation Table Base and Domain Access Control Registers

2 Program Level 1 and Level 2 page tables as required

3 Enable the MMU by setting bit 0 in the Control Register

Note Care must be taken if the translated address differs from the untranslated address, as
the two instructions following the enabling of the MMU will have been fetched using
“flat translation” and enabling the MMU may be considered as a branch with delayed
execution. A similar situation occurs when the MMU is disabled. Consider the following
code sequence:

MOV R1, #0x1
MCR 15,0,R1,0,0 ; Enable MMU
Fetch Flat
Fetch Flat
Fetch Translated

To disable the MMU

1 Disable the WB by clearing bit 3 in the Control Register.

2 Disable the IDC by clearing bit 2 in the Control Register.

3 Disable the MMU by clearing bit 0 in the Control Register.

MMU IDC WB

off off off

on off off

on on off

on off on

on on on

 Figure 9-11: Valid MMU, IDC and write buffer combinations

Memory Management Unit

ARM610 Data Sheet 9-19

Note If the MMU is enabled, then disabled and subsequently re-enabled, the contents of the
TLB will have been preserved. If these are now invalid, the TLB should be flushed
before re-enabling the MMU.

All three functions may be disabled simultaneously.

9.18 Effect of Reset
See ➲3.6 Reset on page 3-10.

Memory Management Unit

ARM610 Data Sheet9-20

ARM610 Data Sheet 10-1

Bus interface

This chapter describes the ARM610 bus interface.

10.1 Introduction 10-2

10.2 ARM610 Cycle Speed 10-2

10.3 Cycle Types 10-2

10.4 Memory Access 10-2

10.5 Read/Write 10-3

10.6 Byte/Word 10-3

10.7 Maximum Sequential Length 10-3

10.8 Memory Access Types 10-5

10.9 ARM610 Cycle Type Summary 10-9

10

Bus interface

ARM610 Data Sheet

10-2

10.1 Introduction

The ARM610 has two input clocks:

FCLK

 and

MCLK

. The bus interface is always
controlled by

MCLK

. The core CPU switches between these two clocks according to
the operation being carried out. For example, if the core CPU is reading data from the
cache it will be clocked by

FCLK

, whereas if it is reading data from uncached external
memory it will be clocked by

MCLK

. The ARM610 control logic ensures that the correct
clock is used internally and automatically switches between the two clocks.

The ARM610 bus interface is designed to operate in synchronous mode. In this mode,
there is a tightly defined relationship between

FCLK

 and

MCLK

.

MCLK

 may only
make transitions on the falling edge of

FCLK

. An amount of jitter between the two
clocks is permitted, and the device will function correctly, but

MCLK

 must not be later
than

FCLK

. Refer to

➲

13.2 Relationship between FCLK and MCLK

 on page 13-2.

10.2 ARM610 Cycle Speed

The bus interface is controlled by

MCLK

, and all timing parameters are referenced with
respect to this clock. The speed of the memory may be controlled in one of two ways.

1 The LOW and HIGH phases of the clock may be stretched.

2

nWAIT

 can be used to insert entire

MCLK

 cycles into the access. When LOW,
this signal maintains the LOW phase of the cycle by gating out

MCLK

.

nWAIT

may only change when

MCLK

 is LOW.

10.3 Cycle Types

There are two basic cycle types performed by an ARM610. These are

 idle

cycles and

memory

 cycles. Idle cycles and memory cycles are combined to perform memory
accesses. The two cycle types are differentiated by the signal

nMREQ

. (

SEQ

 is the
inverse of

nMREQ

, and is provided for backwards compatibility with earlier memory
controllers).

nMREQ

 HIGH indicates an idle cycle, and

nMREQ

 LOW indicates a
memory access. However,

nMREQ

 is pipelined, so that its value determines the type
of the following cycle.

nMREQ

 becomes valid during the LOW phase of the cycle
before the one to which it refers.

The address from ARM610 becomes valid during the HIGH phase of

MCLK

. It is also
pipelined, and its value refers to the following memory access.

10.4 Memory Access

There are two types of memory access. These are

nonsequential

and

sequential

. The
nonsequential cycles occur when a new memory access takes place. A sequential
cycle occurs when:

• the cycle is of the same type as the previous cycle

• the address is one word (four bytes) greater than the previous access

So for example, a single word access consists of a nonsequential access, and a
two-word access consists of a nonsequential access followed by a sequential access.

Bus interface

ARM610 Data Sheet

10-3

Nonsequential accesses consist of an idle cycle followed by a memory cycle, and
sequential accesses consist simply of a memory cycle. In the case of a nonsequential
access, the address is valid throughout the idle cycle, allowing extra time for memory
decoding.

10.5 Read/Write

Memory accesses may be read or write, differentiated by the signal

nRW

. This signal
has the same timing as the address, so is likewise pipelined, and refers to the following
cycle. In the case of a write, the ARM610 outputs data on the data bus during the
memory cycle. It becomes valid during

MCLK

 LOW, and is held until the end of the
cycle. In the case of a read, data is sampled at the end of the memory cycle.

 nRW

 may
not change during a sequential access, so if a read from address A is followed
immediately be a write to address (A+4), the write to address (A+4) will be a
nonsequential access.

10.6 Byte/Word

Likewise, any memory access may be of a word or a byte quantity. These are
differentiated by the signal

nBW

, which also has the same timing as the address, ie. it
becomes valid in the HIGH phase of

MCLK

 in the cycle before the one to which it
refers.

nBW

 LOW indicates a byte access. Again,

nBW

 may not change during
sequential accesses.

10.7 Maximum Sequential Length

As explained above, the ARM610 will perform sequential memory accesses whenever
the cycle is of the same type (ie byte/word, read/write) as the previous cycle, and the
addresses are consecutive. However, sequential accesses are interrupted on a 256
word boundary. This is to allow the MMU to check the translation protection as the
address crosses a sub-page boundary. If a sequential access is performed over a 256
word boundary, the access to word 256 is simply turned into a nonsequential access,
and then further accesses continue sequentially as before.

