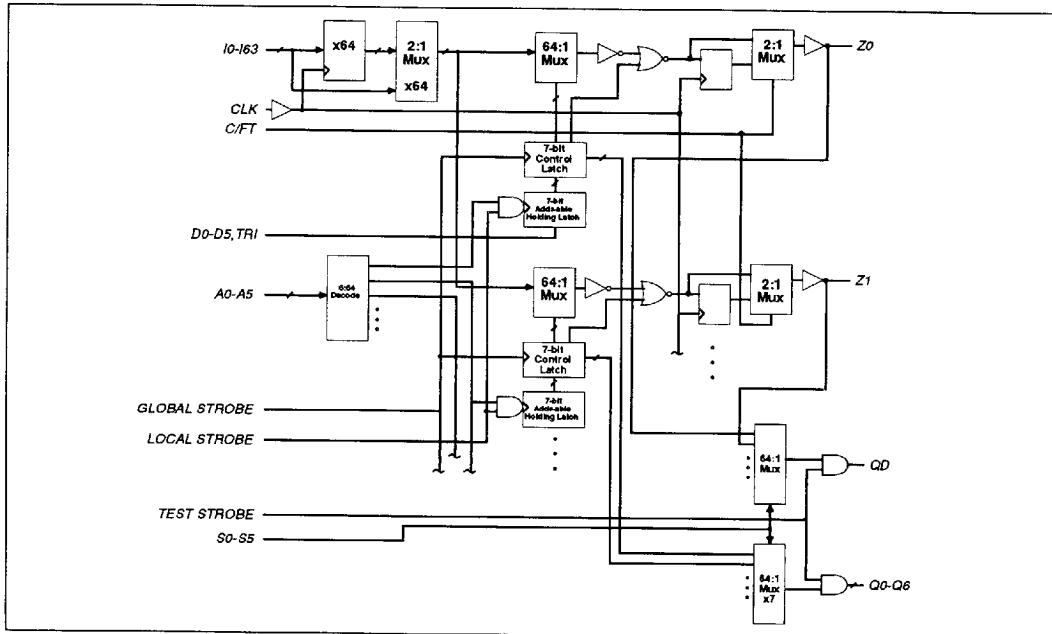


FEATURES

- Superior Performance: 400 Mb/s
- Operating Range: 0° to +70° C
- Power Dissipation: 9.4 Watts (Nominal), 14.7 Watts (Max)
- Clocked or Flow-Through Operation
- ECL 100K Compatible Inputs and Outputs
- Clocked Mode Output-to-Output Skew: < 1100 ps
- Single Power Supply: -2 V ± 5%
- Full Diagnostic Monitors


INTRODUCTION

The VSC864A-4 is a 64 x 64 crosspoint switch intended for digital communications applications requiring up to 400 Mb/s performance. The VSC864A-4 allows any of its 64 data inputs to be multiplexed to any, some, or all of its 64 data outputs. For example, broadcast mode sends a single specified data input to all 64 data outputs. In clocked mode, any two outputs will exhibit less than 1100 ps of skew.

The VSC864A-4 crosspoint switch is ideal for digital applications including data distribution for telecommunications, computer network and multi-processor switching, test equipment, and video switching. In a telecommunications SONET application, for example, the VSC864A-4 can be used as an STS-3 protection switch, or in the fabric of a large switching system.

2

FUNCTIONAL BLOCK DIAGRAM

The VSC864A-4 can be operated either in asynchronous flow-through or synchronous clocked mode by use of internal input and output registers. In flow-through mode, the data propagation delay is less than 5 ns. The individual address latches are double buffered and a local strobe signal is used to load an individual address for each output pin while a global broadcast strobe is used to simultaneously activate all 64 destination addresses. The VSC864A-4 incorporates a separate diagnostic bus, Q-bus, to allow observation of individual internal multiplexer address latches.

The VSC864A-4 is implemented using Vitesse's proprietary H-GaAs II process which offers much better speed power performance than silicon alternatives. At 400 Mb/s, nominal power dissipation is 9.4 W. The input and output signal levels are compatible with industry standard ECL 100K signal levels and the part operates off of a single -2 V power supply. This product is packaged in a 344-pin ceramic leaded chip carrier (LDCC) which has been designed for optimal electrical and thermal performance.

