| | | | | | | | | F | REVISI | ONS | | | | | | | | | | | |---|---|-----------------------------|---------------|----------------------|----------------------|------------------------|------------------|-------------|----------|----------|-------|-----------|--------------|--------------|--------------|--------------|---------------|--------|---------|-----| | LTR | T | | | | | DESCR | RIPTIO | | 1L V ICI | OING | | | D.A | ATE (YI | R-MO-[| DA) | | APPF | ROVED | | | A | Chan | ann in s | accorda | | | | | | hr | M. A. Frye | | | | | B | Changes in accordance with NOR 5962-R065-93. – drw Revise for 'D' certification. Editorial changes throughout. – dry | | | | | | | | | |)1-11 | | <u> </u> | M. A. Frye | | | | | | | | C | Revis | e for 'D | ' certific | cation. | Editor | rial cha | inges tl | irougho | out. — d | lrw | | | | 99-1 | 0-01 | | F | Raymor | nd Moni | nin | | REV | | | | THE | ORIGIN | NAL FII | RST PA | AGE OF | THIS | DRAW | ING H | AS BEE | EN REF | PLACE | D. | | | | | | | SHEET | $\perp \perp \downarrow$ | | \rightarrow | \longrightarrow | | | | | | | | | | | | | | | | | | REV | | | | - 1 | | | <u> </u> | | | | | | | | | | | | | | | SHEET | | | -+ | ightharpoonup | | | | | | | | | | | | | | | | | | STATE OF A TILLO | ; | | \dashv | REV | | | C | C | C | C | C | C | C | C | C | C 10 | | | | | | REV STATUS OF SHEETS PMIC N/A STA | ANDAR | D. | | SHEE | ET
PAREC | istophe | 1 | 2 | C 3 | C 4 | 5 | 6
EFEN | 7
SE SI | 8
UPPL | 9 | 10 | | _UMB | US | | | OF SHEETS PMIC N/A STA | | UIT | | SHEE
PREP | ET
PARED
Chr | istophe
BY
Ray M | 1 | 2 | | | 5 | 6
EFEN | 7
SE SI | 8
UPPL | 9
.Y CE | 10 | | | US | | | OF SHEETS PMIC N/A STA MICRO DR THIS DRAW | ANDAR
OCIRC
AWING
ING IS AN
USE BY A
ARTMENT
ENCIES O | CUIT AILAB ALL TS F THE | LE - | SHEE
PREP
CHEC | PARED
Chr
CKED | istophe
BY
Ray M | 1 Onnin A. Fry | 2
auch | | 4
MIC | DE | 6
EFEN | SE SI
COL | UPPL
UMBI | 9 SY CEUS, O | NTEF
OHIO | 4321 6 | | | | DSCC FORM 2233 APR 97 5962-E501-99 SHEET 1 OF 10 <u>DISTRIBUTION STATEMENT A</u>. Approved for public release; distribution is unlimited. # 1. SCOPE - 1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A. - 1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example: 1.2.1 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows: | Device type | <u>Generic number</u> | <u>Circuit function</u> | |-------------|-----------------------|---| | 01 | DS1631 | Dual AND peripheral driver, CMOS compatible, open collector | 1.2.2 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows: | Outline letter | Descriptive designator | <u>Terminals</u> | Package style | |----------------|------------------------|------------------|---------------| | G | MACY1-X8 | 8 | Can | | Р | GDIP1-T8 or CDIP2-T8 | 8 | Dual-in-line | - 1.2.3 Lead finish. The lead finish is as specified in MIL-PRF-38535, appendix A. - 1.3 Absolute maximum ratings. | Supply voltage (V _{CC}) | 16 V dc | |---|--| | Input voltage (V _{IN}) | -0.3 V dc to V _{CC} +0.3 V dc | | Output voltage | 56 V dc | | Storage temperature range | | | Maximum power dissipation: 1/ | | | Case G | 787 m W | | Case P | 1133 mW | | Lead temperature (soldering, 10 seconds) | +260°C | | Thermal resistance, junction-to-case (θ _{JC}) | See MIL-STD-1835 | | Junction temperature (T _J) | +175°C | | 1 | | 1.4 Recommended operating conditions. | Case operating temperature range (T _C) | -55°C to +125°C | |--|---------------------| | Operating supply voltage range (V _{CC}) | 4.5 V dc to 15 V dc | 1/ For case P, derate 7.6 mW/°C above +25°C; for case G, derate 5.2 mW/°C above +25°C | STANDARD MICROCIRCUIT DRAWING | SIZE
A | | 5962-88631 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 2 | # 2. APPLICABLE DOCUMENTS 2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DoDISS) and supplement thereto, cited in the solicitation. #### **SPECIFICATION** ## DEPARTMENT OF DEFENSE MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for. ## **STANDARDS** #### DEPARTMENT OF DEFENSE MIL-STD-883 - Test Method Standard Microcircuits. MIL-STD-973 - Configuration Management. MIL-STD-1835 - Interface Standard For Microcircuit Case Outlines. ## **HANDBOOKS** #### DEPARTMENT OF DEFENSE MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings. (Unless otherwise indicated, copies of the specification, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.) 2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained. ## 3. REQUIREMENTS 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used. This drawing has been modified to allow the manufacturer to use the alternate die/fabrication requirements of paragraph A.3.2.2 of MIL-PRF-38535. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-88631 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 3 | - 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein. - 3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.2 herein. - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1. - 3.2.3 Truth table. The truth table shall be as specified on figure 2. - 3.2.4 Test circuits and switching waveforms. The test circuits and switching waveforms shall be as specified on figure 3. - 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range. - 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I. - 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-HDBK-103 (see 6.6 herein). For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device. - 3.5.1 <u>Certification/compliance mark</u>. The compliance mark for device class M shall be a "C" as required in MIL-PRF-38535, Appendix A. For product built in accordance with A.3.2.2 of MIL-PRF-38535, the "D" certification mark shall be used in place of the "C" certification mark. - 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein. - 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing. - 3.8 Notification of change. Notification of change to DSCC-VA shall be required in accordance with MIL-PRF-38535, appendix A. - 3.9 <u>Verification and review</u>. DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer. | STANDARD MICROCIRCUIT DRAWING | SIZE
A | | 5962-88631 | |--------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | C | 4 | | TABLE | Electrical | performance | characteristics. | 1/ | |----------|------------|-------------|-------------------|----| | IADEL I. | Liccincai | penonnance | Gridiacieristics. | 1/ | | Test | Symbol | Conditions -55°C ≤ T _C ≤+125°C unless otherwise specified | Group A
subgroups | Device
type | Liı | mits | Unit | |---------------------------|-----------------|--|----------------------|----------------|------|--------|------------------| | | | | | | Min | Max | | | High level input voltage | V _{IH} | V _{CC} = 5 V, See figure 3 | 1, 2, 3 | 01 | 3.5 | | V | | | | V _{CC} = 10 V, See figure 3 | | | 8.0 | | | | | | V _{CC} = 15 V, See figure 3 | | | 12.5 | | | | Low level input voltage | V⊩ | V _{CC} = 5 V, See figure 3 | 1, 2, 3 | 01 | | 1.5 | V | | | | V _{CC} = 10 V, See figure 3 | | | | 2.0 | | | | | V _{CC} = 15 V, See figure 3 | | | | 2.5 | | | High level output current | Іон | V _{IN} = 15 V (all inputs), | 1, 2, 3 | 01 | | 250 | μΑ | | | | V _{CC} = 15 V, V _{OUT} = 54 V | | | | | | | | | See figure 3 | | | | | | | Low level output voltage | V _{OL} | $V_{IN} = 1.5 \text{ V}$, other inputs = 4.5 V | 1, 2, 3 | 01 | | 1.1 | V | | | | $V_{CC} = 4.5 \text{ V}, I_{OL} = 100 \text{ mA}$ | | | | | | | | | See figure 3 | | | | | | | | | $V_{IN} = 1.5 \text{ V}$, other inputs = 4.5 V | | | | 1.4 | | | | | $V_{CC} = 4.5 \text{ V}, I_{OL} = 300 \text{ mA}$ | | | | | | | | | See figure 3 | | | | | | | High level input current | I _{IH} | $V_{IN} = 15 \text{ V}, V_{CC} = 15 \text{ V},$ | 1, 2, 3 | 01 | | 10 | <u>μA</u> | | | | Other input of driver = 0.0 V | | | | | | | | | See figure 3 | | | | | | | Low level input current | I₁∟ | $V_{IN} = 0.4 \text{ V}, V_{CC} = 15 \text{ V},$ | 1, 2, 3 | 01 | | -360 | <u>μ</u> Α | | | | Other input of driver = 15 V | | | | | | | | | See figure 3 | | | | | | | | | $V_{IN} = 0.4 \text{ V}, V_{CC} = 5 \text{ V},$ | | | | -115.5 | | | | | Other input of driver = 5 V, | | | | | | | | | See figure 3 | | | | | | | High level breakdown | V _{OH} | V _{CC} = 15 V, I _{OH} = 250 μA | 1, 2, 3 | 01 | 56 | | V | | voltage | | See figure 3 | | | | | | | Functional tests | | See 4.3.1c | 7, 8 | 01 | | | | See footnotes at end of table. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-88631 | |---|------------------|---------------------|----------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 5 | TABLE I. <u>Electrical performance characteristics</u> – continued. <u>1</u>/ | Test | Symbol | Conditions
-55°C ≤ T _C ≤+125°C
unless otherwise specified | Group A
subgroups | Device
type | Limits | | Unit | |------------------------|------------------|--|----------------------|----------------|--------|------|------| | | | | | | Min | Max | | | Power supply current | Іссн | $V_{IN} = 5 V \text{ (all inputs)},$ | 1, 2, 3 | 01 | | 3 | mA | | | | V _{CC} = 5 V, See figure 3 | | | | | | | | | V _{IN} = 15 V (all inputs), | | | | 10 | | | | | V _{CC} = 15 V, See figure 3 | | | | | | | | Iccl | V _{IN} = 0 V (all inputs), | | | | 11 | | | | | V _{CC} = 5 V, See figure 3 | | | | | | | | | V _{IN} = 0 V (all inputs), | | | | 20 | | | | | V _{CC} = 15 V, See figure 3 | | | | | | | Propagation delay time | t _{PHL} | V _{CC} = 5 V, C _L = 15 pF, | 9 | 01 | .01 | 1.50 | μS | | | | $V_L = 10 \text{ V}, R_L = 50\Omega \text{ or}$ | 10, 11 | | .01 | 1.88 | | | | t _{PLH} | equivalent, See figure 3 | 9 | | .01 | 1.20 | | | | | <u>2</u> / | 10, 11 | | .01 | 1.50 | | ^{1/} Power dissipation must be externally controlled at elevated temperatures (+25°C and +125°C). 2/ The limits specified for subgroups 10 and 11 are guaranteed but not tested. | Case | C and D | |----------------------|-----------------| | outlines