 Figure 10-1: One word read or write

MCLK

A[31:0]

nMREQ

WRITE
D[31:0]

READ
D[31:0]

Bus interface

ARM610 Data Sheet

10-4

 Figure 10-2: Two word sequential read or write

 Figure 10-3: Two word nonsequential unbuffered accesses

 Figure 10-4: Two word nonsequential buffered writes

MCLK

A[31:0]

nMREQ

nRW, nBW

WRITE
D[31:0]

a1 a+4

READ
D[31:0]

MCLK

A[31:0]

nMREQ

nRW, nBW

WRITE
D[31:0]

READ
D[31:0]

a1 a2

MCLK

A[31:0]

nMREQ

nRW, nBW

WRITE
D[31:0]

READ
D[31:0]

a1 a2

Bus interface

ARM610 Data Sheet

10-5

10.8 Memory Access Types

ARM610 performs many different bus accesses, and all are constructed out of
combinations of nonsequential and sequential accesses. There may be any number of
idle cycles between two other memory accesses. If a memory access is followed by
an idle period on the bus (as opposed to another nonsequential access), the address,
and the signal

nRW

 and

nBW

, will remain at their previous value in order to avoid
unnecessary bus transitions.

The accesses performed by an ARM610 are:

Unbuffered Write See

➲

10.8.1 Unbuffered Writes / Uncacheable Reads

Buffered Write See

➲

10.8.2 Buffered Write

Linefetch See

➲

10.8.3 Linefetch

Level 1 translation fetch See

➲

10.8.4 Translation Fetches

Level 2 translation fetch See

➲

10.8.4 Translation Fetches

Read-Lock-Write sequence See

➲

10.8.5 Read - Lock - Write

10.8.1 Unbuffered Writes / Uncacheable Reads

These are the most basic access types. Apart from the difference between read and
write, they are the same. Each may consist of a single (LDR/STR) or multiple (LDM/
STM) access. A multiple access consists of a nonsequential access followed by a
sequential access. These cycles always reflect the type of the instruction requesting
the cycle (ie. read/write, byte/word).

10.8.2 Buffered Write

The external bus cycle of a buffered write is identical to and indistinguishable from the
bus cycle of an unbuffered write. These cycles always reflect the type (byte/word) of
the instruction requesting the cycle. If several write accesses are stored concurrently
within the write buffer, each access on the bus will start with a nonsequential access.

10.8.3 Linefetch

This appears on the bus as a nonsequential access followed by three sequential
accesses. Linefetch accesses always start on a quad-word boundary, and are always
word accesses. So if the instruction which caused the linefetch was a byte load
instruction (ie. LDRB), the linefetch access will be a word access on the bus.

Bus interface

ARM610 Data Sheet

10-6

 Figure 10-5: Linefetch

10.8.4 Translation Fetches

These accesses are required to obtain the translation data for an access. There are
two types:

Level 1 A Level 1 access is required for a section-mapped memory location.

Level 2 A Level 2 access is required for a page mapped memory location. A
Level 2 access is always preceded by a Level 1 access.

Translation fetches are often immediately followed by a data access. In fact the
translation fetch held up the data access because the translation was not contained in
the Translation Lookaside Buffer (TLB). Translation fetches are always read word
accesses. So if a byte or write (or both) access is not possible because the address is
not contained in the TLB, the access would be preceded by the translation fetch(es),
which will always be word read accesses.

 Figure 10-6: Translation table-walking sequence (write) for page

MCLK

A[31:0]

nMREQ

READ
D[31:0]

a a+4 a+8 a+12

Level 2 Address

MCLK

A[31:0]

nMREQ

nRW

WRITE
D[31:0]

READ
D[31:0]

Level 1 Address Physical Address

Page Table EntryPage Table Descriptor

Write Data

Bus interface

ARM610 Data Sheet

10-7

 Figure 10-7: Translation table-walking sequence (write) for section

10.8.5 Read - Lock - Write

The read-lock-write sequence is generated by a SWP instruction. On the bus it
consists of a read access followed by a write access to the same address, and both
are treated as nonsequential accesses. The cycle is differentiated by the

LOCK

 signal.

LOCK

 has the timing of address, ie. it goes HIGH in the HIGH phase of

MCLK

 at the
start of the read access. However, it always goes LOW at the end of the write access,
even if the following cycle is an idle cycle (unless of course the following access was
a read-lock-write sequence).

 Figure 10-8: Read - locked - write

MCLK

A[31:0]

nMREQ

nRW

WRITE
D[31:0]

READ
D[31:0]

Level 1 Address Physical Address

Section Descriptor

Write Data

MCLK

A[31:0]

nMREQ

D[31:0]

address

LOCK

nRW

writeread

Bus interface

ARM610 Data Sheet

10-8

 Figure 10-9: Use of nWAIT pin to stop ARM610 for 1 MCLK cycle

MCLK

A[31:0]

nMREQ

a a+4 a+8

nWAIT

READ
D[31:0]

Bus interface

ARM610 Data Sheet

10-9

10.9 ARM610 Cycle Type Summary

Operation nRW A[31:0] nMREQ D[31:0]

Idle old old i

Linefetch r a i
r a m
r a+4 m d
r a+8 m d
r a+12 m d
r a+16 m d
r a+20 m d
r a+24 m d
r a+28 m d
r a+12 i d

 Start r/w a i
r/w a m

d
Uncacheable Read /
Unbuffered Write Repeat r/w a+n m

d

End r/w old i

Start w a i
w a m

Buffered Write d

More w a+n m
d

Read
phase

r aL i

r aL m
r aL i d

Write
phase

w aL i

- Unbuff-
ered

w aL m

Read-Lock-Write w aL i d

Write
phase

w aL i

- Buffered w aL m
d

Write
phase

w aL i

- Aborted w aL i

 Table 10-1: Cycle type summary

Bus interface

ARM610 Data Sheet10-10

Key to Cycle Type Summary

r Read (nRW LOW)

r/w applies equally to Read and Write

w Write (nRW HIGH)

old signal remains at previous value

a first Address

a+n next sequential address

aL Read-Lock-Write Address

i Idle cycle (nMREQ HIGH)

m Memory cycle (nMREQ LOW)

d valid data on data bus

Each lineTable 10-1: Cycle type summaryshows the state of the bus interface during
a single MCLK cycle. It illustrates the pipelining of nMREQ and the address. Each
Operation Type section shows the sequence of cycles which make up that type of
access, with each line down the diagram showing successive clock cycles.

The Uncached Read / Unbuffered Write is shown in three sections. The start and end
are always present, with the Repeat section repeated as many times as required when
a multiple access is being performed.

Buffered Writes are also of variable length and consist of the Start section plus as
many consecutive Repeat sections as are necessary.

A swap instruction consists of the Read phase, followed by one of the three possible
Write phases.

Activity on the memory interface is the succession of these access sequences.

ARM610 Data Sheet 11-1

Boundary-Scan Test Interface

This chapter describes the ARM610 boundary-scan test interface.