FUNCTIONAL DESCRIPTION

The VSC864A-4 may be used to connect any one of 64 inputs to any combination of 64 output channels, according to a user defined bit pattern stored in each channel's control latch.

During normal operation, signals flow from inputs ($I_0 - I_{63}$) to output channels ($Z_0 - Z_{63}$) through sixty-four, 64:1 multiplexers. The traffic pattern is controllable by data previously stored in sixty-four 7-bit control latches with each latch corresponding to an output channel. The first 6 least significant bits in each control latch are reserved for designating the MUX input which will be connected to its corresponding output, the most significant bit is used to tri-state this output if desired. The 6 LSBs

are a binary numerical representation of the input channel selected (i.e., 000000 corresponds to I_0 , 000001 corresponds to I_1 , etc.).

The Write mode is used to alter any one or all signal paths. During Write mode, inputs $A_0 - A_5$ select which output channel's control latch will be altered (also by a binary numerical representation). Inputs $D_0 - D_5$ describe the new input signal to be selected for that channel. When a high pulse is applied to LOCAL STROBE, $D_0 - D_5$ and the TRI bit is transferred into a holding latch. After some or all control latches are programmed, a high pulse is applied to GLOBAL STROBE to transfer the information from the holding latches into all the control latches. In this way the entire crosspoint switch can be reconfigured simultaneously.

The Read mode is a diagnostic feature used to examine the data stored in any one control latch and its corresponding 64:1 multiplexer output. The control latch to be examined is selected by inputs $S_0 - S_5$ (by a binary numerical representation). When a high pulse is applied to the TEST STROBE, the contents of the selected control latch will be displayed at the $Q_0 - Q_6$ outputs and the corresponding 64:1 mux output will appear at the QD output. When TEST STROBE is "low" the Q bus has all low outputs (which is equivalent to being tri-stated).

The VSC864A-4 can be configured to run in either synchronous clocked mode or asynchronous flow-through mode. This feature is controlled by the C/FT input. When C/FT is high, the chip is in clocked mode and will require an input clock at its CK pin. In this mode all input and output data is registered. When C/FT is low the chip is in flow-through mode and will ignore the CK input. In clocked mode, the outputs on the monitor bus ($Q_0 - Q_6$, and QD), and input data ($I_0 - I_{63}$) are registered by the master clock (CK).

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Power Supply Voltage (ECL), V_{TT} potential to GND	-3.0V to +0.5V
Input Voltage Applied, V_{ECLIN}	-2.5V to +0.5V
Output Current, I_{OUT} (DC, output HI)	100 mA
Case Temperature Under Bias, T_C	-55° to +125°C
Storage Temperature (ambient), T_{STG}	-65°C to +150°C

RECOMMENDED OPERATING CONDITIONS

ECL Supply Voltage, V_{TT}	-2.0V ± 0.1V
Commercial Operating Temperature Range, $T^{(2)}$	0° to 70°C

NOTES: (1) CAUTION: Stresses listed under "Absolute Maximum Ratings" may be applied to devices one at a time without causing permanent damage. Functionality at or above the values listed is not implied. Exposure to these values for extended periods may affect device reliability.

(2) Lower limit of specification is ambient temperature and upper limit is case temperature.

DC CHARACTERISTICS**ECL Inputs/Outputs**

(Over recommended commercial operating conditions. $V_{CC} = V_{CCA} = GND$, Output load 50Ω to V_{TT})

Parameters	Description	Min	Typ	Max	Units	Conditions
V_{OH}	Output HIGH voltage	-1020	-850	-700	mV	$V_{IN} = V_{IH}$ (max) or V_{IL} (min), $V_{TT} = -2.0V$
V_{OL}	Output LOW voltage	V_{TT}	—	-1620	mV	
V_{IH}	Input HIGH voltage	-1100	—	-700	mV	Guaranteed HIGH for all inputs
V_{IL}	Input LOW voltage	V_{TT}	—	-1540	mV	Guaranteed LOW for all inputs
I_{IH}	Input HIGH current	—	—	200	µA	$V_{IN} = V_{IH}$ max
I_{IL}	Input LOW current	-50	—	—	µA	$V_{IN} = V_{IL}$ min
I_{TT}	Supply current	—	4.7	7	A	$V_{TT} = -2.10V$

