Product Features - Functionally compatible with FCT3, LVT, and 74 series 16501 families of products - Tri-State outputs - 5V Tolerant inputs and outputs - 2.0V-3.6V Vcc supply operation - Balanced sink and source output drives (24 mA) - · Low ground bounce outputs - Supports live insertion - ESD Protection exceeds 2000V, Human Body Model 200V, Machine Model - Packages available: - -56-pin 240-mil wide plastic TSSOP (A) - -56-pin 300-mil wide plastic SSOP (V) # **Fast CMOS 18-Bit Registered Transceivers** ## **Product Description** Pericom Semiconductor's PI74LCX series of logic circuits are produced using the Company's advanced 0.6 micron CMOS technology, achieving industry leading speed grades. The PI74LCX16501 is an 18-bit registered bus transceiver designed with D-type latches and flip-flops to allow data flow in transparent, latched, and clocked modes. The Output Enable (OEAB and OEBA, Latch Enable (LEAB and LEBA) and Clock (CLKAB and CLKBA) inputs control the data flow in each direction. When LEAB is HIGH, the device operates in transparent mode for A-to-B data flow. When LEAB is LOW, the A data is latched if CLKAB is held at a HIGH or LOW logic level. The A bus data is stored in the latch/flip-flop on the LOW-to-HIGH transition of CLKAB, if LEAB is LOW. OEAB performs the output enable function on the B port. Data flow from B port to A port is similar using OEBA, LEBA and CLKBA. This high-speed, low-power device offers a flow-through organization for ease of board layout. The PI74LCX16501 can be driven from either 3.3V or 5.0V devices allowing this device to be used as a translator in a mixed 3.3V/5.0V system. ## Logic Block Diagram ## **Product Pin Description** | Pin Name | Description | |----------|--| | OEAB | A-to-B Output Enable Input | | OEBA | B-to-A Output Enable Input (Active LOW) | | LEAB | A-to-B Latch Enable Input | | LEBA | B-to-A Latch Enable Input | | CLKAB | A-to-B Clock Input | | CLKBA | B-to-A Clock Input | | Ax | A-to-B Data Inputs or B-to-A 3-State Outputs | | Bx | B-to-A Data Inputs or A-to-B 3-State Outputs | | GND | Ground | | Vcc | Power | ## **Product Pin Configuration** ## Truth Table(1) | | Outputs | | | | |------|---------|----------|----|------------------| | OEAB | LEAB | CLKAB | Ax | Bx | | L | X | X | X | Z | | Н | Н | X | L | L | | Н | Н | X | Н | Н | | Н | L | ↑ | L | L | | Н | L | ↑ | Н | Н | | Н | L | Н | X | B ⁽²⁾ | | Н | L | L | X | B ⁽³⁾ | ### **Notes:** 2 - 1. A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA, LEBA, and CLKBA. - 2. Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW. - 3. Output level before the indicated steady-state input conditions were established. - 4. H = High Voltage Level - L = Low Voltage Level - Z = High Impedance - ↑ = LOW-to-HIGH Transition ## **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) | Storage Temperature65°C to +150°C | |--| | Ambient Temperature with Power Applied—40°C to +85°C | | Supply Voltage to Ground Potential (Inputs & Vcc Only)0.5V to +7.0V | | Supply Voltage to Ground Potential (Outputs & D/O Only)0.5V to +7.0V | | DC Input Voltage0.5V to +7.0V | | DC Output Current | | Power Dissipation | | | ### Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. # **Recommended Operating Conditions** | Symbol | Parameter | Parameter | | Max. | Units | |---------------------|--------------------------------|-----------------------------|-----|------|-------| | Vcc | Supply Voltage | Operating | 2.0 | 3.6 | | | | | Data Retention | 1.5 | 3.6 | | | VI | Input Voltage | | 0 | 5.5 | V | | Vo | Output Voltage | HIGH or LOW State | 0 | Vcc | | | | | TRI-State | 0 | 5.5 | | | IOH/IOL | Output Current | Vcc = 3.0V-3.6V | _ | ±24 | A | | | | Vcc = 2.7V | _ | ±12 | mA | | TA | Free-Air Operating Temperature | | -40 | +85 | °C | | $\Delta t/\Delta V$ | Input Edge Rate | V = 0.8V-2.0V, $Vcc = 3.0V$ | 0 | 10 | ns/V | | | | | | | | 3 ## **DC Electrical Characteristics** (Over the Operating Range, $T_A = -40$ °C to +85°C, $V_{CC} = 2.7$ V to 3.6V) | Parameters | Description | Test Conditions ⁽¹⁾ | | Min. | Typ ⁽²⁾ | Max. | Units | |------------|--|--|--|---------|--------------------|------|-------| | VIH | Input HIGH Voltage | Guaranteed Logic HIGH Level | | 2.0 | | _ | | | VIL | Input LOW Voltage | Guaranteed Logic LOW Lev | vel | _ | _ | 0.8 | | | Voh | Output HIGH Voltage | Vcc = 2.7-3.6 | Іон = -0.1mA | Vcc-0.2 | _ | _ | | | | | Vcc = 2.7 | Iон = −12mA | 2.2 | _ | _ | | | | | Vcc = 3.0 | Iон = −18mA | 2.4 | _ | _ | | | | | | Iон = −24mA | 2.2 | | _ | V | | Vol | Output LOW Voltage | Vcc = 2.7-3.6 | Iol = 0.1 mA | _ | _ | 0.2 | | | | | Vcc = 2.7 | IoL = 12mA | _ | _ | 0.4 | | | | | Vcc = 3.0 | Iol = 16mA | _ | _ | 0.4 | | | | | | IoL = 24mA | _ | | 0.55 | | | Vik | Clamp Diode Voltage | Vcc = Min., I _{IN} = -18mA | | _ | -0.7 | -1.2 | | | Iı | Input Leakage Current | $0 \le V_I \le 5.5V$ | Vcc = 2.7-3.6 | _ | | ±5 | | | Ioz | Tri-State Output Leakage | $0 \le \text{Vo} \le 5.5\text{V}$
V _I = V _{IH} or V _{IL} $\text{Vcc} = 2.7\text{-}3.6$ | | _ | _ | ±5 | | | Ioff | Power Down Disable | $V_{CC} = 0V$, V_{IN} or $V_{OUT} \le 5.5V$ | | _ | _ | 10 | | | Icc | Quiescent Power Supply
Current | $V_{CC} = Max.$ $V_{IN} = GND$ or V_{CC} | | _ | 0.1 | 10 | μΑ | | ΔΙα | Quiescent Power Supply
Current
TTL Inputs HIGH | Vcc = Max. | $V_{\rm IN} = V_{\rm CC} - 0.6V^{(3)}$ | _ | _ | 500 | | ## **Notes:** - 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type. - Typical values are at Vcc = 3.3V, +25°C ambient. Per TTL driven input; all other inputs at Vcc or GND. # Capacitance | Parameters | Description | Test Conditions | Тур. | Units | |------------|-------------------------------|---|------|-------| | Cin | Input Capacitance | $V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$ | 7 | | | Cout | Output Capacitance | $V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} | 8 | pF | | СРД | Power Dissipation Capacitance | $V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , $F = 10$ MHz | 20 | | 4 # **Switching Characteristics over Operating Range** | | | | $Vcc = 3.3V \pm 0.3V$ | | $V_{\rm CC} = 2.7V$ | | | |--------------|--------------------------------------|-------------------|-----------------------|------|---------------------|------|-------| | Parameters | Description | Conditions | Min. | Max. | Min. | Max. | Units | | fmax | Maximum Clock Frequency | CL = 50 pF | 170 | _ | _ | _ | MHz | | tphl
tplh | Propagation Delay
Bus to Bus | $R_L = 500\Omega$ | 1.5 | 6.0 | 1.5 | 7.0 | | | tPHL
tPLH | Propagation Delay
Clock to Bus | | 1.5 | 6.5 | 1.5 | 7.5 | | | tphl
tplh | Propagation Delay
LE to Bus | | 1.5 | 6.5 | 1.5 | 7.5 | | | tPZL
tPZH | Output Enable Time | | 1.5 | 7.5 | 1.5 | 8.5 | | | tPLZ
tPHZ | Output Disable Time | | 1.5 | 6.0 | 1.5 | 7.0 | ns | | ts | Setup Time | | 2.5 | _ | 2.5 | _ | | | tH | Hold Time | | 1.5 | _ | 1.5 | _ | | | tw | Pulse Width | | 3.0 | _ | 3.0 | _ | | | tsk(o) | Output to Output Skew ⁽¹⁾ | | | 1.0 | | _ | | ### Note: 1. Skew between any two outputs, of the same package, switching in the same direction. # **Dynamic Switching Characteristics** (TA = +25°C) | Parameters | Description | Test Conditions ⁽¹⁾ | Тур. | Units | |------------|----------------------------|---|------|-------| | VOLP | Dynamic LOW Peak Voltage | $V_{CC} = 3.3V, C_L = 50pF$
$V_{IH} = 3.3V, V_{IL} = 0V$ | 0.8 | N/ | | Volv | Dynamic LOW Valley Voltage | $V_{CC} = 3.3V, C_L = 50pF$
$V_{IH} = 3.3V, V_{IL} = 0V$ | 0.8 | V | ### Note: 1. Measured with n-1 outputs switching from High-to-Low or Low-to-High. The remaining output is measured in the LOW state. **Pericom Semiconductor Corporation** 2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com