11.1 Introduction 11-2

11.2 Overview 11-2

11.3 Reset 11-3

11.4 Pullup Resistors 11-3

11.5 Instruction Register 11-3

11.6 Public Instructions 11-3

11.7 Test Data Registers 11-7

11.8 Boundary-Scan Interface Signals 11-10

11

Boundary-Scan Test Interface

ARM610 Data Sheet

11-2

11.1 Introduction

The boundary-scan interface conforms to IEEE Std. 1149.1- 1990,

Standard Test
Access Port and Boundary-Scan Architecture

. Please refer to this for an explanation
of the terms used in this section and for a description of the TAP controller states.

11.2 Overview

The boundary-scan interface provides a means of testing the core of the device when
it is fitted to a circuit board, and a means of driving and sampling all the external pins
of the device irrespective of the core state. This latter function permits testing of both
the device's electrical connections to the circuit board, and (in conjunction with other
devices on the circuit board having a similar interface) testing the integrity of the circuit
board connections between devices. The interface intercepts all external connections
within the device, and each such “cell” is then connected together to form a serial
register (the boundary-scan register). The whole interface is controlled via five
dedicated pins:

TDI

,

TMS

,

TCK

,

 nTRST

 and

TDO

.

➲

Figure 11-1: Test Access Port
(TAP) controller state transitions

 shows the state transitions that occur in the TAP
controller.

 Figure 11-1: Test Access Port (TAP) controller state transitions

Select-IR-Scan

Capture-IR

tms=0

Shift-IR

tms=0

Exit1-IR

tms=1

Pause-IR

tms=0

Exit2-IR

tms=1

Update-IR

tms=1

tms=0

tms=0

tms=1

tms=1

tms=0

Select-DR-Scan

Capture-DR

tms=0

Shift-DR

tms=0

Exit1-DR

tms=1

Pause-DR

tms=0

Exit2-DR

tms=1

Update-DR

tms=1

Test-Logic Reset

Run-Test/Idle

tms=0tms=1

tms=0

tms=0

tms=0

tms=1

tms=1

tms=0

tms=1 tms=1

tms=1

tms=1 tms=1tms=0 tms=0

Boundary-Scan Test Interface

ARM610 Data Sheet

11-3

11.3 Reset

The boundary-scan interface includes a state-machine controller (the TAP controller).
In order to force the TAP controller into the correct state after power-up of the device,
a reset pulse must be applied to the

 nTRST

 pin. If the boundary-scan interface is to
be used,

nTRST

 must be driven LOW, and then HIGH again. If the boundary-scan
interface is not to be used, the

nTRST

 pin may be tied permanently LOW. A clock on

TCK

 is not needed to reset the device.

The action of reset (either a pulse or a DC level) is as follows:

• System mode is selected (ie. the boundary-scan chain does

not

 intercept any
of the signals passing between the pads and the core).

• IDcode mode is selected. If

TCK

 is pulsed, the contents of the ID register will
be clocked out of

TDO

.

11.4 Pullup Resistors

The IEEE 1149.1 standard effectively requires that

TDI

,

TMS

, and

nTRST

 should have
internal pullup resistors. In order to allow ARM610 to consume zero static current,
these resistors are

not

 fitted to this device. Accordingly, the four inputs to the test
interface (the above three signals plus

TCK

) must all be driven to good logic levels to
achieve normal circuit operation.

11.5 Instruction Register

The instruction register is four bits in length.

There is no parity bit. The fixed value loaded into the instruction register during the
CAPTURE-IR controller state is 0001.

11.6 Public Instructions

The following public instructions are supported:

Instruction Binary Code

EXTEST 0000

SAMPLE/PRELOAD 0011

CLAMP 0101

HIGHZ 0111

CLAMPZ 1001

INTEST 1100

IDCODE 1110

BYPASS 1111

 Table 11-1: Public instructions

Boundary-Scan Test Interface

ARM610 Data Sheet

11-4

In the descriptions that follow,

TDI

 and

TMS

 are sampled on the rising edge of

TCK

 and
all output transitions on

TDO

 occur as a result of the falling edge of

TCK

.

11.6.1 EXTEST (0000)

The BS (boundary-scan) register is placed in test mode by the EXTEST instruction.

The EXTEST instruction connects the BS register between

TDI

 and

TDO

.

When the instruction register is loaded with the EXTEST instruction, all the boundary-
scan cells are placed in their test mode of operation.

In the CAPTURE-DR state, inputs from the system pins and outputs from the
boundary-scan output cells to the system pins are captured by the boundary-scan
cells. In the SHIFT-DR state, the previously captured test data is shifted out of the BS
register via the

TDO

 pin, while new test data is shifted in via the

TDI

 pin to the BS
register parallel input latch. In the UPDATE-DR state, the new test data is transferred
into the BS register parallel output latch. This data is applied immediately to the system
logic and system pins. The first EXTEST vector should be clocked into the boundary-
scan register, using the SAMPLE/PRELOAD instruction, prior to selecting INTEST to
ensure that known data is applied to the system logic.

11.6.2 SAMPLE/PRELOAD (0011)

The BS (boundary-scan) register is placed in normal (system) mode by the SAMPLE/
PRELOAD instruction.

The SAMPLE/PRELOAD instruction connects the BS register between

TDI

 and

TDO

.

When the instruction register is loaded with the SAMPLE/PRELOAD instruction, all the
boundary-scan cells are placed in their normal system mode of operation.

In the CAPTURE-DR state, a snapshot of the signals at the boundary-scan cells is
taken on the rising edge of

TCK

. Normal system operation is unaffected. In the
SHIFT-DR state, the sampled test data is shifted out of the BS register via the

TDO

pin, while new data is shifted in via the

TDI

 pin to preload the BS register parallel input
latch. In the UPDATE-DR state, the preloaded data is transferred into the BS register
parallel output latch. This data is not applied to the system logic or system pins while
the SAMPLE/PRELOAD instruction is active. This instruction should be used to
preload the boundary-scan register with known data prior to selecting the INTEST or
EXTEST instructions (see the table below for appropriate guard values to be used for
each boundary-scan cell).

11.6.3 CLAMP (0101)

The CLAMP instruction connects a 1–bit shift register (the BYPASS register) between

TDI

 and

TDO

.

When the CLAMP instruction is loaded into the instruction register, the state of all
output signals is defined by the values previously loaded into the boundary-scan
register. A guarding pattern (specified for this device at the end of this section) should
be pre-loaded into the boundary-scan register using the SAMPLE/PRELOAD
instruction prior to selecting the CLAMP instruction.

Boundary-Scan Test Interface

ARM610 Data Sheet

11-5

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-
DR state, test data is shifted into the bypass register via

TDI

 and out via

TDO

 after a
delay of one

TCK

 cycle. The first bit shifted out will be a zero. The bypass register is
not affected in the UPDATE-DR state.