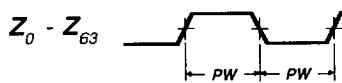
FLOW-THROUGH AND CLOCKED MODE AC TIMING CHARACTERISTICS

(Over recommended operating conditions. $V_{CC} = V_{CCA} = GND$, Output load 50Ω to V_{TT})

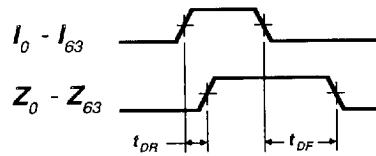
Flow-Through Mode

Parameters	Description	Min	Max	Units	Conditions
PW	Minimum data valid time	2.0	—	ns	≤ 20% Duty Cycle Distortion; 50% input Duty Cycle
t_{DR}	Propagation delay (rising)	2.8	4.8	ns	—
t_{DF}	Propagation delay (falling)	2.8	4.8	ns	—
skew	Output to output skew	—	1.8	ns	On a given part
BER	Bit Error Rate	—	10^{-13}	—	Note (2)

NOTES: (1) Duty cycle distortion = $\frac{duty\ cycle\ out - duty\ cycle\ in}{duty\ cycle\ in} \times 100\%$

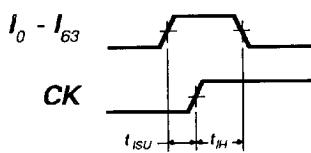

(2) Based on limited measurement time, not device performance limitations.

Clocked Mode

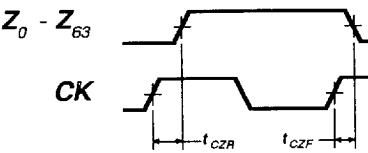

Parameters	Description	Min	Max	Units	Conditions
f_{MAX}	Maximum clock rate	—	400	MHz	—
t_{ISU}	Input data set-up time	0	—	ns	—
t_{IH}	Input data hold time	1.5	—	ns	—
t_{CZR}	Clock to output delay (rising)	2.0	3.5	ns	—
t_{CZF}	Clock to output delay (falling)	2.0	3.5	ns	—
skew	Output to output skew	—	1.1	ns	On a given part