Terminal | G and P | | number | Pin | | | | | 1 | A1 | | 2 | B1 | | - | | | 3 | X1 | | 4 | GND | | 4 | GND | | 5 | X2 | | | _ | | 6 | A2 | | 7 | B2 | | 8 | V _{CC} | FIGURE 1. Terminal connections. | Inpu | uts | Output | |------|-----|--------| | Α | В | × | | L | L | L | | L | Н | L | | Н | 1 | _ | | н | Н | -
Н | FIGURE 2. Truth table. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-88631 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 6 | Test table | Input under test | Other input | Output | | |------------------|-----------------|-----------------|-----------------| | | | Apply | Measure | | V _{IH} | V _{IH} | Іон | V _{OH} | | V _{IL} | V _{CC} | I _{OL} | V _{OL} | $V_{\text{IH}},\ V_{\text{IL}},\ test.$ FIGURE 3. <u>Test circuits and switching waveforms</u>. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-88631 | |---|------------------|---------------------|----------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 7 | # NOTES: - 1. The pulse generator has the following characteristics: PRR = 500 kHz, Z_{OUT} = 50Ω - 2. C_L includes probe and jig capacitance. - 3. I_{IH} and I_{IL} test, each input is tested separately. - 4. Icc test, both gates are tested simultaneously. FIGURE 3. <u>Test circuits and switching waveforms</u> - continued. | STANDARD MICROCIRCUIT DRAWING | SIZE
A | | 5962-88631 | |---|------------------|---------------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000 | | REVISION LEVEL
C | SHEET 8 | # 4. QUALITY ASSURANCE PROVISIONS - 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A. - 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply: - a. Burn-in test, method 1015 of MIL-STD-883. - (1) Test condition A, B, C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883. - (2) $T_A = +125^{\circ} C$, minimum. - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer. TABLE II. Electrical test requirements. | MIL-STD-883 test requirements | Subgroups
(in accordance with
MIL-STD-883, method 5005,
table I) | |--|---| | Interim electrical parameters (method 5004) | 1 | | Final electrical test parameters (method 5004) | 1*, 2, 3, 9 | | Group A test requirements (method 5005) | 1, 2, 3, 7, 8, 9, 10, 11 | | Groups C and D end-point electrical parameters (method 5005) | 1, 2, 3 | ^{*} PDA applies to subgroup 1. 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply. # 4.3.1 Group A inspection. - a. Tests shall be as specified in table II herein. - b. Subgroups 4, 5, and 6 in table I, method 5005 of MIL-STD-883 shall be omitted. - c. Subgroups 7 and 8 shall include verification of the truth table. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-88631 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | C | 9 | ## 4.3.2 Groups C and D inspections. - a. End-point electrical parameters shall be as specified in table II herein. - b. Steady-state life test conditions, method 1005 of MIL-STD-883. - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883. - (2) $T_A = +125^{\circ} C$, minimum. - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883. #### 5. PACKAGING - 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A. - 6. NOTES - 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes. - 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing. - 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal. - 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0525. - 6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0674. - 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA. | STANDARD
MICROCIRCUIT DRAWING | SIZE
A | | 5962-88631 | |----------------------------------|------------------|----------------|------------| | DEFENSE SUPPLY CENTER COLUMBUS | | REVISION LEVEL | SHEET | | COLUMBUS, OHIO 43216-5000 | | C | 10 | # STANDARD MICROCIRCUIT DRAWING BULLETIN DATE: 99-10-01 Approved sources of supply for SMD 5962-88631 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 during the next revision. MIL-HDBK-103 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of MIL-HDBK-103. | Standard
microcircuit drawing
PIN <u>1</u> / | Vendor
CAGE
number | Vendor
similar
PIN <u>2</u> / | |--|--------------------------|-------------------------------------| | 5962-8863101GA | <u>3</u> / | DS1631H/883 | | 5962-8863101PA | 0EU86 | AS1631C8/883C | - 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability. - 2/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing. - 3/ Not available from an approved source. Vendor CAGE Vendor name number and address OEU86 Austin Semiconductor Inc. 8701 Cross Park Dr. Austin, TX 78754-4566 The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.