11.6.4 HIGHZ (0111)

The HIGHZ instruction connects a 1–bit shift register (the BYPASS register) between

TDI

 and

TDO

.

When the HIGHZ instruction is loaded into the instruction register, all outputs are
placed in an inactive drive state.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-
DR state, test data is shifted into the bypass register via

TDI

 and out via

TDO

 after a
delay of one

TCK

 cycle. The first bit shifted out will be a zero. The bypass register is
not affected in the UPDATE-DR state.

11.6.5 CLAMPZ (1001)

The CLAMPZ instruction connects a 1–bit shift register (the BYPASS register)
between

TDI

 and

TDO

.

When the CLAMPZ instruction is loaded into the instruction register, all outputs are
placed in an inactive drive state, but the data supplied to the disabled output drivers is
derived from the boundary-scan cells. The purpose of this instruction is to ensure,
during production testing, that each output driver can be disabled when its data input
is either a 0 or a 1.

A guarding pattern (specified for this device at the end of this section) should be pre-
loaded into the boundary-scan register using the SAMPLE/PRELOAD instruction prior
to selecting the CLAMPZ instruction.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-
DR state, test data is shifted into the bypass register via

TDI

 and out via

TDO

 after a
delay of one

TCK

 cycle. The first bit shifted out will be a zero. The bypass register is
not affected in the UPDATE-DR state.

11.6.6 INTEST (1100)

The BS (boundary-scan) register is placed in test mode by the INTEST instruction.

The INTEST instruction connects the BS register between

TDI

 and

TDO

.

When the instruction register is loaded with the INTEST instruction, all the boundary-
scan cells are placed in their test mode of operation.

In the CAPTURE-DR state, the complement of the data supplied to the core logic from
input boundary-scan cells is captured, while the true value of the data that is output
from the core logic to output boundary- scan cells is captured. CAPTURE-DR captures
the complemented value of the input cells for testability reasons.

Boundary-Scan Test Interface

ARM610 Data Sheet

11-6

In the SHIFT-DR state, the previously captured test data is shifted out of the BS
register via the

TDO

 pin, while new test data is shifted in via the

TDI

 pin to the BS
register parallel input latch. In the UPDATE-DR state, the new test data is transferred
into the BS register parallel output latch. This data is applied immediately to the system
logic and system pins. The first INTEST vector should be clocked into the boundary-
scan register, using the SAMPLE/PRELOAD instruction, prior to selecting INTEST to
ensure that known data is applied to the system logic.

Single-step operation is possible using the INTEST instruction.

11.6.7 IDCODE (1110)

The IDCODE instruction connects the device identification register (or ID register)
between

TDI

 and

TDO

. The ID register is a 32-bit register that allows the manufacturer,
part number and version of a component to be determined through the TAP.

When the instruction register is loaded with the IDCODE instruction, all the boundary-
scan cells are placed in their normal (system) mode of operation.

In the CAPTURE-DR state, the device identification code (specified at the end of this
section) is captured by the ID register. In the SHIFT-DR state, the previously captured
device identification code is shifted out of the ID register via the

TDO

 pin, while data is
shifted in via the

TDI

 pin into the ID register. In the UPDATE-DR state, the ID register
is unaffected.

11.6.8 BYPASS (1111)

The BYPASS instruction connects a 1–bit shift register (the BYPASS register) between

TDI

 and

TDO

.

When the BYPASS instruction is loaded into the instruction register, all the boundary-
scan cells are placed in their normal (system) mode of operation. This instruction has
no effect on the system pins.

In the CAPTURE-DR state, a logic 0 is captured by the bypass register. In the SHIFT-
DR state, test data is shifted into the bypass register via

TDI

 and out via

TDO

 after a
delay of one

TCK

 cycle. The first bit shifted out will be a zero. The bypass register is
not affected in the UPDATE-DR state.

Boundary-Scan Test Interface

ARM610 Data Sheet

11-7

11.7 Test Data Registers

➲

Figure 11-2: Boundary-scan block diagram

 illustrates the structure of the
boundary-scan logic.

 Figure 11-2: Boundary-scan block diagram

ARM
Core Logic

Instruction Register

Instruction Decoder

Device ID Register

Bypass Register

TAP
Controller nTDOEN

nTRST

TCK

TMS

TDI

TDO

BSOUTCELL

BSOUTCELL

BSINCELL
I/O
Cell

BSOUTNENCELL

BSINCELL

BSINENCELL

Boundary-Scan Test Interface

ARM610 Data Sheet

11-8

11.7.1 Bypass register

Purpose: This is a single bit register which can be selected as the path between

TDI
and TDO to allow the device to be bypassed during boundary-scan testing.

Length: 1 bit

Operating Mode: When the BYPASS instruction is the current instruction in the
instruction register, serial data is transferred from TDI to TDO in the SHIFT-DR state
with a delay of one TCK cycle.

There is no parallel output from the bypass register.

A logic 0 is loaded from the parallel input of the bypass register in the CAPTURE-DR
state.

11.7.2 ARM610 Device Identification (ID) Code register

Purpose: This register is used to read the 32-bit device identification code. No
programmable supplementary identification code is provided.

Length: 32 bits

The format of the ID register is as follows:

The Device Identification Code for the Zarlink P610ARM-B/KG/FPNR is 1 EA1D 06F.

Operating Mode: When the IDCODE instruction is current, the ID register is selected
as the serial path between TDI and TDO.

There is no parallel output from the ID register.

The 32-bit device identification code is loaded into the ID register from its parallel
inputs during the CAPTURE-DR state.

11.7.3 ARM610 Boundary-Scan (BS) register

Purpose: The BS register consists of a serially connected set of cells around the
periphery of the device, at the interface between the core logic and the system input/
output pads. This register can be used to isolate the core logic from the pins and then
apply tests to the core logic, or conversely to isolate the pins from the core logic and
then drive or monitor the system pins.

Operating modes: The BS register is selected as the register to be connected between
TDI and TDO only during the SAMPLE/PRELOAD, EXTEST and INTEST instructions.
Values in the BS register are used, but are not changed, during the CLAMP and
CLAMPZ instructions.

In the normal (system) mode of operation, straight-through connections between the
core logic and pins are maintained and normal system operation is unaffected.

011112272831

1Manufacturer IdentityPart NumberVersion

Boundary-Scan Test Interface

ARM610 Data Sheet 11-9

In TEST mode (ie. when either EXTEST or INTEST is the currently selected
instruction), values can be applied to the core logic or output pins independently of the
actual values on the input pins and core logic outputs respectively. On the ARM610,
all of the boundary-scan cells include an update register and thus all of the pins can
be controlled in the above manner. Additional boundary-scan cells are interposed in
the scan chain in order to control the enabling of tristateable buses.