FLOW-THROUGH AND CLOCKED MODE AC TIMING WAVEFORMS

Flow-Through Mode


Minimum Data Valid Time, PW

Propagation Delay



Clocked Mode

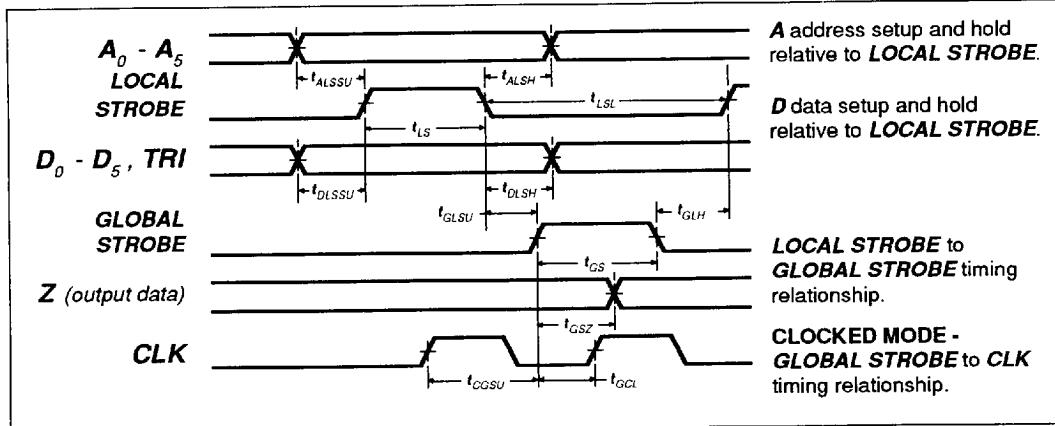
Input Data Set-up & Hold Times

Clock to Output Delay

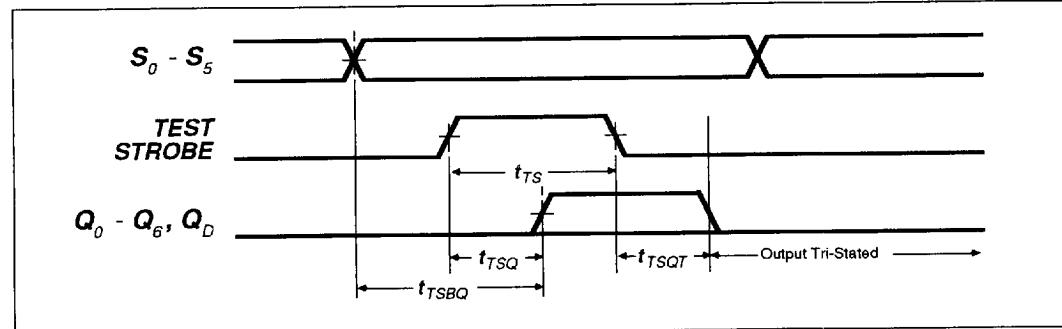
WRITE AND READ MODE AC TIMING CHARACTERISTICS

(Over recommended commercial operating conditions. $V_{CC} = V_{CCA} = GND$.

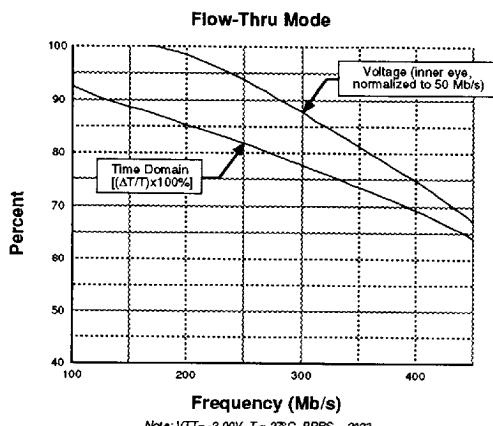
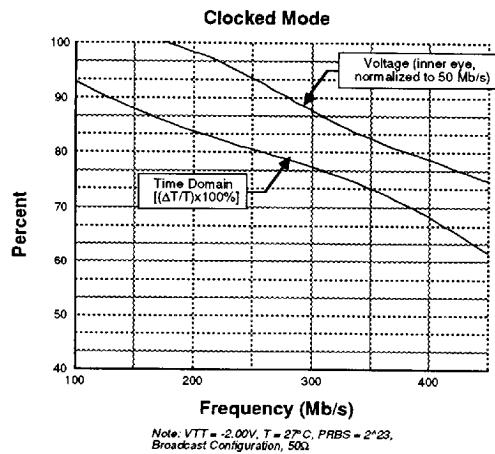
Write Mode


Parameters	Description	Min	Typ	Max	Units	Condition
t_{RECON}	Reconfiguration time	650	1300	—	ns	64 channel reconfig
t_{ALSSU}	A bus to LOCAL STROBE set-up time	300	—	—	ps	—
t_{ALSH}	A bus to LOCAL STROBE hold time	0	—	—	ps	—
t_{DLSSU}	D bus to LOCAL STROBE set-up time	400	—	—	ps	—
t_{DLSH}	D bus to LOCAL STROBE hold time	2	—	—	ns	—
t_{GLSU}	GLOBAL STROBE to LOCAL STROBE set-up time	5	—	—	ns	—
t_{GS}, t_{LS}	GLOBAL STROBE and LOCAL STROBE pulse widths	5	—	—	ns	Recommended local strobe frequency = 50 MHz
t_{LSL}	LOCAL STROBE low time	5	—	—	ns	—
t_{GLH}	GLOBAL STROBE to LOCAL STROBE hold time	0	—	—	ps	—
t_{GSZ}	GLOBAL STROBE to valid output (flow-through mode)	2.7	—	5.6	ns	—
t_{CGSU}	CLK to GLOBAL STROBE set-up time (clocked mode)	200	—	—	ps	Data being clocked in at this time is invalid
t_{GCL}	GLOBAL STROBE to CLK hold time (clocked mode)	3.5	—	—	ns	

Read Mode


Parameters	Description	Min	Typ	Max	Units	Conditions
t_{TS}	TEST STROBE pulse width	6.5	—	—	ns	—
t_{TSQ}	TEST STROBE to valid Q output	—	—	7.1	ns	—
t_{TSBQ}	S bus to valid output	—	—	7.1	ns	—
t_{TSAT}	TEST STROBE to tri-state condition on Q	—	—	6.5	ns	—

WRITE AND READ MODE AC TIMING WAVEFORMS



Write Mode

Read Mode

AC PERFORMANCE MEASUREMENTS (Percent Recoverable "Eye" vs Frequency)

Typical Error-Free Area

The above graphs show the typical error-free area of a 2^{23} Pseudo-Random Bit Stream "eye" pattern in Clocked and Flow-Thru modes. The percent eye opening data was measured with the VSC864A-4 switching one input, **I1**, to all 64 outputs (broadcast configuration). Virtually no degradation of the data eye was seen below 50 Mb/s.