The correspondence between boundary-scan cells and system pins, system direction
controls and system output enables is as shown in ➲Table 11-3: Boundary-scan
signals and pins on page 11-12. The cells are listed in the order in which they are
connected in the boundary-scan register, starting with the cell closest to TDI. All
boundary-scan register cells at input pins can apply tests to the on-chip core logic.

The EXTEST guard values specified in ➲Table 11-3: Boundary-scan signals and pins
on page 11-12 should be clocked into the boundary-scan register (using the SAMPLE/
PRELOAD instruction) before the EXTEST instruction is selected, to ensure that
known data is applied to the core logic during the test. The INTEST guard values
shown in the table below should be clocked into the boundary-scan register (using the
SAMPLE/PRELOAD instruction) before the INTEST instruction is selected to ensure
that all outputs are disabled. These guard values should also be used when new
EXTEST or INTEST vectors are clocked into the boundary-scan register.

The values stored in the BS register after power-up are not defined. Similarly, the
values previously clocked into the BS register are not guaranteed to be maintained
across a Boundary-Scan reset (from forcing nTRST LOW or entering the Test Logic
Reset state).

11.7.4 Output Enable Boundary-Scan cells

The boundary-scan register cells Nendout, Nabe, Ntbe, and Nmse control the output
drivers of tristate outputs as shown in the table below. In the case of OUTEN0 enable
cells (Nendout, Ntbe), loading a 1 into the cell will place the associated drivers into the
tristate state, while in the case of type INEN1 enable cells (Nabe, Nmse), loading a 0
into the cell will tristate the associated drivers.

To put all ARM610 tristate outputs into their high impedance state, a logic 1 should be
clocked into the output enable boundary-scan cells Nendout and Ntbe, and a logic 0
should be clocked into Nabe and Nmse. Alternatively, the HIGHZ instruction can be
used.

If the on-chip core logic causes the drivers controlled by Nendout, for example, to be
tristate, (ie. by driving the signal Nendout HIGH), then a 1 will be observed on this cell
if the SAMPLE/PRELOAD or INTEST instructions are active.

11.7.5 Single-step operation

ARM610 is a static design and there is no minimum clock speed. It can therefore be
single-stepped while the INTEST instruction is selected. This can be achieved by
serialising a parallel stimulus and clocking the resulting serial vectors into the
boundary-scan register. When the boundary-scan register is updated, new test stimuli
are applied to the core logic inputs; the effect of these stimuli can then be observed on
the core logic outputs by capturing them in the boundary-scan register.

Boundary-Scan Test Interface

ARM610 Data Sheet11-10

11.8 Boundary-Scan Interface Signals

 Figure 11-3: Boundary-scan timing

Tbscl Tbsch

TCK

TMS,TDI

TDO

Tbsis

TDO

TDO

Data I/O

Data Out

Data Out

Data Out

Tbsrs

TMS

nTRST

Tbsih
Tbsoh

Tbsod

Tbsoe

Tbsss Tbssh
Tbsdh

Tbsdd

Tbsoz

Tbsde

Tbsdz

Tbsr

Tbsrh

Boundary-Scan Test Interface

ARM610 Data Sheet 11-11

Notes

1 TCK may be stopped indefinitely in either the low or high phase.

2 Assumes a 25pF load on tdo. Output timing derates at 0.072ns/pF of extra
load applied.

3 TDO enable time applies when the TAP controller enters the Shift-DR or Shift-
IR states.

4 TDO disable time applies when the TAP controller leaves the Shift-DR or Shift-
IR states.

5 For correct data latching, the I/O signals (from the core and the pads) must be
setup and held with respect to the rising edge of TCK in the CAPTURE-DR
state of the SAMPLE/PRELOAD, INTEST and EXTEST instructions.

6 Assumes that the data outputs are loaded with the AC test loads (see AC
parameter specification).

Symbol Parameter Min Typ Max Units Notes

Tbscl tck low period 50 ns 1

Tbsch tck high period 50 ns 1

Tbsis tdi,tms setup to [TCr] 10 ns

Tbsih tdi,tms hold from [TCr] 10 ns

Tbsod TCf to tdo valid 30 ns 2

Tbsoh tdo hold time 5 ns 2

Tbsoe tdo enable time 5 ns 2,3

Tbsoz tdo disable time 12.5 ns 2,4

Tbsss I/O signal setup to [TCr] 5 ns 5

Tbssh I/O signal hold from [TCr] 20 ns 5

Tbsdd TCf to data output valid 30 ns

Tbsdh data output hold time 5 ns 6

Tbsde data output enable time 5 ns 6,7

Tbsdz data output disable time 16.5 ns 6,8

Tbsr Reset period 30 ns

Tbsrs tms setup to [TRr] 10 ns 9

Tbsrh tms hold from [TRr] 10 ns 9

 Table 11-2: ARM610 boundary-scan interface timing

Boundary-Scan Test Interface

ARM610 Data Sheet11-12

7 Data output enable time applies when the boundary-scan logic is used to
enable the output drivers.

8 Data output disable time applies when the boundary-scan is used to disable
the output drivers.

9 TMS must be held high as nTRST is taken high at the end of the boundary-
scan reset sequence.

Key

IN Input pad
OUT Output pad
NEN1 Input enable active high
OUTENO Output enable active low
* for Intest Extest/Clamp

No. Cell name Pin Type Output enable
BS cell

Guard value
INEX

1 din23 D[23] IN -

2 dout23 D[23] OUT Nendout

3 din22 D[22] IN -

4 dout22 D[22] OUT Nendout

5 din21 D[21] IN -

6 dout21 D[21] OUT Nendout

7 din20 D[20] IN -

8 dout20 D[20] OUT Nendout

9 din19 D[19] IN -

10 dout19 D[19] OUT Nendout

11 din18 D[18] IN -

12 dout18 D[18] OUT Nendout

13 din17 D[17] IN -

14 dout17 D[17] OUT Nendout

15 din16 D[16] IN -

16 dout16 D[16] OUT Nendout

17 din15 D[15] IN -

18 dout15 D[15] OUT Nendout

19 din14 D[14] IN -

 Table 11-3: Boundary-scan signals and pins

Boundary-Scan Test Interface

ARM610 Data Sheet 11-13

20 dout14 D[14] OUT Nendout

21 din13 D[13] IN -

22 dout13 D[13] OUT Nendout

23 din12 D[12] IN -

24 dout12 D[12] OUT Nendout

25 din11 D[11] IN -

26 dout11 D[11] OUT Nendout

27 din10 D[10] IN -

28 dout10 D[10] OUT Nendout

29 din9 D[9] IN -

30 dout9 D[9] OUT Nendout

31 Nendout - OUTEN0 - 1

32 din8 D[8] IN -

33 dout8 D[8] OUT Nendout

34 din7 D[7] IN -

34 din7 D[7] IN -

35 dout7 D[7] OUT Nendout

36 din6 D[6] IN -

37 dout6 D[6] OUT Nendout

38 din5 D[5] IN -

39 dout5 D[5] OUT Nendout

40 din4 D[4] IN -

41 dout4 D[4] OUT Nendout

42 din3 D[3} IN -

43 dout3 D[3] OUT Nendout

44 din2 D[2] IN -

45 dout2 D[2] OUT Nendout

46 din1 D[1] IN -

No. Cell name Pin Type Output enable
BS cell

Guard value
INEX

 Table 11-3: Boundary-scan signals and pins (Continued)

Boundary-Scan Test Interface

ARM610 Data Sheet11-14

47 dout1 D[1] OUT Nendout

48 din0 D[0] IN -

49 dout0 D[0] OUT Nendout

50 dbe DBE IN -

51 seq SEQ OUT Nmse

52 Nmreq nMREQ OUT Nmse

53 Nmse MSE INEN1 - 0

54 sNa SnA IN -

55 Nwait nWAIT IN -

56 mclk MCLK IN - 0

57 fclk FCLK IN - 0

58 abort ABORT IN -

59 Nreset nRESET IN -

60 testin[16] TESTIN[16] IN - 0

61 testout[2] TESTOUT[2] OUT Ntbe

62 testout[1] TESTOUT[1] OUT Ntbe

63 testout[0] TESTOUT[0] OUT Ntbe

64 Nirq nIRQ IN -

65 Nfiq nFIQ IN -

66 testin[0] TESTIN[0] IN - 0

67 testin[1] TESTIN[1] IN - 0

68 testin[2] TESTIN[2] IN - 0

69 testin[3] TESTIN[3] IN - 0

70 testin[4] TESTIN[4] IN - 0

71 testin[5] TESTIN[5] IN - 0

72 testin[6] TESTIN[6] IN - 0

73 testin[7] TESTIN[7] IN - 0

74 Ntbe - OUTEN0 - 1

No. Cell name Pin Type Output enable
BS cell

Guard value
INEX

 Table 11-3: Boundary-scan signals and pins (Continued)

Boundary-Scan Test Interface

ARM610 Data Sheet 11-15

75 ale ALE IN -

76 a31 A[31] OUT Nabe

77 a30 A[30] OUT Nabe

78 a29 A[29] OUT Nabe

79 a28 A[28] OUT Nabe

80 a27 A[27] OUT Nabe

81 a26 A[26] OUT Nabe

82 a25 A[25] OUT Nabe

83 a24 A[24] OUT Nabe

84 a23 A[23] OUT Nabe

85 a22 A[22] OUT Nabe

86 a21 A[21] OUT Nabe

87 a20 A[20] OUT Nabe

88 a19 A[19] OUT Nabe

89 a18 A[18] OUT Nabe

90 a17 A[17] OUT Nabe

91 a16 A[16] OUT Nabe

92 a15 A[15] OUT Nabe

93 a14 A[14] OUT Nabe

94 a13 A[13] OUT Nabe

95 a12 A[12] OUT Nabe

96 a11 A[11] OUT Nabe

97 a10 A[10] OUT Nabe

98 a09 A[09] OUT Nabe

99 a08 A[08] OUT Nabe

100 a07 A[07] OUT Nabe

101 a06 A[06] OUT Nabe

102 a05 A[05] OUT Nabe

No. Cell name Pin Type Output enable
BS cell

Guard value
INEX

 Table 11-3: Boundary-scan signals and pins (Continued)

Boundary-Scan Test Interface

ARM610 Data Sheet11-16

103 a04 A[04] OUT Nabe

104 a03 A[03] OUT Nabe

105 a02 A[02] OUT Nabe

106 a01 A[01] OUT Nabe

107 a00 A[00] OUT Nabe

108 Nabe ABE INEN1 - 0

109 rlw LOCK OUT Nabe

110 Nbw nBW OUT Nabe

111 Nrw nRW OUT Nabe

112 testin[15] TESTIN[15] IN - 0

113 testin[14] TESTIN[14] IN - 0

114 testin[13] TESTIN[13] IN - 0

115 testin[12] TESTIN[12] IN - 0

116 testin[11] TESTIN[11] IN - 0

117 testin[10] TESTIN[10] IN - 0

118 testin[09] TESTIN[09] IN - 0

119 testin[08] TESTIN[08] IN - 0

120 din31 D[31] IN -

121 dout31 D[31] OUT Nendout

122 din30 D[30] IN -

123 dout30 D[30] OUT Nendout

124 din29 D[29] IN -

125 dout29 D[29] OUT Nendout

126 din28 D[28] IN -

127 dout28 D[28] OUT Nendout

128 din27 D[27] IN -

129 dout27 D[27] OUT Nendout

130 din26 D[26] IN -

No. Cell name Pin Type Output enable
BS cell

Guard value
INEX

 Table 11-3: Boundary-scan signals and pins (Continued)

Boundary-Scan Test Interface

ARM610 Data Sheet 11-17

131 dout26 D[26] OUT Nendout

132 din25 D[25] IN -

133 dout25 D[25] OUT Nendout

134 din24 D[24] IN -

135 dout24 D[24] OUT Nendout

No. Cell name Pin Type Output enable
BS cell

Guard value
INEX

 Table 11-3: Boundary-scan signals and pins (Continued)

Boundary-Scan Test Interface

ARM610 Data Sheet11-18

ARM610 Data Sheet 12-1

DC Parameters

This chapter describes the ARM610 DC parameters.

12.1 Absolute Maximum Ratings 12-2

12.2 DC Operating Conditions 12-2

12.3 DC Characteristics 12-3

12

DC Parameters

ARM610 Data Sheet

12-2

12.1 Absolute Maximum Ratings

Note

These are stress ratings only. Exceeding the absolute maximum ratings may
permanently damage the device. Operating the device at absolute maximum ratings
for extended periods may affect device reliability.