While switching all 64 data outputs simultaneously, a typical eye pattern of one of these outputs, **Z9**, was analyzed to obtain the percent eye opening vs. data rate curves.

For the time domain, the error-free region of the data eye (ΔT) was measured and compared to the total data bit period (T). The percent eye opening curves in the time domain were then calculated using the following formula:

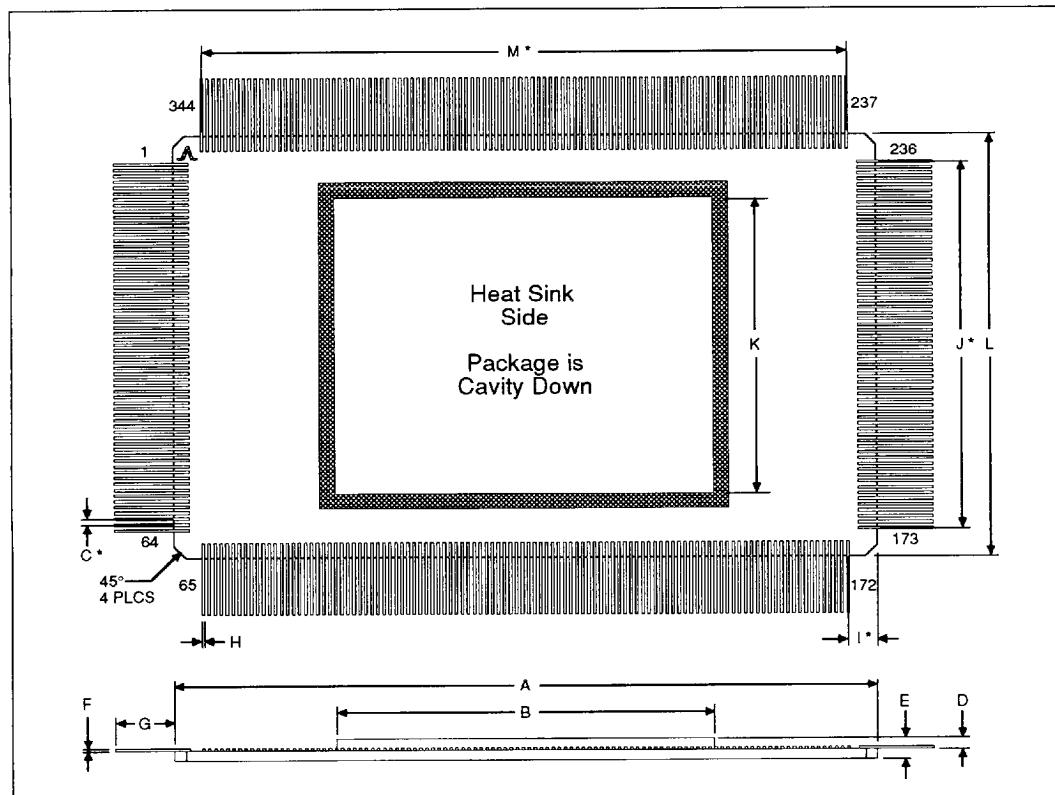
$$(\Delta T/T) \times 100\%$$

Voltage values were referenced to an initial inner eye measurement at 50 Mb/s. Subsequent percentage values were computed using the following formula:

$$V_{INNER} \times 100/V_{INNER} @ 50 \text{ Mb/s}$$

PIN DESCRIPTION

Pin #	Name	I/O	Description
12-16, 20-30, 35-45, 49-53, 184-188, 192-202, 207-217, 221-225	$I_0 - I_{63}$	I	The 64 ECL signal inputs.
11	TRI	I	ECL input containing Tristate data to be loaded into a 64:1 Mux holding latch. (Tristate = HIGH) Combined with a control register's destination address. Used to tristate the corresponding output.
5-10	D₀ - D₅	I	ECL inputs containing the destination address to be loaded into the 64:1 Mux holding latch.
178-183	A₀ - A₅	I	ECL inputs containing the address of the 64:1 Mux holding/control latch to be programmed.
177	LOCAL STROBE	I	Active HIGH, ECL input used to load the D0-D5 and TRI data into the 64:1 Mux holding latch.
34	GLOBAL STROBE	I	Active HIGH, ECL input used to load destination addresses to all 64:1 Mux control latches simultaneously from the data contained in their corresponding holding latches.
54-59	S₀ - S₅	I	ECL inputs containing the address of the control latch to be observed at the QD output when the TEST STROBE is HIGH.
60	TEST STROBE	I	Active HIGH, ECL input used to enable Test Mode and observation of a selected 64:1 Mux control latch's destination address.
206	C/FT	I	ECL input used to enable Clocked or Flow-through Mode (Clocked = HIGH / Flow-Thru = LOW).
203	CK	I	ECL clock input for Clocked Mode.
68, 71, 73, 78, 80, 83, 85, 88, 92, 95, 97, 100, 102, 107, 109, 112, 126, 129, 131, 136, 138, 141, 143, 148, 150, 153, 155, 158, 162, 165, 167, 170, 240, 243, 245, 250, 252, 255, 257, 260, 264, 267, 269, 272, 274, 279, 281, 284, 298, 301, 303, 308, 310, 313, 315, 320, 322, 325, 327, 330, 334, 337, 339, 342	$Z_0 - Z_{63}$	O	The 64 ECL signal outputs.
296	QD	O	ECL output used to observe the output of a selected 64:1 Mux in Test Mode.
114, 117, 121, 124, 286, 289, 293	Q₀ - Q₆	O	ECL outputs containing the selected 64:1 Mux control register's destination address and TRI bit in Test Mode.
3, 17, 32, 47, 61, 76, 90, 104, 118, 132, 146, 160, 175, 189, 204, 219, 233, 248, 262, 276, 290, 304, 318, 332	V_{CC}		ØV ground connection for internal logic.
2, 63, 69, 74, 81, 86, 93, 98, 103, 110, 115, 122, 127, 134, 139, 144, 151, 156, 163, 168, 174, 235, 241, 246, 253, 258, 265, 270, 275, 282, 287, 294, 299, 306, 311, 316, 323, 328, 335, 340	V_{CCA}		ØV 'dirty' ground connection for outputs.


PIN DESCRIPTION (CONT.)

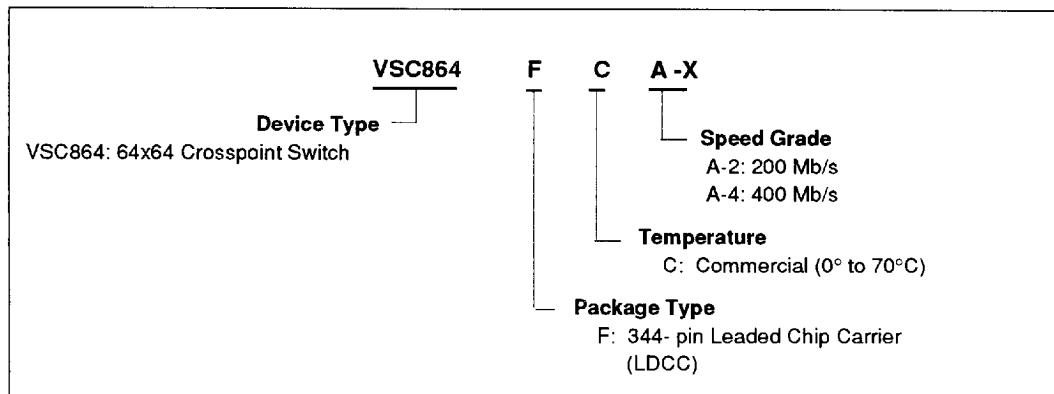
Pin #	Name	I/O	Description
4, 18, 33, 48, 62, 77, 91, 105, 119, 133, 147, 161, 176, 190, 205, 220, 234, 249, 263, 277, 305, 319, 333	V_{TT}		-2V supply connection.
291	V_{SUB}		-2V supply connection to substrate (most negative supply).