12.2 DC Operating Conditions

Notes

1 Voltages measured with respect to VSS.

2 IT - TTL-level inputs (includes IT and ITOTZ pin types)

3 OCZ - Output, CMOS levels, tri-stateable

Symbol Parameter Min Max Units Notes

VDD Supply voltage VSS-0.3 VSS+7.0 V 1

Vip Voltage applied to any pin VSS-0.3 VDD+0.3 V 1

 Ts Storage temperature -40 125 deg. C 1

 Table 12-1: ARM610 DC maximum ratings

Symbol Parameter Min Max Units Notes

VDD Supply voltage 4.5 5.5 V

Viht IT input HIGH voltage 2.4 VDD V

Vilt IT input LOW voltage 0.0 0.8 V

Vohc OCZ output HIGH voltage 3.5 VDD V

Volc OCZ output LOW voltage 0.0 0.4 V

Ta Ambient operating
temperature

-10 70 deg.C

 Table 12-2: ARM610 DC operating conditions

DC Parameters

ARM610 Data Sheet

12-3

12.3 DC Characteristics

Symbol Parameter Min Max Units

IDD Static Supply current 30

µ

A

Isc Output short circuit current 100 mA

Ilu DC latch-up current 100 mA

Iin IT input leakage current +/- 10

µ

A

Cin Input capacitance 5(typ) pF

ESD HMB model ESD 2 kV

 Table 12-3: ARM610 DC characteristics

DC Parameters

ARM610 Data Sheet

12-4

ARM610 Data Sheet 13-1

AC Parameters

This chapter describes the ARM610 AC parameters.

13.1 Test Conditions 13-2

13.2 Relationship between FCLK and MCLK 13-2

13.3 Main Bus Signals 13-3

13

AC Parameters

ARM610 Data Sheet

13-2

13.1 Test Conditions

The AC timing diagrams presented in this section assume that the outputs of ARM610
have been loaded with the capacitive loads shown in the Test Load column of the table
below; these loads have been chosen as typical of the system in which ARM610 might
be employed. The output pads of ARM610 are CMOS drivers which exhibit a
propagation delay that increases linearly with the increase in load capacitance. An
Output derating figure is given for each output pad, showing the approximate rate of
increase of output time with increasing load capacitance.

13.2 Relationship between FCLK and MCLK

 Figure 13-1: Clock timing relationship

Output signal Test load (pF) Output derating (ns/pF)

A[25:0] 50 0.072

D[31:0] 50 0.072

nR/W 50 0.072

nB/W 50 0.072

LOCK 50 0.072

nMREQ 50 0.072

SEQ 50 0.072

 Table 13-1: ARM610 AC test conditions

Tfckl Tfckh

FCLK

MCLK

Tfmh

Twh

AC Parameters

ARM610 Data Sheet

13-3

Note FCLK

 timings measured at 50% of Vdd.

13.2.1 Disable times

Disable times in this data sheet are specified in the following manner:

 Figure 13-2: Disable times specification

13.2.2 Tald measurement

Tald is the maximum delay allowed in the

ALE

 input transition to guarantee the
address will not change:

 Figure 13-3: Tald measurement

13.3 Main Bus Signals

Symbol Parameter Min Max Unit Note

Tfckl FCLK LOW time 15 ns 1

Tfckh FCLK HIGH time 15 ns 1

Tfmh FCLK - MCLK hold time 18 ns

Tmfs MCLK - FCLK setup 3 ns

 Table 13-2: ARM610 FCLK and MCLK relationship

Driver Input

Disable Time

13ns

2.6V

Output goes Hi Z

MCLK

ALE

A[31:0]

Tald

AC Parameters

ARM610 Data Sheet

13-4

 Figure 13-4: ARM610 main bus timing

Tmckl Tmckh

MCLK

nWAIT

Taddr

Tws Twh

ABE

A[31:0] Tabe Tah Tabz

DBE

Tdbe
Tdbz

D[31:0]

OUT

D[31:0]

IN

Tdoh

Tdih

Tde

Tdout

Tdz

Tdis

ABORT

Tabts

Tabth1 Tabth2

MSE

nMREQ

Tmsh

SEQ

Tmsd

Tmsz Tmse

nBW
LOCK
nRW

ALE

Tale

AC Parameters

ARM610 Data Sheet

13-5

Symbol Parameter Min Max Unit Note

Tmckl MCLK LOW time 26 ns 1

Tmckh MCLK HIGH time 26 ns

Tws nWAIT setup to MCLK 2 ns

Twh nWAIT hold from MCLK 2 ns

Tale address latch enable 12 ns 5

Tabe address bus enable 2 9 ns 2

Tabz address bus disable 20 ns 4

Taddr MCLK to address delay 18 ns 2

Tah address hold time 4 ns 2

Tdbe DBE to data enable 4 12 ns 2

Tde MCLK to data enable 7 ns 2

Tdbz DBE to data disable 16 22 ns 4

Tdz MCLK to data disable 25 ns 4

Tdout data out delay 27 ns 2

Tdoh data out hold 4 ns 2

Tdis data in setup 1 ns

Tdih data in hold 7 ns

Tabts ABORT setup time 4 ns

Tabth1 ABORT hold time 2 ns 3

Tabth2 ABORT hold time 2 ns 3

Tmse nMREQ & SEQ enable 6 ns

Tmsz nMREQ & SEQ disable 21 ns 4

Tmsd nMREQ & SEQ delay 30 ns

Tmsh nMREQ & SEQ hold 4 ns

 Table 13-3: ARM610 FCLK and MCLK relationship

AC Parameters

ARM610 Data Sheet

13-6

Note

1 MCLK timings measured between clock edges at 50% of Vdd.

2 The timings of these buses are measured to TTL levels.

3 Tabth1 is a requirement for ARM610. To ensure compatibility with future
processors, designs should meet Tabth2. Tabth2 is not tested on ARM610.

4 See

➲

Figure 13-2: Disable times specification

 on page 13-3.

5 See

➲

13.2.2 Tald measurement

 on page 13-3.

ARM610 Data Sheet 14-1

Physical details

This chapter gives a detailed physical description of the ARM610.

14.1 Physical Details 14-2

14

Physical details

ARM610 Data Sheet

14-2

14.1 Physical Details

 Figure 14-1: ARM610 144 Pin TQFP mechanical dimensions in mm

View from above

P610ARM-B

Pin 36

Pin 1

Pin 37 Pin 72

Pin 73

Pin 108

Pin 109Pin 144

22.00

20.00

0.5 typ

0.22

1.
40

1.
60

 m
ax

22.00

20.00

ARM610 Data Sheet 15-1

Pinout

This chapter gives the ARM610 pinout details.

15.1 Pinout 15-2

15

Pinout

ARM610 Data Sheet

15-2

15.1 Pinout

Pin Signal Type

1 MSE i

2 nMREQ o

3 SEQ o

4 DBE i

5 Vss2 -

6 Vdd2 -

7 D[0] i/o

8 D[1] i/o

9 D[2] i/o

10 D[3] i/o

11 D[4] i/o

12 D[5] i/o

13 D[6] i/o

14 D[7] i/o

15 D[8] i/o

16 Vss2 -

17 Vdd2 -

18 Vss1 -

19 Vdd1 -

20 D[9] i/o

21 D[10] i/o

22 D[11] i/o

23 D[12] i/o

24 D[13] i/o

25 D[14] i/o

26 D[15] i/o

27 D[16] i/o

28 D[17] i/o

 Table 15-1: ARM610 in 144 pin thin quad flat pack

Pinout

ARM610 Data Sheet

15-3

29 D[18] i/o

30 D[19] i/o

31 Vdd2 -

32 Vss2 -

33 D[20] i/o

34 D[21] i/o

35 D[22] i/o

36 D[23] i/o

37 D[24] i/o

38 D[25] i/o

39 D[26] i/o

40 Vss1 -

41 Vss2 -

42 Vdd2 -

43 D[27] i/o

44 D[28] i/o

45 D[29] i/o

46 D[30] i/o

47 D[31] i/o

48 TDO o

49 TDI i

50 nTRST i

51 Vdd1 -

52 TMS i

53 TCK i

54 n/c -

55 n/c -

56 n/c -

57 n/c -

Pin Signal Type

 Table 15-1: ARM610 in 144 pin thin quad flat pack (Continued)

Pinout

ARM610 Data Sheet

15-4

58 n/c -

59 TESTIN[8] i

60 TESTIN[9] i

61 Vdd1 -

62 Vss1 -

63 TESTIN[10] i

64 TESTIN[11] i

65 TESTIN[12] i

66 TESTIN[13] i

67 TESTIN[14] i

68 TESTIN[15] i

69 Vss2 -

70 Vdd2 -

71 nR/W o

72 nB/W o

73 LOCK o

74 ABE i

75 A[0] o

76 A[1] o

77 A[2] o

78 Vss2 -

79 Vdd2 -

80 A[3] o

81 A[4] o

82 A[5] o

83 A[6] o

84 A[7] o

85 A[8] o

86 A[9] o

Pin Signal Type

 Table 15-1: ARM610 in 144 pin thin quad flat pack (Continued)

Pinout

ARM610 Data Sheet

15-5

87 A[10] o

88 A[11] o

89 A[12] o

90 Vdd2 -

91 Vss1 -

92 Vdd1 -

93 Vss2 -

94 A[13] o

95 A[14] o

96 A[15] o

97 A[16] o

98 A[17] o

99 A[18] o

100 A[19]

101 A[20] o

102 Vdd2 -

103 Vss2 -

104 A[21] o

105 A[22] o

106 A[23] o

107 A[24] o

108 A[25] o

109 A[26] o

110 A[27] o

111 A[28] o

112 Vdd2 -

133 Vss2 -

114 A[29] o

115 A[30] o

Pin Signal Type

 Table 15-1: ARM610 in 144 pin thin quad flat pack (Continued)

Pinout

ARM610 Data Sheet

15-6

116 A[31] o

117 ALE i

118 n/c

119 n/c

120 n/c

121 Vss1 -

122 Vdd1 -

123 TESTIN[7] i

124 TESTIN[6] i

125 TESTIN[5] i

126 TESTIN[4] i

127 TESTIN[3] i

128 TESTIN[2] i

129 TESTIN[1] i

130 TESTIN[0] i

131 nFIQ

132 nIRQ

133 TESTOUT[0] o

134 TESTOUT[1] o

135 TESTOUT[2] o

136 TESTIN[16] i

137 nRESET i

138 ABORT i

139 FCLK i

140 MCLK i

141 Vdd2 -

142 Vss2 -

143 nWAIT i

144 SnA i

Pin Signal Type

 Table 15-1: ARM610 in 144 pin thin quad flat pack (Continued)

ARM610 Data Sheet A-1

Backward Compatibility

This chapter gives an overview of ARM6 backward compatibility.

A.1 Backward Compatibility A-2

A

Backward Compatibility

ARM610 Data Sheet

A-2

A.1 Backward Compatibility

Two of the Control Register bits, prog32 and data32, allow one of three processor
configurations to be selected as follows:

1

26–bit program and data

space

—(prog32 LOW, data32

LOW). This
configuration forces ARM610 to operate like the earlier ARM processors with
26-bit address space. The programmer's model for these processors applies,
but the new instructions to access the CPSR and SPSR registers operate as
detailed elsewhere in this document. In this configuration it is impossible to
select a 32-bit operating mode, and all exceptions (including address
exceptions) enter the exception handler in the appropriate 26-bit mode.

2

26–bit program space and 32–bit data

space

—(prog32 LOW, data32
HIGH). This is the same as the 26-bit program and data space configuration,
but with address exceptions disabled to allow data transfer operations to
access the full 32-bit address space.

3

32–bit program and data

space

—(prog32 HIGH, data32 HIGH). This
configuration extends the address space to 32 bits, introduces major changes
in the programmer's model as described below and provides support for
running existing 26-bit programs in the 32-bit environment.

The fourth processor configuration which is possible (26-bit data space and 32-bit
program space) should not be selected.

When configured for 26–bit program space, ARM8 is limited to operating in one of four
modes known as the 26–bit modes. These modes correspond to the modes of the
earlier ARM processors and are known as:

User26

FIQ26

IRQ26 and

Supervisor26.

These are the normal operating modes in this configuration and the 26-bit modes are
only provided for backwards compatibility to allow execution of programs originally
written for earlier ARM processors.

Purchase of Zarlink’s I

2

C components conveys a licence under the Philips I

2

C Patent rights to use these components in an I

2

C System, provided that the system conforms
to the I

2

C Standard Specification as defined by Philips

Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright 2001, Zarlink Semiconductor Inc. All rights reserved.

 TECHNICAL DOCUMENTATION - NOT FOR RESALE

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively “Zarlink”) is
believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any
such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights
owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in
combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any
order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information
appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or
suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of
use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such
information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or
parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and
materials are sold and services provided subject to Zarlink Semiconductor’s conditions of sale which are available on request.

World Headquarters - Canada

Tel: +1 (613) 592 0200
Fax: +1 (613) 592 1010

North America - West Coast

Tel: (858) 675-3400
Fax: (858) 675-3450

North America - East Coast

Tel: (978) 322-4800
Fax: (978) 322-4888

Asia/Pacific

Tel: +65 333 6193
Fax: +65 333 6192

Europe, Middle East,
and Africa (EMEA)

Tel: +44 (0) 1793 518528
Fax: +44 (0) 1793 518581

http://www.zarlink.com