PIN IDENTIFICATION

Name	Pin #	Name	Pin #	Name	Pin #	Name	Pin #	Name	Pin #	Name	Pin #	Name	Pin #
I_0	12	I_{22}	26	I_{44}	41	D_2	7	Z_6	85	Z_{28}	162	Z_{50}	303
I_1	225	I_{23}	211	I_{45}	196	D_3	8	Z_7	88	Z_{29}	165	Z_{51}	308
I_2	13	I_{24}	27	I_{46}	42	D_4	9	Z_8	92	Z_{30}	167	Z_{52}	310
I_3	224	I_{25}	210	I_{47}	195	D_5	10	Z_9	95	Z_{31}	170	Z_{53}	313
I_4	14	I_{26}	28	I_{48}	43	A_0	183	Z_{10}	97	Z_{32}	240	Z_{54}	315
I_5	223	I_{27}	209	I_{49}	194	A_1	182	Z_{11}	100	Z_{33}	243	Z_{55}	320
I_6	15	I_{28}	29	I_{50}	44	A_2	181	Z_{12}	102	Z_{34}	245	Z_{56}	322
I_7	222	I_{29}	208	I_{51}	193	A_3	180	Z_{13}	107	Z_{35}	250	Z_{57}	325
I_8	16	I_{30}	30	I_{52}	45	A_4	179	Z_{14}	109	Z_{36}	252	Z_{58}	327
I_9	221	I_{31}	207	I_{53}	192	A_5	178	Z_{15}	112	Z_{37}	255	Z_{59}	330
I_{10}	20	I_{32}	35	I_{54}	49	S_0	54	Z_{16}	126	Z_{38}	257	Z_{60}	334
I_{11}	217	I_{33}	202	I_{55}	188	S_1	55	Z_{17}	129	Z_{39}	260	Z_{61}	337
I_{12}	21	I_{34}	36	I_{56}	50	S_2	56	Z_{18}	131	Z_{40}	264	Z_{62}	339
I_{13}	216	I_{35}	201	I_{57}	187	S_3	57	Z_{19}	136	Z_{41}	267	Z_{63}	342
I_{14}	22	I_{36}	37	I_{58}	51	S_4	58	Z_{20}	138	Z_{42}	269	Q_0	114
I_{15}	215	I_{37}	200	I_{59}	186	S_5	59	Z_{21}	141	Z_{43}	272	Q_1	117
I_{16}	23	I_{38}	38	I_{60}	52	Z_0	68	Z_{22}	143	Z_{44}	274	Q_2	121
I_{17}	214	I_{39}	199	I_{61}	185	Z_1	71	Z_{23}	148	Z_{45}	279	Q_3	124
I_{18}	24	I_{40}	39	I_{62}	53	Z_2	73	Z_{24}	150	Z_{46}	281	Q_4	286
I_{19}	213	I_{41}	198	I_{63}	184	Z_3	78	Z_{25}	153	Z_{47}	284	Q_5	289
I_{20}	25	I_{42}	40	D_0	5	Z_4	80	Z_{26}	155	Z_{48}	298	Q_6	293
I_{21}	212	I_{43}	197	D_1	6	Z_5	83	Z_{27}	158	Z_{49}	301		

344 PIN CERAMIC LDCC PACKAGE DIMENSIONS

Item	mm (Min/Max)	In (Min/Max)	Item	mm (Min/Max)	In (Min/Max)
A	58.93/59.94	2.320/2.340	H	0.15/0.25	0.006/0.010
B	35.54 TYP	TYP 1.36 SQ	I*	REF 2.54 TYP	REF 0.100 TYP
C*	0.51 TYP	0.020 TYP	J*	32.00 TYP	1.26 TYP
D	0.38/0.63	0.015/0.025	K	39.46 TYP	1.56 TYP
E	2.16/2.92	0.085/0.115	L	36.57/37.59 SQ	1.440/1.480
F	0.09/0.216	0.004/0.008	M*	54.36 TYP	2.140 TYP
G	5.08/7.62	0.200/0.300	-	-	-


* At package body

NOTES:

- 1) Drawing not to scale.
- 2) Packages: Ceramic (alumina); Heat sinks: Copper-tungsten; Leads: Alloy 42 with gold plating

ORDERING INFORMATION

The order number for this product is formed by a combination of the device number, the package type, the temperature range, and the speed grade as shown below:

